Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Glycoconj J ; 40(6): 611-619, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38147151

RESUMO

Neuraminidase 1 (NEU1) is a lysosomal sialidase that cleaves terminal α-linked sialic acid residues from sialylglycans. NEU1 is biosynthesized in the rough endoplasmic reticulum (RER) lumen as an N-glycosylated protein to associate with its protective protein/cathepsin A (CTSA) and then form a lysosomal multienzyme complex (LMC) also containing ß-galactosidase 1 (GLB1). Unlike other mammalian sialidases, including NEU2 to NEU4, NEU1 transport to lysosomes requires association of NEU1 with CTSA, binding of the CTSA carrying terminal mannose 6-phosphate (M6P)-type N-glycan with M6P receptor (M6PR), and intralysosomal NEU1 activation at acidic pH. In contrast, overexpression of the single NEU1 gene in mammalian cells causes intracellular NEU1 protein crystallization in the RER due to self-aggregation when intracellular CTSA is reduced to a relatively low level. Sialidosis (SiD) and galactosialidosis (GS) are autosomal recessive lysosomal storage diseases caused by the gene mutations of NEU1 and CTSA, respectively. These incurable diseases associate with the NEU1 deficiency, excessive accumulation of sialylglycans in neurovisceral organs, and systemic manifestations. We established a novel GS model mouse carrying homozygotic Ctsa IVS6 + 1 g/a mutation causing partial exon 6 skipping with simultaneous deficiency of Ctsa and Neu1. Symptoms developed in the GS mice like those in juvenile/adult GS patients, such as myoclonic seizures, suppressed behavior, gargoyle-like face, edema, proctoptosis due to Neu1 deficiency, and sialylglycan accumulation associated with neurovisceral inflammation. We developed a modified NEU1 (modNEU1), which does not form protein crystals but is transported to lysosomes by co-expressed CTSA. In vivo gene therapy for GS and SiD utilizing a single adeno-associated virus (AAV) carrying modNEU1 and CTSA genes under dual promoter control will be created.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucolipidoses , Neuraminidase , Animais , Humanos , Camundongos , Neuraminidase/química , Mucolipidoses/genética , Mucolipidoses/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo
2.
Autophagy ; 19(7): 2143-2145, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36633450

RESUMO

Degradation of macromolecules delivered to lysosomes by processes such as autophagy or endocytosis is crucial for cellular function. Lysosomes require more than 60 soluble hydrolases in order to catabolize such macromolecules. These soluble hydrolases are tagged with mannose6-phosphate (M6P) moieties in sequential reactions by the Golgi-resident GlcNAc-1-phosphotransferase complex and NAGPA/UCE/uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase), which allows their delivery to endosomal/lysosomal compartments through trafficking mediated by cation-dependent and -independent mannose 6-phosphate receptors (MPRs). We and others recently identified TMEM251 as a novel regulator of the M6P pathway via independent genome-wide genetic screening strategies. We renamed TMEM251 to LYSET (lysosomal enzyme trafficking factor) to establish nomenclature reflective to this gene's function. LYSET is a Golgi-localized transmembrane protein important for the retention of the GlcNAc-1-phosphotransferase complex in the Golgi-apparatus. The current understanding of LYSET's importance regarding human biology is 3-fold: 1) highly pathogenic viruses that depend on lysosomal hydrolase activity require LYSET for infection. 2) The presence of LYSET is critical for cancer cell proliferation in nutrient-deprived environments in which extracellular proteins must be catabolized. 3) Inherited pathogenic alleles of LYSET can cause a severe inherited disease which resembles GlcNAc-1-phosphotransferase deficiency (i.e., mucolipidosis type II).Abbreviations: GlcNAc-1-PT: GlcNAc-1-phosphotransferase; KO: knockout; LSD: lysosomal storage disorder; LYSET: lysosomal enzyme trafficking factor; M6P: mannose 6-phosphate; MPRs: mannose-6-phosphate receptors, cation-dependent or -independent; MBTPS1/site-1 protease: membrane bound transcription factor peptidase, site 1; MLII: mucolipidosis type II; WT: wild-type.


Assuntos
Mucolipidoses , Humanos , Mucolipidoses/genética , Mucolipidoses/metabolismo , Manose/metabolismo , Autofagia , Lisossomos/metabolismo , Hidrolases/metabolismo , Receptor IGF Tipo 2/metabolismo , Cátions/metabolismo , Fosfotransferases/metabolismo
3.
Nat Commun ; 13(1): 5351, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096887

RESUMO

The mannose-6-phosphate (M6P) biosynthetic pathway for lysosome biogenesis has been studied for decades and is considered a well-understood topic. However, whether this pathway is regulated remains an open question. In a genome-wide CRISPR/Cas9 knockout screen, we discover TMEM251 as the first regulator of the M6P modification. Deleting TMEM251 causes mistargeting of most lysosomal enzymes due to their loss of M6P modification and accumulation of numerous undigested materials. We further demonstrate that TMEM251 localizes to the Golgi and is required for the cleavage and activity of GNPT, the enzyme that catalyzes M6P modification. In zebrafish, TMEM251 deletion leads to severe developmental defects including heart edema and skeletal dysplasia, which phenocopies Mucolipidosis Type II. Our discovery provides a mechanism for the newly discovered human disease caused by TMEM251 mutations. We name TMEM251 as GNPTAB cleavage and activity factor (GCAF) and its related disease as Mucolipidosis Type V.


Assuntos
Proteínas de Membrana , Mucolipidoses , Peixe-Zebra , Animais , Humanos , Lisossomos/metabolismo , Manosefosfatos/metabolismo , Proteínas de Membrana/metabolismo , Mucolipidoses/genética , Mucolipidoses/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Peixe-Zebra/metabolismo
4.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922276

RESUMO

Sialidosis, caused by a genetic deficiency of the lysosomal sialidase gene (NEU1), is a systemic disease involving various tissues and organs, including the nervous system. Understanding the neurological dysfunction and pathology associated with sialidosis remains a challenge, partially due to the lack of a human model system. In this study, we have generated two types of induced pluripotent stem cells (iPSCs) with sialidosis-specific NEU1G227R and NEU1V275A/R347Q mutations (sialidosis-iPSCs), and further differentiated them into neural precursor cells (iNPCs). Characterization of NEU1G227R- and NEU1V275A/R347Q- mutated iNPCs derived from sialidosis-iPSCs (sialidosis-iNPCs) validated that sialidosis-iNPCs faithfully recapitulate key disease-specific phenotypes, including reduced NEU1 activity and impaired lysosomal and autophagic function. In particular, these cells showed defective differentiation into oligodendrocytes and astrocytes, while their neuronal differentiation was not notably affected. Importantly, we found that the phenotypic defects of sialidosis-iNPCs, such as impaired differentiation capacity, could be effectively rescued by the induction of autophagy with rapamycin. Our results demonstrate the first use of a sialidosis-iNPC model with NEU1G227R- and NEU1V275A/R347Q- mutation(s) to study the neurological defects of sialidosis, particularly those related to a defective autophagy-lysosome pathway, and may help accelerate the development of new drugs and therapeutics to combat sialidosis and other LSDs.


Assuntos
Astrócitos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Mucolipidoses/patologia , Células-Tronco Neurais/patologia , Neuraminidase/metabolismo , Oligodendroglia/patologia , Teratoma/patologia , Astrócitos/metabolismo , Autofagia , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisossomos , Mucolipidoses/genética , Mucolipidoses/metabolismo , Mutação , Células-Tronco Neurais/metabolismo , Neuraminidase/genética , Oligodendroglia/metabolismo , Fenótipo , Teratoma/genética , Teratoma/metabolismo
5.
Int J Mol Sci ; 21(17)2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842549

RESUMO

The endosomal recycling pathway lies at the heart of the membrane trafficking machinery in the cell. It plays a central role in determining the composition of the plasma membrane and is thus critical for normal cellular homeostasis. However, defective endosomal recycling has been linked to a wide range of diseases, including cancer and some of the most common neurological disorders. It is also frequently subverted by many diverse human pathogens in order to successfully infect cells. Despite its importance, endosomal recycling remains relatively understudied in comparison to the endocytic and secretory transport pathways. A greater understanding of the molecular mechanisms that support transport through the endosomal recycling pathway will provide deeper insights into the pathophysiology of disease and will likely identify new approaches for their detection and treatment. This review will provide an overview of the normal physiological role of the endosomal recycling pathway, describe the consequences when it malfunctions, and discuss potential strategies for modulating its activity.


Assuntos
Endossomos/metabolismo , Neoplasias/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sistemas de Liberação de Medicamentos/métodos , Endocitose/fisiologia , Endossomos/efeitos dos fármacos , Humanos , Síndromes de Malabsorção/metabolismo , Síndromes de Malabsorção/patologia , Microvilosidades/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Mucolipidoses/patologia , Neoplasias/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Transporte Proteico/fisiologia , Via Secretória , Proteínas rab de Ligação ao GTP/metabolismo
6.
Gastroenterology ; 158(8): 2236-2249.e9, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32112796

RESUMO

BACKGROUND & AIMS: Microvillus inclusion disease (MVID) is caused by inactivating mutations in the myosin VB gene (MYO5B). MVID is a complex disorder characterized by chronic, watery, life-threatening diarrhea that usually begins in the first hours to days of life. We developed a large animal model of MVID to better understand its pathophysiology. METHODS: Pigs were cloned by transfer of chromatin from swine primary fetal fibroblasts, which were edited with TALENs and single-strand oligonucleotide to introduce a P663-L663 substitution in the endogenous swine MYO5B (corresponding to the P660L mutation in human MYO5B, associated with MVID) to fertilized oocytes. We analyzed duodenal tissues from patients with MVID (with the MYO5B P660L mutation) and without (controls), and from pigs using immunohistochemistry. Enteroids were generated from pigs with MYO5B(P663L) and without the substitution (control pigs). RESULTS: Duodenal tissues from patients with MVID lacked MYO5B at the base of the apical membrane of intestinal cells; instead MYO5B was intracellular. Intestinal tissues and derived enteroids from MYO5B(P663L) piglets had reduced apical levels and diffuse subapical levels of sodium hydrogen exchanger 3 and SGLT1, which regulate transport of sodium, glucose, and water, compared with tissues from control piglets. However, intestinal tissues and derived enteroids from MYO5B(P663L) piglets maintained CFTR on apical membranes, like tissues from control pigs. Liver tissues from MYO5B(P663L) piglets had alterations in bile salt export pump, a transporter that facilitates bile flow, which is normally expressed in the bile canaliculi in the liver. CONCLUSIONS: We developed a large animal model of MVID that has many features of the human disease. Studies of this model could provide information about the functions of MYO5B and MVID pathogenesis, and might lead to new treatments.


Assuntos
Duodeno/metabolismo , Edição de Genes , Mucosa Intestinal/metabolismo , Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Transportador 1 de Glucose-Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Técnicas de Cocultura , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Duodeno/patologia , Predisposição Genética para Doença , Humanos , Mucosa Intestinal/patologia , Síndromes de Malabsorção/metabolismo , Síndromes de Malabsorção/patologia , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/metabolismo , Mucolipidoses/patologia , Mutação de Sentido Incorreto , Fenótipo , Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Trocador 3 de Sódio-Hidrogênio/genética , Sus scrofa
7.
J Neuroinflammation ; 16(1): 276, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31883529

RESUMO

BACKGROUND: Lysosomal storage diseases (LSD) are a large family of inherited disorders characterized by abnormal endolysosomal accumulation of cellular material due to catabolic enzyme and transporter deficiencies. Depending on the affected metabolic pathway, LSD manifest with somatic or central nervous system (CNS) signs and symptoms. Neuroinflammation is a hallmark feature of LSD with CNS involvement such as mucolipidosis type IV, but not of others like Fabry disease. METHODS: We investigated the properties of microglia from LSD with and without major CNS involvement in 2-month-old mucolipidosis type IV (Mcoln1-/-) and Fabry disease (Glay/-) mice, respectively, by using a combination of flow cytometric, RNA sequencing, biochemical, in vitro and immunofluorescence analyses. RESULTS: We characterized microglia activation and transcriptome from mucolipidosis type IV and Fabry disease mice to determine if impaired lysosomal function is sufficient to prime these brain-resident immune cells. Consistent with the neurological pathology observed in mucolipidosis type IV, Mcoln1-/- microglia demonstrated an activation profile with a mixed neuroprotective/neurotoxic expression pattern similar to the one we previously observed in Niemann-Pick disease, type C1, another LSD with significant CNS involvement. In contrast, the Fabry disease microglia transcriptome revealed minimal alterations, consistent with the relative lack of CNS symptoms in this disease. The changes observed in Mcoln1-/- microglia showed significant overlap with alterations previously reported for other common neuroinflammatory disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Indeed, our comparison of microglia transcriptomes from Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick disease, type C1 and mucolipidosis type IV mouse models showed an enrichment in "disease-associated microglia" pattern among these diseases. CONCLUSIONS: The similarities in microglial transcriptomes and features of neuroinflammation and microglial activation in rare monogenic disorders where the primary metabolic disturbance is known may provide novel insights into the immunopathogenesis of other more common neuroinflammatory disorders. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01067742, registered on February 12, 2010.


Assuntos
Microglia/metabolismo , Mucolipidoses/genética , Mucolipidoses/patologia , Transcriptoma , Animais , Doença de Fabry/genética , Doença de Fabry/metabolismo , Doença de Fabry/patologia , Humanos , Camundongos , Camundongos Transgênicos , Microglia/patologia , Mucolipidoses/metabolismo
8.
Nat Commun ; 10(1): 5630, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822666

RESUMO

The lysosomal calcium channel TRPML1, whose mutations cause the lysosomal storage disorder (LSD) mucolipidosis type IV (MLIV), contributes to upregulate autophagic genes by inducing the nuclear translocation of the transcription factor EB (TFEB). Here we show that TRPML1 activation also induces autophagic vesicle (AV) biogenesis through the generation of phosphatidylinositol 3-phosphate (PI3P) and the recruitment of essential PI3P-binding proteins to the nascent phagophore in a TFEB-independent manner. Thus, TRPML1 activation of phagophore formation requires the calcium-dependent kinase CaMKKß and AMPK, which increase the activation of ULK1 and VPS34 autophagic protein complexes. Consistently, cells from MLIV patients show a reduced recruitment of PI3P-binding proteins to the phagophore during autophagy induction, suggesting that altered AV biogenesis is part of the pathological features of this disease. Together, we show that TRPML1 is a multistep regulator of autophagy that may be targeted for therapeutic purposes to treat LSDs and other autophagic disorders.


Assuntos
Autofagossomos/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Lisossomos/metabolismo , Transdução de Sinais , Canais de Potencial de Receptor Transitório/metabolismo , Autofagossomos/ultraestrutura , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteína Beclina-1/metabolismo , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Mucolipidoses/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Fosfosserina/metabolismo , Canais de Potencial de Receptor Transitório/agonistas
9.
Biol Reprod ; 101(4): 782-790, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31317194

RESUMO

Transient receptor potential cation channel, mucolipin subfamily, member 1 (TRPML1) (MCOLN1/Mcoln1) is a lysosomal counter ion channel. Mutations in MCOLN1 cause mucolipidosis type IV (MLIV), a progressive and severe lysosomal storage disorder with a slow onset. Mcoln1-/- mice recapitulate typical MLIV phenotypes but roles of TRPML1 in female reproduction are unknown. Despite normal mating activities, Mcoln1-/- female mice had reduced fertility at 2 months old and quickly became infertile at 5 months old. Progesterone deficiency was detected on 4.5 days post coitum/gestation day 4.5 (D4.5). Immunohistochemistry revealed TRPML1 expression in luteal cells of wild type corpus luteum (CL). Corpus luteum formation was not impaired in 5-6 months old Mcoln1-/- females indicated by comparable CL numbers in control and Mcoln1-/- ovaries on both D1.5 and D4.5. In the 5-6 months old Mcoln1-/- ovaries, histology revealed less defined corpus luteal cord formation, extensive luteal cell vacuolization and degeneration; immunofluorescence revealed disorganized staining of collagen IV, a basal lamina marker for endothelial cells; Nile Red staining detected lipid droplet accumulation, a typical phenotype of MLIV; immunofluorescence of heat shock protein 60 (HSP60, a mitochondrial marker) and in situ hybridization of steroidogenic acute regulatory protein (StAR, for the rate-limiting step of steroidogenesis) showed reduced expression of HSP60 and StAR, indicating impaired mitochondrial functions. Luteal cell degeneration and impaired mitochondrial functions can both contribute to progesterone deficiency in the Mcoln1-/- mice. This study demonstrates a novel function of TRPML1 in maintaining CL luteal cell integrity and function.


Assuntos
Modelos Animais de Doenças , Células Lúteas/patologia , Mucolipidoses/genética , Progesterona/deficiência , Canais de Potencial de Receptor Transitório/genética , Animais , Corpo Lúteo/metabolismo , Corpo Lúteo/patologia , Corpo Lúteo/fisiologia , Feminino , Infertilidade/genética , Infertilidade/metabolismo , Infertilidade/patologia , Células Lúteas/metabolismo , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucolipidoses/metabolismo , Mucolipidoses/patologia , Progesterona/metabolismo
10.
Skeletal Radiol ; 48(8): 1201-1207, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30712120

RESUMO

OBJECTIVE: The present study aims to provide orientation for clinicians and radiologists to recognize the most prevalent findings leading to diagnosis in mucolipidosis from a description of the natural history of five Brazilian cases. MATERIALS AND METHODS: We conducted an observational and retrospective study of five patients with clinical and radiological diagnosis of mucolipidosis. Clinical evaluation consisted of information obtained from records and including physical, neurologic, and dysmorphic evaluations. Radiologic studies consisted of complete skeletal radiographs of all patients. Enzyme assessment was performed for confirmation of the diagnosis. RESULTS: The five patients were referred for genetic evaluation due to disproportionate short stature with short trunk accompanied by waddling gait. Age at referral varied from 11 months to 28 years. The most prevalent findings were joint restriction (4/5 patients), neuropsychomotor developmental delay (3/5), coarse facies (2/5), hypertrophic cardiomyopathy (2/5), and mental retardation (1/4 patients). The most common radiological findings were anterior beaking of the vertebral bodies (5/5), shallow acetabular fossae (5/5), epiphyseal dysplasia (5/5), platyspondyly (4/5), pelvic dysplasia (4/5), decreased bone mineralization (4/5), scoliosis (3/5), wide and oar-shaped ribs (3/5), generalized epiphyseal ossification delay (3/5), and hypoplasia of basilar portions of ilea (3/5). Enzyme assessment showed α-iduronidase, α-mannosidase, ß-glucuronidase, hexosaminidase A, and total hexosaminidase increased in plasma and normal glycosaminoglycans concentration. One patient was clinically classified as ML II and four patients as ML III. CONCLUSIONS: The follow-up of five patients showed the typical clinical and radiological findings allowing the diagnosis, thus improving clinical management and providing adequate genetic counseling. Clinicians and radiologists can take advantage of the information from this work, enhancing their differential diagnosis ability.


Assuntos
Mucolipidoses/diagnóstico por imagem , Adolescente , Adulto , Brasil , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mucolipidoses/metabolismo , Mucolipidoses/patologia , Radiografia , Estudos Retrospectivos , Adulto Jovem
11.
Adv Carbohydr Chem Biochem ; 75: 1-213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30509400

RESUMO

Sialic acids are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. The history of their structural analysis, occurrence, and functions is fascinating and described in this review. Reports from different researchers on apparently similar substances from a variety of biological materials led to the identification of a 9-carbon monosaccharide, which in 1957 was designated "sialic acid." The most frequently occurring member of the sialic acid family is N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated derivatives, and up to now over about 80 neuraminic acid derivatives have been described. They appeared first in the animal kingdom, ranging from echinoderms up to higher animals, in many microorganisms, and are also expressed in insects, but are absent in higher plants. Sialic acids are masks and ligands and play as such dual roles in biology. Their involvement in immunology and tumor biology, as well as in hereditary diseases, cannot be underestimated. N-Glycolylneuraminic acid is very special, as this sugar cannot be expressed by humans, but is a xenoantigen with pathogenetic potential. Sialidases (neuraminidases), which liberate sialic acids from cellular compounds, had been known from very early on from studies with influenza viruses. Sialyltransferases, which are responsible for the sialylation of glycans and elongation of polysialic acids, are studied because of their significance in development and, for instance, in cancer. As more information about the functions in health and disease is acquired, the use of sialic acids in the treatment of diseases is also envisaged.


Assuntos
Doenças por Armazenamento dos Lisossomos/metabolismo , Mucolipidoses/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neoplasias/metabolismo , Doença do Armazenamento de Ácido Siálico/metabolismo , Animais , Configuração de Carboidratos , Humanos , Ácido N-Acetilneuramínico/química
12.
Curr Pharm Des ; 24(24): 2870-2875, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30198428

RESUMO

Sialic acid residues that make part of the cell surface repertoire of carbohydrate residues are implicated in various physiological processes and human pathologies. Sialidases, or neuraminidases, are the enzymes that are able to cleave and release the sialic acid residues, while trans-sialidases can transfer the residues from donor to acceptor molecules. They are important for processing the surface glycolipids and glycoproteins. Therapeutic potential of pharmacological sialidases inhibition is currently actively studied. Knowledge and expertise gained from genetic defects leading to human sialidase deficiency can be used for designing such drugs. In this review, we discuss the current progress in studying sialidases and their inhibitors and the relevance of these studies to developing novel therapeutic approaches. In vitro studies suggest that some sialidase inhibitors might be useful therapeutics for treating sialidosis, cancer, infections, immune diseases, atherosclerosis and other pathologies. Consequently, there is a field for further research and development. A thorough investigation of human sialidases is therefore crucial to human health.


Assuntos
Aterosclerose/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Glicoproteínas/antagonistas & inibidores , Doenças do Sistema Imunitário/tratamento farmacológico , Mucolipidoses/tratamento farmacológico , Neoplasias/tratamento farmacológico , Neuraminidase/antagonistas & inibidores , Aterosclerose/metabolismo , Inibidores Enzimáticos/química , Glicoproteínas/metabolismo , Humanos , Doenças do Sistema Imunitário/metabolismo , Mucolipidoses/metabolismo , Neoplasias/metabolismo , Neuraminidase/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 38(7): 1549-1561, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880488

RESUMO

OBJECTIVE: Endothelial cells store VWF (von Willebrand factor) in rod-shaped secretory organelles, called Weibel-Palade bodies (WPBs). WPB exocytosis is coordinated by a complex network of Rab GTPases, Rab effectors, and SNARE (soluble NSF attachment protein receptor) proteins. We have previously identified STXBP1 as the link between the Rab27A-Slp4-a complex on WPBs and the SNARE proteins syntaxin-2 and -3. In this study, we investigate the function of syntaxin-3 in VWF secretion. APPROACH AND RESULTS: In human umbilical vein endothelial cells and in blood outgrowth endothelial cells (BOECs) from healthy controls, endogenous syntaxin-3 immunolocalized to WPBs. A detailed analysis of BOECs isolated from a patient with variant microvillus inclusion disease, carrying a homozygous mutation in STX3(STX3-/-), showed a loss of syntaxin-3 protein and absence of WPB-associated syntaxin-3 immunoreactivity. Ultrastructural analysis revealed no detectable differences in morphology or prevalence of immature or mature WPBs in control versus STX3-/- BOECs. VWF multimer analysis showed normal patterns in plasma of the microvillus inclusion disease patient, and media from STX3-/- BOECs, together indicating WPB formation and maturation are unaffected by absence of syntaxin-3. However, a defect in basal as well as Ca2+- and cAMP-mediated VWF secretion was found in the STX3-/- BOECs. We also show that syntaxin-3 interacts with the WPB-associated SNARE protein VAMP8 (vesicle-associated membrane protein-8). CONCLUSIONS: Our data reveal syntaxin-3 as a novel WPB-associated SNARE protein that controls WPB exocytosis.


Assuntos
Células Endoteliais/metabolismo , Exocitose , Síndromes de Malabsorção/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Proteínas Qa-SNARE/metabolismo , Corpos de Weibel-Palade/metabolismo , Fator de von Willebrand/metabolismo , Cálcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Células Endoteliais/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Síndromes de Malabsorção/diagnóstico , Síndromes de Malabsorção/genética , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/diagnóstico , Mucolipidoses/genética , Mutação , Proteínas Qa-SNARE/genética , Proteínas R-SNARE/metabolismo , Via Secretória , Transdução de Sinais , Corpos de Weibel-Palade/ultraestrutura
14.
Glia ; 66(3): 670-687, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29222871

RESUMO

To compact the extracellular sides of myelin, an important transition must take place: from membrane sliding, while building the wraps, to membrane adhesion and water exclusion. Removal of the negatively charged glycocalyx becomes the limiting factor in such transition. What is required to initiate this membrane-zipping process? Knocking-out the Lipocalin Apolipoprotein D (ApoD), essential for lysosomal functional integrity in glial cells, results in a specific defect in myelin extracellular leaflet compaction in peripheral and central nervous system, which results in reduced conduction velocity and suboptimal behavioral outputs: motor learning is compromised. Myelination initiation, growth, intracellular leaflet compaction, myelin thickness or internodal length remain unaltered. Lack of ApoD specifically modifies Plp and P0 protein expression, but not Mbp or Mag. Late in myelin maturation period, ApoD affects lipogenic and growth-related, but not stress-responsive, signaling pathways. Without ApoD, the sialylated glycocalyx is maintained and ganglioside content remains high. In peripheral nervous system, Neu3 membrane sialidase and lysosomal Neu1 are coordinately expressed with ApoD in subsets of Schwann cells. ApoD-KO myelin becomes depleted of Neu3 and enriched in Fyn, a kinase with pivotal roles in transducing axon-derived signals into myelin properties. In the absence of ApoD, partial permeabilization of lysosomes alters Neu1 location as well. Exogenous ApoD rescues ApoD-KO hypersialylated glycocalyx in astrocytes, demonstrating that ApoD is necessary and sufficient to control glycocalyx composition in glial cells. By ensuring lysosomal functional integrity and adequate subcellular location of effector and regulatory proteins, ApoD guarantees the glycolipid recycling and glycocalyx removal required to complete myelin compaction.


Assuntos
Apolipoproteínas D/metabolismo , Glicocálix/metabolismo , Lisossomos/metabolismo , Bainha de Mielina/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Apolipoproteínas D/administração & dosagem , Apolipoproteínas D/genética , Astrócitos/citologia , Astrócitos/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Escherichia coli , Espaço Extracelular/metabolismo , Deficiências da Aprendizagem/metabolismo , Deficiências da Aprendizagem/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , Mucolipidoses/metabolismo , Neuraminidase/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Nervo Isquiático/citologia , Nervo Isquiático/crescimento & desenvolvimento , Nervo Isquiático/metabolismo
15.
Cell Calcium ; 67: 148-155, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28457591

RESUMO

What do lysosomal storage disorders such as mucolipidosis type IV have in common with Ebola, cancer cell migration, or LDL-cholesterol trafficking? LDL-cholesterol, certain bacterial toxins and viruses, growth factors, receptors, integrins, macromolecules destined for degradation or secretion are all sorted and transported via the endolysosomal system (ES). There are several pathways known in the ES, e.g. the degradation, the recycling, or the retrograde trafficking pathway. The ES comprises early and late endosomes, lysosomes and recycling endosomes as well as autophagosomes and lysosome related organelles. Contact sites between the ES and the endoplasmic reticulum or the Golgi apparatus may also be considered part of it. Dysfunction of this complex intracellular machinery can cause or contribute to the development of a number of diseases ranging from neurodegenerative, infectious, or metabolic diseases to retinal and pigmentation disorders as well as cancer and autophagy-related diseases. Endolysosomal ion channels such as mucolipins (TRPMLs) and two-pore channels (TPCs) play an important role in intracellular cation/calcium signaling and homeostasis and appear to critically contribute to the proper function of the endolysosomal trafficking network.


Assuntos
Canais de Cálcio/genética , Cálcio/metabolismo , Endossomos/metabolismo , Doença pelo Vírus Ebola/metabolismo , Lisossomos/metabolismo , Mucolipidoses/metabolismo , Canais de Potencial de Receptor Transitório/genética , Animais , Autofagossomos/metabolismo , Transporte Biológico , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Complexo de Golgi/metabolismo , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/patologia , Homeostase/genética , Humanos , Mucolipidoses/genética , Mucolipidoses/patologia , Canais de Potencial de Receptor Transitório/metabolismo
16.
Traffic ; 18(7): 453-464, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28407399

RESUMO

Microvillus inclusion disease (MVID) is a congenital enteropathy characterized by accumulation of vesiculo-tubular endomembranes in the subapical cytoplasm of enterocytes, historically termed "secretory granules." However, neither their identity nor pathophysiological significance is well defined. Using immunoelectron microscopy and tomography, we studied biopsies from MVID patients (3× Myosin 5b mutations and 1× Syntaxin3 mutation) and compared them to controls and genome-edited CaCo2 cell models, harboring relevant mutations. Duodenal biopsies from 2 patients with novel Myosin 5b mutations and typical clinical symptoms showed unusual ultrastructural phenotypes: aberrant subapical vesicles and tubules were prominent in the enterocytes, though other histological hallmarks of MVID were almost absent (ectopic intra-/intercellular microvilli, brush border atrophy). We identified these enigmatic vesiculo-tubular organelles as Rab11-Rab8-positive recycling compartments of altered size, shape and location harboring the apical SNARE Syntaxin3, apical transporters sodium-hydrogen exchanger 3 (NHE3) and cystic fibrosis transmembrane conductance regulator. Our data strongly indicate that in MVID disrupted trafficking between cargo vesicles and the apical plasma membrane is the primary cause of a defect of epithelial polarity and subsequent facultative loss of brush border integrity, leading to malabsorption. Furthermore, they support the notion that mislocalization of transporters, such as NHE3 substantially contributes to the reported sodium loss diarrhea.


Assuntos
Enterócitos/metabolismo , Síndromes de Malabsorção/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Células CACO-2 , Membrana Celular/metabolismo , Enterócitos/ultraestrutura , Humanos , Síndromes de Malabsorção/genética , Masculino , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/genética , Mutação , Miosina Tipo V/genética , Transporte Proteico , Proteínas Qa-SNARE/genética , Vesículas Secretórias/ultraestrutura
17.
Mol Genet Metab ; 120(3): 247-254, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28065440

RESUMO

Mucopolysaccharidoses (MPSs) and mucolipidoses (ML) are groups of lysosomal storage disorders in which lysosomal hydrolases are deficient leading to accumulation of undegraded glycosaminoglycans (GAGs), throughout the body, subsequently resulting in progressive damage to multiple tissues and organs. Assays using tandem mass spectrometry (MS/MS) have been established to measure GAGs in serum or plasma from MPS and ML patients, but few studies were performed to determine whether these assays are sufficiently robust to measure GAG levels in dried blood spots (DBS) of patients with MPS and ML. MATERIAL AND METHODS: In this study, we evaluated GAG levels in DBS samples from 124 MPS and ML patients (MPS I=16; MPS II=21; MPS III=40; MPS IV=32; MPS VI=10; MPS VII=1; ML=4), and compared them with 115 age-matched controls. Disaccharides were produced from polymer GAGs by digestion with chondroitinase B, heparitinase, and keratanase II. Subsequently, dermatan sulfate (DS), heparan sulfate (HS-0S, HS-NS), and keratan sulfate (mono-sulfated KS, di-sulfated KS, and ratio of di-sulfated KS in total KS) were measured by MS/MS. RESULTS: Untreated patients with MPS I, II, VI, and ML had higher levels of DS compared to control samples. Untreated patients with MPS I, II, III, VI, and ML had higher levels of HS-0S; and untreated patients with MPS II, III and VI and ML had higher levels of HS-NS. Levels of KS were age dependent, so although levels of both mono-sulfated KS and di-sulfated KS were generally higher in patients, particularly for MPS II and MPS IV, age group numbers were not sufficient to determine significance of such changes. However, the ratio of di-sulfated KS in total KS was significantly higher in all MPS patients younger than 5years old, compared to age-matched controls. MPS I and VI patients treated with HSCT had normal levels of DS, and MPS I, VI, and VII treated with ERT or HSCT had normal levels of HS-0S and HS-NS, indicating that both treatments are effective in decreasing blood GAG levels. CONCLUSION: Measurement of GAG levels in DBS is useful for diagnosis and potentially for monitoring the therapeutic efficacy in MPS.


Assuntos
Teste em Amostras de Sangue Seco/métodos , Glicosaminoglicanos/sangue , Mucolipidoses/diagnóstico , Mucopolissacaridoses/diagnóstico , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Cromatografia Líquida , Dermatan Sulfato/sangue , Feminino , Heparitina Sulfato/sangue , Humanos , Lactente , Recém-Nascido , Sulfato de Queratano/sangue , Masculino , Mucolipidoses/metabolismo , Mucopolissacaridoses/metabolismo , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem , Adulto Jovem
18.
Hum Mol Genet ; 25(13): 2752-2761, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27270598

RESUMO

Mucolipidosis IV (MLIV) is a severe lysosomal storage disorder, which results from loss of the TRPML1 channel. MLIV causes multiple impairments in young children, including severe motor deficits. Currently, there is no effective treatment. Using a Drosophila MLIV model, we showed previously that introduction of trpml+ in phagocytic glia rescued the locomotor deficit by removing early dying neurons, thereby preventing amplification of neuronal death from cytotoxicity. Because microglia, which are phagocytic cells in the mammalian brain, are bone marrow derived, and cross the blood-brain barrier, we used a mouse MLIV model to test the efficacy of bone marrow transplantation (BMT). We found that BMT suppressed the reduced myelination and the increased caspase-3 activity due to loss of TRPML1. Using a rotarod test, we demonstrated that early BMT greatly delayed the motor impairment in the mutant mice. These data offer the possibility that BMT might provide the first therapy for MLIV.


Assuntos
Mucolipidoses/terapia , Canais de Potencial de Receptor Transitório/uso terapêutico , Animais , Barreira Hematoencefálica , Transplante de Medula Óssea/métodos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Caspase 3 , Células Cultivadas , Modelos Animais de Doenças , Lisossomos , Camundongos , Microglia/fisiologia , Mucolipidoses/metabolismo , Neurônios/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo
19.
Am J Physiol Gastrointest Liver Physiol ; 311(1): G142-55, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27229121

RESUMO

Loss of function mutations in the actin motor myosin Vb (Myo5b) lead to microvillus inclusion disease (MVID) and death in newborns and children. MVID results in secretory diarrhea, brush border (BB) defects, villus atrophy, and microvillus inclusions (MVIs) in enterocytes. How loss of Myo5b results in increased stool loss of chloride (Cl(-)) and sodium (Na(+)) is unknown. The present study used Myo5b loss-of-function human MVID intestine, polarized intestinal cell models of secretory crypt (T84) and villus resembling (CaCo2BBe, C2BBe) enterocytes lacking Myo5b in conjunction with immunofluorescence confocal stimulated emission depletion (gSTED) imaging, immunohistochemical staining, transmission electron microscopy, shRNA silencing, immunoblots, and electrophysiological approaches to examine the distribution, expression, and function of the major BB ion transporters NHE3 (Na(+)), CFTR (Cl(-)), and SLC26A3 (DRA) (Cl(-)/HCO3 (-)) that control intestinal fluid transport. We hypothesized that enterocyte maturation defects lead villus atrophy with immature secretory cryptlike enterocytes in the MVID epithelium. We investigated the role of Myo5b in enterocyte maturation. NHE3 and DRA localization and function were markedly reduced on the BB membrane of human MVID enterocytes and Myo5bKD C2BBe cells, while CFTR localization was preserved. Forskolin-stimulated CFTR ion transport in Myo5bKD T84 cells resembled that of control. Loss of Myo5b led to YAP1 nuclear retention, retarded enterocyte maturation, and a cryptlike phenotype. We conclude that preservation of functional CFTR in immature enterocytes, reduced functional expression of NHE3, and DRA contribute to Cl(-) and Na(+) stool loss in MVID diarrhea.


Assuntos
Enterócitos/metabolismo , Jejuno/metabolismo , Síndromes de Malabsorção/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células CACO-2 , Antiportadores de Cloreto-Bicarbonato/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Enterócitos/ultraestrutura , Regulação da Expressão Gênica , Humanos , Transporte de Íons , Jejuno/patologia , Jejuno/ultraestrutura , Síndromes de Malabsorção/genética , Síndromes de Malabsorção/patologia , Proteínas de Membrana Transportadoras/genética , Microvilosidades/genética , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Mucolipidoses/genética , Mucolipidoses/patologia , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Fenótipo , Fosfoproteínas/metabolismo , Interferência de RNA , Transdução de Sinais , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , Transportadores de Sulfato , Fatores de Transcrição , Transfecção , Proteínas de Sinalização YAP
20.
Biol Cell ; 108(1): 19-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26526116

RESUMO

BACKGROUND INFORMATION: Microvillus inclusion disease (MVID) is a genetic disorder affecting intestinal absorption. It is caused by mutations in MYO5B or syntaxin 3 (STX3) affecting apical membrane trafficking. Morphologically, MVID is characterised by a depletion of apical microvilli and the formation of microvillus inclusions inside the cells, suggesting a loss of polarity. To investigate this hypothesis, we examined the location of essential apical polarity determinants in five MVID patients. RESULTS: We found that the polarity determinants Cdc42, Par6B, PKCζ/ι and the structural proteins ezrin and phospho-ezrin were lost from the apical membrane and accumulated either in the cytoplasm or on the basal side of enterocytes in patients, which suggests an inversion of cell polarity. Moreover, microvilli-like structures were observed at the basal side as per electron microscopy analysis. We next performed Myo5B depletion in three dimensional grown human Caco2 cells forming cysts and found a direct link between the loss of Myo5B and the mislocalisation of the same apical proteins; furthermore, we observed that a majority of cysts displayed an inverted polarity phenotype as seen in some patients. Finally, we found that this loss of polarity was specific for MVID: tissue samples of patients with Myo5B-independent absorption disorders showed normal polarity but we identified Cdc42 as a potentially essential biomarker for trichohepatoenteric syndrome. CONCLUSION: Our findings indicate that the loss of Myo5B induces a strong loss of enterocyte polarity, potentially leading to polarity inversion. SIGNIFICANCE: Our results show that polarity determinants could be useful markers to help establishing a diagnosis in patients. Furthermore, they could be used to characterise other rare intestinal absorption diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Polaridade Celular/fisiologia , Síndromes de Malabsorção/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Células CACO-2/metabolismo , Enterócitos/metabolismo , Humanos , Síndromes de Malabsorção/patologia , Microvilosidades/metabolismo , Mucolipidoses/patologia , Mutação/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA