Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Sci Transl Med ; 16(745): eadi8214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691622

RESUMO

Mucopolysaccharidosis type I Hurler (MPSIH) is characterized by severe and progressive skeletal dysplasia that is not fully addressed by allogeneic hematopoietic stem cell transplantation (HSCT). Autologous hematopoietic stem progenitor cell-gene therapy (HSPC-GT) provides superior metabolic correction in patients with MPSIH compared with HSCT; however, its ability to affect skeletal manifestations is unknown. Eight patients with MPSIH (mean age at treatment: 1.9 years) received lentiviral-based HSPC-GT in a phase 1/2 clinical trial (NCT03488394). Clinical (growth, measures of kyphosis and genu velgum), functional (motor function, joint range of motion), and radiological [acetabular index (AI), migration percentage (MP) in hip x-rays and MRIs and spine MRI score] parameters of skeletal dysplasia were evaluated at baseline and multiple time points up to 4 years after treatment. Specific skeletal measures were retrospectively compared with an external cohort of HSCT-treated patients. At a median follow-up of 3.78 years after HSPC-GT, all patients treated with HSPC-GT exhibited longitudinal growth within WHO reference ranges and a median height gain greater than that observed in patients treated with HSCT after 3-year follow-up. Patients receiving HSPC-GT experienced complete and earlier normalization of joint mobility compared with patients treated with HSCT. Mean AI and MP showed progressive decreases after HSPC-GT, suggesting a reduction in acetabular dysplasia. Typical spine alterations measured through a spine MRI score stabilized after HSPC-GT. Clinical, functional, and radiological measures suggested an early beneficial effect of HSPC-GT on MPSIH-typical skeletal features. Longer follow-up is needed to draw definitive conclusions on HSPC-GT's impact on MPSIH skeletal dysplasia.


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Mucopolissacaridose I , Humanos , Mucopolissacaridose I/terapia , Mucopolissacaridose I/patologia , Mucopolissacaridose I/genética , Masculino , Feminino , Pré-Escolar , Lactente , Resultado do Tratamento , Células-Tronco Hematopoéticas/metabolismo , Criança , Osso e Ossos/patologia , Imageamento por Ressonância Magnética
2.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456506

RESUMO

Dysostosis multiplex is a major cause of morbidity in Hurler syndrome (mucopolysaccharidosis type IH [MPS IH], OMIM #607014) because currently available therapies have limited success in its prevention and reversion. Unfortunately, the elucidation of skeletal pathogenesis in MPS IH is limited by difficulties in obtaining bone specimens from pediatric patients and poor reproducibility in animal models. Thus, the application of experimental systems that can be used to dissect cellular and molecular mechanisms underlying the skeletal phenotype of MPS IH patients and to identify effective therapies is highly needed. Here, we adopted in vitro/in vivo systems based on patient-derived bone marrow stromal cells to generate cartilaginous pellets and bone rudiments. Interestingly, we observed that heparan sulphate accumulation compromised the remodeling of MPS IH cartilage into other skeletal tissues and other critical aspects of the endochondral ossification process. We also noticed that MPS IH hypertrophic cartilage was characterized by dysregulation of signaling pathways controlling cartilage hypertrophy and fate, extracellular matrix organization, and glycosaminoglycan metabolism. Our study demonstrates that the cartilaginous pellet-based system is a valuable tool to study MPS IH dysostosis and to develop new therapeutic approaches for this hard-to-treat aspect of the disease. Finally, our approach may be applied for modeling other genetic skeletal disorders.


Assuntos
Disostoses , Mucopolissacaridose I , Animais , Humanos , Criança , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Mucopolissacaridose I/terapia , Iduronidase/genética , Iduronidase/metabolismo , Medula Óssea/patologia , Reprodutibilidade dos Testes
3.
Sci Rep ; 13(1): 12716, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543633

RESUMO

Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal disorder that causes syndromes characterized by physiological dysfunction in many organs and tissues. Despite the recognizable morphological and behavioral deficits associated with MPS I, neither the underlying alterations in functional neural connectivity nor its restoration following gene therapy have been shown. By employing high-resolution resting-state fMRI (rs-fMRI), we found significant reductions in functional neural connectivity in the limbic areas of the brain that play key roles in learning and memory in MPS I mice, and that adeno-associated virus (AAV)-mediated gene therapy can reestablish most brain connectivity. Using logistic regression in MPS I and treated animals, we identified functional networks with the most alterations. The rs-fMRI and statistical methods should be translatable into clinical evaluation of humans with neurological disorders.


Assuntos
Mucopolissacaridose I , Humanos , Animais , Camundongos , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Encéfalo/diagnóstico por imagem , Terapia Genética/métodos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética
4.
Hum Gene Ther ; 34(1-2): 8-18, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541357

RESUMO

The mucopolysaccharidoses (MPS) are a group of recessively inherited conditions caused by deficiency of lysosomal enzymes essential to the catabolism of glycosaminoglycans (GAG). MPS I is caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA), while MPS II is caused by a lack of iduronate-2-sulfatase (IDS). Lack of these enzymes leads to early mortality and morbidity, often including neurological deficits. Enzyme replacement therapy has markedly improved the quality of life for MPS I and MPS II affected individuals but is not effective in addressing neurologic manifestations. For MPS I, hematopoietic stem cell transplant has shown effectiveness in mitigating the progression of neurologic disease when carried out in early in life, but neurologic function is not restored in patients transplanted later in life. For both MPS I and II, gene therapy has been shown to prevent neurologic deficits in affected mice when administered early, but the effectiveness of treatment after the onset of neurologic disease manifestations has not been characterized. To test if neurocognitive function can be recovered in older animals, human IDUA or IDS-encoding AAV9 vector was administered by intracerebroventricular injection into MPS I and MPS II mice, respectively, after the development of neurologic deficit. Vector sequences were distributed throughout the brains of treated animals, associated with high levels of enzyme activity and normalized GAG storage. Two months after vector infusion, treated mice exhibited spatial navigation and learning skills that were normalized, that is, indistinguishable from those of normal unaffected mice, and significantly improved compared to untreated, affected animals. We conclude that cognitive function was restored by AAV9-mediated, central nervous system (CNS)-directed gene transfer in the murine models of MPS I and MPS II, suggesting that gene transfer may result in neurodevelopment improvements in severe MPS I and MPS II when carried out after the onset of cognitive decline.


Assuntos
Disfunção Cognitiva , Iduronato Sulfatase , Mucopolissacaridose II , Mucopolissacaridose I , Doenças do Sistema Nervoso , Humanos , Animais , Camundongos , Idoso , Qualidade de Vida , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Sistema Nervoso Central/metabolismo , Iduronidase/genética , Iduronidase/metabolismo , Iduronato Sulfatase/genética , Disfunção Cognitiva/metabolismo , Glicosaminoglicanos/metabolismo , Modelos Animais de Doenças
5.
Genes (Basel) ; 13(8)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893030

RESUMO

Mucopolysaccharidosis type I (MPS I) is a rare inherited lysosomal disorder caused by deficiency of the α-L-iduronidase enzyme, resulting in the progressive accumulation of glycosaminoglycans (GAGs), which interfere with the normal function of multiple tissues and organs. The clinical phenotype includes characteristic facial features, hepatosplenomegaly, dysostosis multiplex, umbilical and inguinal hernias, progressive cognitive deficits with corresponding hydrocephalus, and neuropathology. Untreated children do not survive into the second decade. The common cardiac phenotype seen in MPS I and other MPS types includes valve thickening and dysfunction, conduction abnormalities, coronary artery disease, and cardiomyopathy-usually seen later in the disease course. A 15-month-old ex-35-weeker who presented with cardiomyopathy and left ventricular failure at the age of three weeks is presented here. Early evaluation and diagnosis with the help of newborn screening (NBS), followed by treatment with enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT), resulted in improvement of his cardiopulmonary status. In MPS I, an early cardiac phenotype is uncommon. Based on the evidence from the literature review for early neonatal cardiac phenotype, we propose that all infants with abnormal newborn screening for MPS I should receive cardiac screening with echocardiogram and NT-proB-type natriuretic peptide (BNP) during the initial evaluation.


Assuntos
Cardiomiopatias , Transplante de Células-Tronco Hematopoéticas , Mucopolissacaridose I , Terapia de Reposição de Enzimas/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Mucopolissacaridose I/diagnóstico , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Fenótipo , Doenças Raras/tratamento farmacológico
6.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563175

RESUMO

Mucopolysaccharidosis type I (MPS I) is a rare monogenic disease in which glycosaminoglycans' abnormal metabolism leads to the storage of heparan sulfate and dermatan sulfate in various tissues. It causes its damage and impairment. Patients with the severe form of MPS I usually do not live up to the age of ten. Currently, the therapy is based on multidisciplinary care and enzyme replacement therapy or hematopoietic stem cell transplantation. Applying gene therapy might benefit the MPS I patients because it overcomes the typical limitations of standard treatments. Nanoparticles, including nanoemulsions, are used more and more in medicine to deliver a particular drug to the target cells. It allows for creating a specific, efficient therapy method in MPS I and other lysosomal storage disorders. This article briefly presents the basics of nanoemulsions and discusses the current state of knowledge about their usage in mucopolysaccharidosis type I.


Assuntos
Mucopolissacaridose II , Mucopolissacaridose I , Terapia de Reposição de Enzimas , Terapia Genética , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Mucopolissacaridose II/genética
7.
Eur J Cell Biol ; 101(3): 151232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35537249

RESUMO

Mucopolysaccharidoses (MPS) are inherited metabolic diseases caused by storage of glycosaminoglycans (GAGs), however, various modulations of the course of these diseases were identified recently due to impairment of different cellular processes. Here, using transcriptomic analyses in cells derived from patients suffering from eleven types of MPS, we demonstrated that expression of dozens to hundreds of genes coding for proteins involved in signal transduction processes is significantly changed in MPS cell relative to controls. When studying membrane estrogen receptor 1 (GPER1) and oxytocin receptor (OXTR) in more detail, we unexpectedly found formation of aggregates of GPER1 in MPS I, and those of OXTR in both MPS I and MPS II cells. The presence of these aggregates did not correlate with levels of expression of GPER1 and OXTR genes and levels of corresponding gene products. On the other hand, the aggregates disappeared in cells treated with enzymes which are otherwise deficient in MPS I and MPS II, causing efficient degradation of GAGs. We demonstrated that GPER1 and OXTR aggregates might be formed due to interactions with GAGs rather than arising from changes of levels of these proteins in cells.


Assuntos
Mucopolissacaridose II , Mucopolissacaridose I , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Receptores de Ocitocina , Glicosaminoglicanos/metabolismo , Humanos , Mucopolissacaridose I/genética , Mucopolissacaridose I/metabolismo , Mucopolissacaridose II/genética , Mucopolissacaridose II/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Transdução de Sinais
9.
J Inherit Metab Dis ; 44(6): 1289-1310, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34480380

RESUMO

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by α-L-iduronidase deficiency. Patients present with a broad spectrum of disease severity ranging from the most severe phenotype (Hurler) with devastating neurocognitive decline, bone disease and early death to intermediate (Hurler-Scheie) and more attenuated (Scheie) phenotypes, with a normal life expectancy. The most severely affected patients are preferably treated with hematopoietic stem cell transplantation, which halts the neurocognitive decline. Patients with more attenuated phenotypes are treated with enzyme replacement therapy. There are several challenges to be met in the treatment of MPS I patients. First, to optimize outcome, early recognition of the disease and clinical phenotype is needed to guide decisions on therapeutic strategies. Second, there is thus far no effective treatment available for MPS I bone disease. The pathophysiological mechanisms behind bone disease are largely unknown, limiting the development of effective therapeutic strategies. This article is a state of the art that comprehensively discusses three of the most urgent open issues in MPS I: early diagnosis of MPS I patients, pathophysiology of MPS I bone disease, and emerging therapeutic strategies for MPS I bone disease.


Assuntos
Mucopolissacaridose I/diagnóstico , Mucopolissacaridose I/terapia , Doenças Ósseas/enzimologia , Gerenciamento Clínico , Diagnóstico Precoce , Terapia de Reposição de Enzimas , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intercelular , Mucopolissacaridose I/genética , Mucopolissacaridose I/fisiopatologia , Triagem Neonatal , Fenótipo , Índice de Gravidade de Doença
10.
Arch. argent. pediatr ; 119(2): e121-e128, abril 2021. tab
Artigo em Inglês, Espanhol | BINACIS, LILACS | ID: biblio-1151878

RESUMO

Dados los avances sobre mucopolisacaridosis Icon posterioridad al consenso publicado en la Argentina por un grupo de expertos en 2008, se revisan recomendaciones respecto a estudios genéticos, seguimiento cardiológico, cuidado de la vía aérea, alertas sobre aspectos auditivos, de la patología espinal y neurológica. Se hace revisión de la terapéutica actual y se enfatiza en la necesidad de un diagnóstico y tratamiento precoces, así como de un seguimiento interdisciplinario


Considering the advances made on mucopolysaccharidosis type I after the consensus study published by a group of experts in Argentina in 2008, recommendations about genetic testing, cardiological follow-up, airway care, hearing impairment detection, spinal and neurological conditions, as well as current treatments, were reviewed. Emphasis was placed on the need for early diagnosis and treatment, as well as an interdisciplinary follow-up


Assuntos
Humanos , Mucopolissacaridose I/diagnóstico , Mucopolissacaridose I/terapia , Pediatria , Mucopolissacaridose I/etiologia , Mucopolissacaridose I/genética , Assistência ao Convalescente
11.
Mol Genet Metab ; 133(1): 8-34, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33741271

RESUMO

MPS disorders are associated with a wide spectrum of neurocognitive effects, from mild problems with attention and executive functions to progressive and degenerative neuronopathic disease. Studies of the natural history of neurocognition are necessary to determine the profile of abnormality and the rates of change, which are crucial to select endpoints for clinical trials of brain treatments and to make clinical recommendations for interventions to improve patients' quality of life. The goal of this paper is to review neurocognitive natural history studies to determine the current state of knowledge and assist in directing future research in all MPS disorders. There are seven different types of MPS diseases, each resulting from a specific enzyme deficiency and each having a separate natural history. MPS IX, will not be discussed as there are only 4 cases reported in the literature without cognitive abnormality. For MPS IH, hematopoietic cell transplant (HCT) is standard of care and many studies have documented the relationship between age at treatment and neurocognitive outcome, and to a lesser extent, neurocognitive status at baseline. However, the mortality and morbidity associated with the transplant process and residual long-term problems after transplant, have led to renewed efforts to find better treatments. Rather than natural history, new trials will likely need to use the developmental trajectories of the patients with HCT as a comparators. The literature has extensive data regarding developmental trajectories post-HCT. For attenuated MPS I, significant neurocognitive deficits have been documented, but more longitudinal data are needed in order to support a treatment directed at their attention and executive function abnormalities. The neuronopathic form of MPS II has been a challenge due to the variability of the trajectory of the disease with differences in timing of slowing of development and decline. Finding predictors of the course of the disease has only been partially successful, using mutation type and family history. Because of lack of systematic data and clinical trials that precede a thorough understanding of the disease, there is need for a major effort to gather natural history data on the entire spectrum of MPS II. Even in the attenuated disease, attention and executive function abnormalities need documentation. Lengthy detailed longitudinal studies are needed to encompass the wide variability in MPS II. In MPS IIIA, the existence of three good natural history studies allowed a quasi-meta-analysis. In patients with a rapid form of the disease, neurocognitive development slowed up until 42 to 47 months, halted up to about 54 months, then declined rapidly thereafter, with a leveling off at an extremely low age equivalent score below 22 months starting at about chronological age of 6. Those with slower or attenuated forms have been more variable and difficult to characterize. Because of the plethora of studies in IIIA, it has been recommended that data be combined from natural history studies to minimize the burden on parents and patients. Sufficient data exists to understand the natural history of cognition in MPS IIIA. MPS IIIB is quite similar to IIIA, but more attenuated patients in that phenotype have been reported. MPS IIIC and D, because they are so rare, have little documentation of natural history despite the prospects of treatments. MPS IV and VI are the least well documented of the MPS disorders with respect to their neurocognitive natural history. Because, like attenuated MPS I and II, they do not show progression of neurocognitive abnormality and most patients function in the range of normality, their behavioral, attentional, and executive function abnormalities have been ignored to the detriment of their quality of life. A peripheral treatment for MPS VII, extremely rare even among MPS types, has recently been approved with a post-approval monitoring system to provide neurocognitive natural history data in the future. More natural history studies in the MPS forms with milder cognitive deficits (MPS I, II, IV, and VI) are recommended with the goal of improving these patients' quality of life with and without new brain treatments, beyond the benefits of available peripheral enzyme replacement therapy. Recommendations are offered at-a-glance with respect to what areas most urgently need attention to clarify neurocognitive function in all MPS types.


Assuntos
Mucopolissacaridose III/genética , Mucopolissacaridose II/genética , Mucopolissacaridose I/genética , Transtornos Neurocognitivos/genética , Encéfalo/metabolismo , Encéfalo/patologia , Cognição/fisiologia , Terapia de Reposição de Enzimas , Transplante de Células-Tronco Hematopoéticas , Humanos , Mucopolissacaridose I/patologia , Mucopolissacaridose I/terapia , Mucopolissacaridose II/patologia , Mucopolissacaridose II/terapia , Mucopolissacaridose III/patologia , Mucopolissacaridose III/terapia , Transtornos Neurocognitivos/patologia , Transtornos Neurocognitivos/terapia , Qualidade de Vida
12.
Arch Dis Child ; 106(7): 674-679, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33139350

RESUMO

OBJECTIVE: Early diagnosis and treatment initiation are important factors for successful treatment of mucopolysaccharidosis type I (MPS I). The purpose of this observational study was to assess whether age at diagnosis and time to first treatment for individuals with MPS I have improved over the last 15 years. STUDY DESIGN: Data from the MPS I Registry (NCT00144794) for individuals with attenuated or severe disease who initiated therapy with laronidase enzyme replacement therapy (ERT) and/or hematopoietic stem cell transplantation (HSCT) between 1 January 2003 and 31 December 2017 were included. RESULTS: Data were available for 740 individuals with attenuated (n=291) or severe (n=424) MPS I (unknown n=25). Median age at diagnosis for attenuated disease did not change over time and ranged between 4.5 and 6 years of age while the median duration from diagnosis to first ERT decreased from 5.6 years before/during 2004 to 2.4 months in 2014-2017. For severe MPS I treated with HSCT, median age at diagnosis was less than 1 year and median time to first treatment was less than 3 months throughout the 15-year observation period. CONCLUSIONS: Times to diagnosis and HSCT initiation for individuals with severe MPS I were consistent over time. For individuals with attenuated MPS I, the time to ERT initiation after diagnosis has improved substantially in the last 15 years, but median age at diagnosis has not improved. Efforts to improve early diagnosis in attenuated MPS I are needed to ensure that patients receive appropriate treatment at the optimal time.


Assuntos
Diagnóstico Tardio/estatística & dados numéricos , Mucopolissacaridose I/diagnóstico , Mucopolissacaridose I/terapia , Tempo para o Tratamento/estatística & dados numéricos , Criança , Pré-Escolar , Progressão da Doença , Terapia de Reposição de Enzimas/métodos , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Lactente , Masculino , Mucopolissacaridose I/genética , Sistema de Registros , Estudos Retrospectivos , Índice de Gravidade de Doença
13.
Clin Biochem ; 89: 14-37, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33301762

RESUMO

OBJECTIVES: Diagnosis of lysosomal storage disorders (LSDs) remains challenging due to wide clinical, biochemical and molecular heterogeneity. The study applies a combined biochemical and genetic approach to diagnose symptomatic Indian patients of Pompe, Fabry, Gaucher and Hurler disease to generate a comprehensive dataset of pathogenic variants for these disorders. DESIGN & METHODS: Symptomatic patients were biochemically diagnosed by fluorometric methods and molecular confirmation was carried out by gene sequencing. Genetic variants were analyzed according to the ACMG/AMP 2015 variant interpretation guidelines. RESULTS: Amongst the 2181 suspected patients, 285 (13%) were biochemically diagnosed. Of these, 22.5% (64/285) diagnosed with Pompe disease harboured c.1933G>A, c.1A>G, c.1927G>A and c.2783G>C as common and 10 novel pathogenic variants while 7.4% (21/285) patients diagnosed with Fabry disease carried c.851T>C, c.902G>A, c.905A>C and c.1212_1234del as frequent disease-causing variants along with 7 novel pathogenic variants. As many as 48.4% (138/285) patients were diagnosed with Gaucher disease and had c.1448T>C as the most common pathogenic variant followed by c.1342G>C and c.754T>C with 7 previously unreported disease-causing variants and in the 21.7% (62/285) diagnosed cases of Hurler disease, c.1469T>C, c.754delC c.568_581del and c.1898C>T were identified as the most common causative variants along with 21 novel pathogenic variants. CONCLUSION: This comprehensive data set of disease-causing frequent and novel pathogenic variants reported for the first time in such a large patient cohort for each of these four LSDs from the Indian sub-continent, along with their biochemical and clinical spectrum will contribute towards providing definitive diagnosis and treatment, identifying carrier status, as well as in counselling prenatal cases to reduce the morbidity and mortality associated with these disorders.


Assuntos
Biomarcadores/análise , Doença de Fabry/genética , Doença de Gaucher/genética , Doença de Depósito de Glicogênio Tipo II/genética , Glicoproteínas/genética , Mucopolissacaridose I/genética , Mutação , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Doença de Fabry/patologia , Feminino , Doença de Gaucher/patologia , Doença de Depósito de Glicogênio Tipo II/patologia , Humanos , Lactente , Recém-Nascido , Lisossomos , Masculino , Pessoa de Meia-Idade , Mucopolissacaridose I/patologia , Adulto Jovem
14.
J Vet Intern Med ; 34(5): 1813-1824, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32785987

RESUMO

BACKGROUND: Mucopolysaccharidosis type I (MPS-I) is a lysosomal storage disorder caused by a deficiency of the enzyme α-l-iduronidase, leading to accumulation of undegraded dermatan and heparan sulfates in the cells and secondary multiorgan dysfunction. In humans, depending upon the nature of the underlying mutation(s) in the IDUA gene, the condition presents with a spectrum of clinical severity. OBJECTIVES: To characterize the clinical and biochemical phenotypes, and the genotype of a family of Golden Retriever dogs. ANIMALS: Two affected siblings and 11 related dogs. METHODS: Family study. Urine metabolic screening and leucocyte lysosomal enzyme activity assays were performed for biochemical characterization. Whole genome sequencing was used to identify the causal mutation. RESULTS: The clinical signs shown by the proband resemble the human attenuated form of the disease, with a dysmorphic appearance, musculoskeletal, ocular and cardiac defects, and survival to adulthood. Urinary metabolic studies identified high levels of dermatan sulfate, heparan sulfate, and heparin. Lysosomal enzyme activities demonstrated deficiency in α-l-iduronidase activity in leucocytes. Genome sequencing revealed a novel homozygous deletion of 287 bp resulting in full deletion of exon 10 of the IDUA gene (NC_006585.3(NM_001313883.1):c.1400-76_1521+89del). Treatment with pentosan polyphosphate improved the clinical signs until euthanasia at 4.5 years. CONCLUSION AND CLINICAL IMPORTANCE: Analysis of the genotype/phenotype correlation in this dog family suggests that dogs with MPS-I could have a less severe phenotype than humans, even in the presence of severe mutations. Treatment with pentosan polyphosphate should be considered in dogs with MPS-I.


Assuntos
Doenças do Cão , Éxons , Mucopolissacaridose I , Animais , Doenças do Cão/tratamento farmacológico , Doenças do Cão/genética , Cães , Éxons/genética , Homozigoto , Iduronidase/genética , Mucopolissacaridose I/genética , Mucopolissacaridose I/veterinária , Mutação , Deleção de Sequência
15.
Mol Ther ; 28(10): 2161-2176, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32610100

RESUMO

During brain maturation, cation-independent mannose-6-phosphate receptor (CI-MPR), a key transporter for lysosomal hydrolases, decreases significantly on the blood-brain barrier (BBB). Such a phenomenon leads to poor brain penetration of therapeutic enzymes and subsequent failure in reversing neurological complications in patients with neuropathic lysosomal storage diseases (nLSDs), such as Hurler syndrome (severe form of mucopolysaccharidosis type I [MPS I]). In this study, we discover that upregulation of microRNA-143 (miR-143) contributes to the decline of CI-MPR on the BBB during development. Gain- and loss-of-function studies showed that miR-143 inhibits CI-MPR expression and its transport function in human endothelial cells in vitro. Genetic removal of miR-143 in MPS I mice enhances CI-MPR expression and improves enzyme transport across the BBB, leading to brain metabolic correction, pathology normalization, and correction of neurological functional deficits 5 months after peripheral protein delivery at clinically relevant levels that derived from erythroid/megakaryocytic cells via hematopoietic stem cell-mediated gene therapy, when otherwise no improvement was observed in MPS I mice at a parallel setting. These studies not only uncover a novel role of miR-143 as an important modulator for the developmental decline of CI-MPR on the BBB, but they also demonstrate the functional significance of depleting miR-143 for "rescuing" BBB-anchored CI-MPR on advancing CNS treatment for nLSDs.


Assuntos
Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Lisossomos/metabolismo , MicroRNAs/genética , Mucopolissacaridose I/genética , Mucopolissacaridose I/metabolismo , Animais , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Mucopolissacaridose I/terapia , Transporte Proteico , Interferência de RNA , Transdução Genética
16.
Mol Ther ; 28(6): 1455-1463, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32330426

RESUMO

Mucopolysaccharidosis type I (MPS I) is an autosomal recessive lysosomal storage disease characterized by severe phenotypes, including corneal clouding. MPS I is caused by mutations in alpha-l-iduronidase (IDUA), a ubiquitous enzyme that catalyzes the hydrolysis of glycosaminoglycans. Currently, no treatment exists to address MPS I corneal clouding other than corneal transplantation, which is complicated by a high risk for rejection. Investigation of an adeno-associated virus (AAV) IDUA gene addition strategy targeting the corneal stroma addresses this deficiency. In MPS I canines with early or advanced corneal disease, a single intrastromal AAV8G9-IDUA injection was well tolerated at all administered doses. The eyes with advanced disease demonstrated resolution of corneal clouding as early as 1 week post-injection, followed by sustained corneal transparency until the experimental endpoint of 25 weeks. AAV8G9-IDUA injection in the MPS I canine eye with early corneal disease prevented the development of advanced corneal changes while restoring clarity. Biodistribution studies demonstrated vector genomes in ocular compartments other than the cornea and in some systemic organs; however, a capsid antibody response was detected in only the highest dosed subject. Collectively, the results suggest that intrastromal AAV8G9-IDUA therapy prevents and reverses visual impairment associated with MPS I corneal clouding.


Assuntos
Doenças da Córnea/etiologia , Doenças da Córnea/terapia , Técnicas de Transferência de Genes , Terapia Genética , Mucopolissacaridose I/complicações , Mucopolissacaridose I/genética , Animais , Animais Geneticamente Modificados , Doenças da Córnea/diagnóstico , Dependovirus/genética , Modelos Animais de Doenças , Cães , Feminino , Imunofluorescência , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Iduronidase/genética , Masculino , Transgenes , Resultado do Tratamento
17.
J Hum Genet ; 65(7): 557-567, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32277174

RESUMO

Mucopolysaccharidoses (MPS) are a subtype of lysosomal storage disorders (LSDs) characterized by the deficiency of the enzyme involved in the breakdown of glycosaminoglycans (GAGs). Mucopolysaccharidosis type I (MPS I, Hurler Syndrome) was endorsed by the U.S. Secretary of the Department of Health and Human Services for universal newborn screening (NBS) in February 2016. Its endorsement exemplifies the need to enhance the accuracy of diagnostic testing for disorders that are considered for NBS. The progression of MPS disorders typically incudes irreversible CNS involvement, severe bone dysplasia, and cardiac and respiratory issues. Patients with MPS have a significantly decreased quality of life if untreated and require timely diagnosis and management for optimal outcomes. NBS provides the opportunity to diagnose and initiate treatment plans for MPS patients as early as possible. Most newborns with MPS are asymptomatic at birth; therefore, it is crucial to have biomarkers that can be identified in the newborn. At present, there are tiered methods and different instrumentation available for this purpose. The screening of quick, cost-effective, sensitive, and specific biomarkers in patients with MPS at birth is important. Rapid newborn diagnosis enables treatments to maximize therapeutic efficacy and to introduce immune tolerance during the neonatal period. Currently, newborn screening for MPS I and II has been implemented and/or in pilot testing in several countries. In this review article, historical aspects of NBS for MPS and the prospect of newborn screening for MPS are described, including the potential tiers of screening.


Assuntos
Doenças por Armazenamento dos Lisossomos/diagnóstico , Mucopolissacaridoses/diagnóstico , Mucopolissacaridose I/diagnóstico , Triagem Neonatal , Glicosaminoglicanos , Humanos , Recém-Nascido , Doenças por Armazenamento dos Lisossomos/epidemiologia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia , Mucopolissacaridoses/epidemiologia , Mucopolissacaridoses/genética , Mucopolissacaridoses/patologia , Mucopolissacaridose I/epidemiologia , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Qualidade de Vida , Espectrometria de Massas em Tandem
18.
Mol Ther ; 28(6): 1442-1454, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32278382

RESUMO

Our previous study delivered zinc finger nucleases to treat mice with mucopolysaccharidosis type I (MPS I), resulting in a phase I/II clinical trial (ClinicalTrials.gov: NCT02702115). However, in the clinical trial, the efficacy needs to be improved due to the low transgene expression level. To this end, we designed a proprietary system (PS) gene editing approach with CRISPR to insert a promoterless α-l-iduronidase (IDUA) cDNA sequence into the albumin locus of hepatocytes. In this study, adeno-associated virus 8 (AAV8) vectors delivering the PS gene editing system were injected into neonatal and adult MPS I mice. IDUA enzyme activity in the brain significantly increased, while storage levels were normalized. Neurobehavioral tests showed that treated mice had better memory and learning ability. Also, histological analysis showed efficacy reflected by the absence of foam cells in the liver and vacuolation in neuronal cells. No vector-associated toxicity or increased tumorigenesis risk was observed. Moreover, no off-target effects were detected through the unbiased genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) analysis. In summary, these results showed the safety and efficacy of the PS in treating MPS I and paved the way for clinical studies. Additionally, as a therapeutic platform, the PS has the potential to treat other lysosomal diseases.


Assuntos
Edição de Genes/métodos , Expressão Gênica , Terapia Genética , Iduronidase/genética , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Transgenes , Animais , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dependovirus/genética , Modelos Animais de Doenças , Ativação Enzimática , Dosagem de Genes , Ordem dos Genes , Técnicas de Transferência de Genes , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/genética , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos , Mucopolissacaridose I/metabolismo , RNA Guia de Cinetoplastídeos , Resultado do Tratamento
20.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941077

RESUMO

Genome editing holds the promise of one-off and potentially curative therapies for many patients with genetic diseases. This is especially true for patients affected by mucopolysaccharidoses as the disease pathophysiology is amenable to correction using multiple approaches. Ex vivo and in vivo genome editing platforms have been tested primarily on MSPI and MPSII, with in vivo approaches having reached clinical testing in both diseases. Though we still await proof of efficacy in humans, the therapeutic tools established for these two diseases should pave the way for other mucopolysaccharidoses. Herein, we review the current preclinical and clinical development studies, using genome editing as a therapeutic approach for these diseases. The development of new genome editing platforms and the variety of genetic modifications possible with each tool provide potential applications of genome editing for mucopolysaccharidoses, which vastly exceed the potential of current approaches. We expect that in a not-so-distant future, more genome editing-based strategies will be established, and individual diseases will be treated through multiple approaches.


Assuntos
Edição de Genes , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA