Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Eur J Med Genet ; 68: 104933, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442846

RESUMO

OBJECTIVE: This study aimed to explore the clinical and genetic features of Chinese patients with mucopolysaccharidosis type VII (MPS VII), thereby improving early detection, disease management, and patient outcomes. METHODS: A retrospective review of medical records for five patients presenting with coarse facial features, rib protrusion, chest deformities, and scoliosis was conducted. Exome sequencing was employed to identify causative genetic mutations. RESULTS: The study comprised five patients (four males, one female) with disease onset at six months of age (range: 0-1.5 years). Common symptoms included coarse facial features, skeletal abnormalities, delayed motor and language development, and intellectual disability. Approximately 80% of the patients exhibited multiple skeletal dysplasias, enlarged adenoids or tonsils, and snoring; 60% had hernias; 40% reported hearing loss and hepatosplenomegaly. Less frequent manifestations were short stature, valvular heart disease, non-immune hydrops fetalis, and corneal opacity. All patients demonstrated elevated urine glycosaminoglycans levels and absent ß-glucuronidase activity in leukocytes. Exome sequencing identified compound heterozygous mutations in the GUSB gene in all four tested patients, uncovering seven mutations in total, three of which were novel (c.189G > A, c.869C > T, and c.1745 T > C). Furthermore, prenatal diagnosis through chorionic villus sampling in subsequent pregnancies of one patient's mother revealed both fetuses had normal ß-glucuronidase activity and no disease-causing mutations in the GUSB gene. CONCLUSION: The study's patients all presented with classic symptoms of MPS VII due to ß-glucuronidase deficiency, with three new pathogenic mutations identified in the GUSB gene. Genetic counseling and prenatal testing were highlighted as crucial for disease prevention.


Assuntos
Mucopolissacaridose VII , Masculino , Gravidez , Humanos , Feminino , Recém-Nascido , Lactente , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/diagnóstico , Mucopolissacaridose VII/patologia , Glucuronidase/genética , Fácies , Mutação
2.
Int J Mol Sci ; 17(12)2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27916847

RESUMO

The prevalence of aortic root dilatation (ARD) in mucopolysaccharidosis (MPS) is not well documented. We investigated aortic root measurements in 34 MPS patients at the Children's Hospital of Orange County (CHOC). The diagnosis, treatment status, age, gender, height, weight and aortic root parameters (aortic valve annulus (AVA), sinuses of Valsalva (SoV), and sinotubular junction (STJ)) were extracted by retrospective chart review and echocardiographic measurements. Descriptive statistics, ANOVA, and paired post-hoc t-tests were used to summarize the aortic dimensions. Exact binomial 95% confidence intervals (CIs) were constructed for ARD, defined as a z-score greater than 2 at the SoV. The patient age ranged from 3.4-25.9 years (mean 13.3 ± 6.1), the height from 0.87-1.62 meters (mean 1.24 ± 0.21), and the weight from 14.1-84.5 kg (mean 34.4 ± 18.0). The prevalence of dilation at the AVA was 41% (14/34; 95% CI: 25%-59%); at the SoV was 35% (12/34; 95% CI: 20%-54%); and at the STJ was 30% (9/30; 95% CI: 15%-49%). The highest prevalence of ARD was in MPS IVa (87.5%). There was no significant difference between mean z-scores of MPS patients who received treatment with hematopoietic stem cell transplantation (HSCT) or enzyme replacement therapy (ERT) vs. untreated MPS patients at the AVA (z = 1.9 ± 2.5 vs. z = 1.5 ± 2.4; p = 0.62), SoV (z = 1.2 ± 1.6 vs. z = 1.3 ± 2.2; p = 0.79), or STJ (z = 1.0 ± 1.8 vs. z = 1.2 ± 1.6; p = 0.83). The prevalence of ARD was 35% in our cohort of MPS I-VII patients. Thus, we recommend screening for ARD on a routine basis in this patient population.


Assuntos
Doenças da Aorta/diagnóstico , Dilatação Patológica/diagnóstico , Mucopolissacaridose III/patologia , Mucopolissacaridose II/patologia , Mucopolissacaridose IV/patologia , Mucopolissacaridose I/patologia , Mucopolissacaridose VII/patologia , Mucopolissacaridose VI/patologia , Adolescente , Adulto , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/tratamento farmacológico , Doenças da Aorta/terapia , Criança , Dilatação Patológica/tratamento farmacológico , Dilatação Patológica/terapia , Feminino , Humanos , Masculino , Mucopolissacaridose I/metabolismo , Mucopolissacaridose II/metabolismo , Mucopolissacaridose III/metabolismo , Mucopolissacaridose IV/metabolismo , Mucopolissacaridose VI/metabolismo , Mucopolissacaridose VII/metabolismo , Estudos Retrospectivos , Adulto Jovem
3.
Mol Genet Metab ; 119(3): 249-257, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27692945

RESUMO

Severe, progressive skeletal dysplasia is a major symptom of multiple mucopolysaccharidoses (MPS) types. While a gene therapy approach initiated at birth has been shown to prevent the development of bone pathology in different animal models of MPS, the capacity to correct developed bone disease is unknown. In this study, ex vivo micro-computed tomography was used to demonstrate that bone mass and architecture of murine MPS VII L5 vertebrae were within the normal range at 1month of age but by 2months of age were significantly different to normal. The difference between normal and MPS VII BV/TV increased with age reaching a maximal difference at approximately 4months of age. In mature MPS VII bone BV/TV is increased (51.5% versus 21.5% in normal mice) due to an increase in trabecular number (6.2permm versus 3.8permm in normal mice). The total number of osteoclasts in the metaphysis of MPS VII mice was decreased, as was the percentage of osteoclasts attached to bone. MPS VII osteoblasts produced significantly more osteoprotegerin (OPG) than normal osteoblasts and supported the production of fewer osteoclasts from spleen precursor cells than normal osteoblasts in a co-culture system. In contrast, the formation of osteoclasts from MPS VII spleen monocytes was similar to normal in vitro, when exogenous RANKL and m-CSF was added to the culture medium. Administration of murine ß-glucuronidase to MPS VII mice at 4months of age, when bone disease was fully manifested, using lentiviral gene delivery resulted in a doubling of osteoclast numbers and a significant increase in attachment capacity (68% versus 29.4% in untreated MPS VII animals). Bone mineral volume rapidly decreased by 39% after gene therapy and fell within the normal range by 6months of age. Collectively, these results indicate that lentiviral-mediated gene therapy is effective in reversing established skeletal pathology in murine MPS VII.


Assuntos
Densidade Óssea/genética , Terapia Genética , Glucuronidase/genética , Mucopolissacaridose VII/terapia , Animais , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Glucuronidase/administração & dosagem , Humanos , Lentivirus/genética , Camundongos , Mucopolissacaridose VII/diagnóstico por imagem , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/patologia , Osteoprotegerina/genética , Microtomografia por Raio-X
4.
J Med Genet ; 53(6): 403-18, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26908836

RESUMO

BACKGROUND: Mucopolysaccharidosis VII (MPS VII) is an ultra-rare disease characterised by the deficiency of ß-glucuronidase (GUS). Patients' phenotypes vary from severe forms with hydrops fetalis, skeletal dysplasia and mental retardation to milder forms with fewer manifestations and mild skeletal abnormalities. Accurate assessments on the frequency and clinical characteristics of the disease have been scarce. The aim of this study was to collect such data. METHODS: We have conducted a survey of physicians to document the medical history of patients with MPS VII. The survey included anonymous information on patient demographics, family history, mode of diagnosis, age of onset, signs and symptoms, severity, management, clinical features and natural progression of the disease. RESULTS: We collected information on 56 patients from 11 countries. Patients with MPS VII were classified based on their phenotype into three different groups: (1) neonatal non-immune hydrops fetalis (NIHF) (n=10), (2) Infantile or adolescent form with history of hydrops fetalis (n=13) and (3) Infantile or adolescent form without known hydrops fetalis (n=33). Thirteen patients with MPS VII who had the infantile form with history of hydrops fetalis and survived childhood, had a wide range of clinical manifestations from mild to severe. Five patients underwent bone marrow transplantation and one patient underwent enzyme replacement therapy with recombinant human GUS. CONCLUSIONS: MPS VII is a pan-ethnic inherited lysosomal storage disease with considerable phenotypical heterogeneity. Most patients have short stature, skeletal dysplasia, hepatosplenomegaly, hernias, cardiac involvement, pulmonary insufficiency and cognitive impairment. In these respects it resembles MPS I and MPS II. In MPS VII, however, one unique and distinguishing clinical feature is the unexpectedly high proportion of patients (41%) that had a history of NIHF. Presence of NIHF does not, by itself, predict the eventual severity of the clinical course, if the patient survives infancy.


Assuntos
Mucopolissacaridose VII/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Glucuronidase/metabolismo , Humanos , Lactente , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Mucopolissacaridose VII/metabolismo , Fenótipo , Inquéritos e Questionários , Adulto Jovem
5.
J Control Release ; 181: 22-31, 2014 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-24607662

RESUMO

Corneal transparency is maintained, in part, by specialized fibroblasts called keratocytes, which reside in the fibrous lamellae of the stroma. Corneal clouding, a condition that impairs visual acuity, is associated with numerous diseases, including mucopolysaccharidosis (MPS) type VII. MPS VII is due to deficiency in ß-glucuronidase (ß-glu) enzymatic activity, which leads to accumulation of glycosaminoglycans (GAGs), and secondary accumulation of gangliosides. Here, we tested the efficacy of canine adenovirus type 2 (CAV-2) vectors to transduce keratocyte in vivo in mice and nonhuman primates, and ex vivo in dog and human corneal explants. Following efficacy studies, we asked if we could treat corneal clouding by the injection a helper-dependent (HD) CAV-2 vector (HD-RIGIE) harboring the human cDNA coding for ß-glu (GUSB) in the canine MPS VII cornea. ß-Glu activity, GAG content, and lysosome morphology and physiopathology were analyzed. We found that HD-RIGIE injections efficiently transduced coxsackievirus adenovirus receptor-expressing keratocytes in the four species and, compared to mock-injected controls, improved the pathology in the canine MPS VII cornea. The key criterion to corrective therapy was the steady controlled release of ß-glu and its diffusion throughout the collagen-dense stroma. These data support the continued evaluation of HD CAV-2 vectors to treat diseases affecting corneal keratocytes.


Assuntos
Adenovirus Caninos/genética , Opacidade da Córnea/terapia , Substância Própria/enzimologia , Técnicas de Transferência de Genes , Glucuronidase/genética , Mucopolissacaridose VII/terapia , Adenovírus Humanos/genética , Animais , Cheirogaleidae , Opacidade da Córnea/enzimologia , Opacidade da Córnea/patologia , Substância Própria/patologia , Substância Própria/ultraestrutura , Modelos Animais de Doenças , Cães , Terapia Genética , Vetores Genéticos , Glicosaminoglicanos/metabolismo , Vírus Auxiliares , Humanos , Técnicas In Vitro , Lisossomos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mucopolissacaridose VII/enzimologia , Mucopolissacaridose VII/patologia , Especificidade da Espécie
6.
Mol Genet Metab ; 109(2): 183-93, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23628461

RESUMO

Mucopolysaccharidosis (MPS) VII is a lysosomal storage disease due to deficient activity of ß-glucuronidase (GUSB), and results in glycosaminoglycan accumulation. Skeletal manifestations include bone dysplasia, degenerative joint disease, and growth retardation. One gene therapy approach for MPS VII involves neonatal intravenous injection of a gamma retroviral vector expressing GUSB, which results in stable expression in liver and secretion of enzyme into blood at levels predicted to be similar or higher to enzyme replacement therapy. The goal of this study was to evaluate the long-term effect of neonatal gene therapy on skeletal manifestations in MPS VII dogs. Treated MPS VII dogs could walk throughout their lives, while untreated MPS VII dogs could not stand beyond 6 months and were dead by 2 years. Luxation of the coxofemoral joint and the patella, dysplasia of the acetabulum and supracondylar ridge, deep erosions of the distal femur, and synovial hyperplasia were reduced, and the quality of articular bone was improved in treated dogs at 6 to 11 years of age compared with untreated MPS VII dogs at 2 years or less. However, treated dogs continued to have osteophyte formation, cartilage abnormalities, and an abnormal gait. Enzyme activity was found near synovial blood vessels, and there was 2% as much GUSB activity in synovial fluid as in serum. We conclude that neonatal gene therapy reduces skeletal abnormalities in MPS VII dogs, but clinically-relevant abnormalities remain. Enzyme replacement therapy will probably have similar limitations long-term.


Assuntos
Glucuronidase/genética , Mucopolissacaridose VII/terapia , Animais , Animais Recém-Nascidos , Cães , Feminino , Cabeça do Fêmur/patologia , Terapia Genética , Glucuronidase/metabolismo , Membro Posterior/patologia , Cápsula Articular/irrigação sanguínea , Cápsula Articular/enzimologia , Articulações/patologia , Masculino , Mucopolissacaridose VII/diagnóstico por imagem , Mucopolissacaridose VII/patologia , Radiografia , Resultado do Tratamento
7.
PLoS One ; 7(7): e40281, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815736

RESUMO

Hundreds of different human skeletal disorders have been characterized at molecular level and a growing number of resembling dysplasias with orthologous genetic defects are being reported in dogs. This study describes a novel genetic defect in the Brazilian Terrier breed causing a congenital skeletal dysplasia. Affected puppies presented severe skeletal deformities observable within the first month of life. Clinical characterization using radiographic and histological methods identified delayed ossification and spondyloepiphyseal dysplasia. Pedigree analysis suggested an autosomal recessive disorder, and we performed a genome-wide association study to map the disease locus using Illumina's 22K SNP chip arrays in seven cases and eleven controls. A single association was observed near the centromeric end of chromosome 6 with a genome-wide significance after permutation (p(genome)= 0.033). The affected dogs shared a 13-Mb homozygous region including over 200 genes. A targeted next-generation sequencing of the entire locus revealed a fully segregating missense mutation (c.866C>T) causing a pathogenic p.P289L change in a conserved functional domain of ß-glucuronidase (GUSB). The mutation was confirmed in a population of 202 Brazilian terriers (p = 7,71×10(-29)). GUSB defects cause mucopolysaccharidosis VII (MPS VII) in several species and define the skeletal syndrome in Brazilian Terriers. Our results provide new information about the correlation of the GUSB genotype to phenotype and establish a novel canine model for MPS VII. Currently, MPS VII lacks an efficient treatment and this model could be utilized for the development and validation of therapeutic methods for better treatment of MPS VII patients. Finally, since almost one third of the Brazilian terrier population carries the mutation, breeders will benefit from a genetic test to eradicate the detrimental disease from the breed.


Assuntos
Osso e Ossos/anormalidades , Glucuronidase/genética , Mucopolissacaridose VII/enzimologia , Mucopolissacaridose VII/genética , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromossomos de Mamíferos/genética , Cães , Nanismo/complicações , Feminino , Testes Genéticos , Estudo de Associação Genômica Ampla , Glucuronidase/química , Glucuronidase/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Dados de Sequência Molecular , Mucopolissacaridose VII/complicações , Mucopolissacaridose VII/patologia , Osteocondrodisplasias/complicações , Osteogênese/genética
8.
Mol Genet Metab ; 97(3): 202-11, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19375967

RESUMO

Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease in which deficiency in beta-glucuronidase results in glycosaminoglycan (GAG) accumulation in and around cells, causing shortened long bones through mechanisms that remain largely unclear. We demonstrate here that MPS VII mice accumulate massive amounts of the GAG chondroitin-4-sulfate (C4S) in their growth plates, the cartilaginous region near the ends of long bones responsible for growth. MPS VII mice also have only 60% of the normal number of chondrocytes in the growth plate and 55% of normal chondrocyte proliferation at 3weeks of age. We hypothesized that this reduction in proliferation was due to C4S-mediated overactivation of fibroblast growth factor receptor 3 (FGFR3). However, MPS VII mice that were FGFR3-deficient still had shortened bones, suggesting that FGFR3 is not required for the bone defect. Further study revealed that MPS VII growth plates had reduced tyrosine phosphorylation of STAT3, a pro-proliferative transcription factor. This was accompanied by a decrease in expression of leukemia inhibitory factor (LIF) and other interleukin 6 family cytokines, and a reduction in phosphorylated tyrosine kinase 2 (TYK2), Janus kinase 1 (JAK1), and JAK2, known activators of STAT3 phosphorylation. Intriguingly, loss of function mutations in LIF and its receptor leads to shortened bones. This suggests that accumulation of C4S in the growth plate leads to reduced expression of LIF and reduced STAT3 tyrosine phosphorylation, which results in reduced chondrocyte proliferation and ultimately shortened bones.


Assuntos
Osso e Ossos/patologia , Mucopolissacaridose VII/patologia , Animais , Regulação da Expressão Gênica , Glicosaminoglicanos/metabolismo , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/patologia , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Tíbia/patologia
9.
Hum Mutat ; 30(4): 511-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19224584

RESUMO

Mucopolysaccharidosis VII (MPS VII; Sly syndrome) is an autosomal recessive disorder caused by a deficiency of beta-glucuronidase (GUS, EC 3.2.1.31; GUSB). GUS is required to degrade glycosaminoglycans (GAGs), including heparan sulfate (HS), dermatan sulfate (DS), and chondroitin-4,6-sulfate (CS). Accumulation of undegraded GAGs in lysosomes of affected tissues leads to mental retardation, short stature, hepatosplenomegaly, bone dysplasia, and hydrops fetalis. We summarize information on the 49 unique, disease-causing mutations determined so far in the GUS gene, including nine novel mutations (eight missense and one splice-site). This heterogeneity in GUS gene mutations contributes to the extensive clinical variability among patients with MPS VII. One pseudodeficiency allele, one polymorphism causing an amino acid change, and one silent variant in the coding region are also described. Among the 103 analyzed mutant alleles, missense mutations accounted for 78.6%; nonsense mutations, 12.6%; deletions, 5.8%; and splice-site mutations, 2.9%. Transitional mutations at CpG dinucleotides made up 40.8% of all the described mutations. The five most frequent mutations (accounting for 44/103 alleles) were exonic point mutations, p.L176F, p.R357X, p.P408S, p.P415L, and p.A619 V. Genotype/phenotype correlation was attempted by correlating the effects of certain missense mutations or enzyme activity and stability within phenotypes. These were in turn correlated with the location of the mutation in the tertiary structure of GUS. A total of seven murine, one feline, and one canine model of MPS VII have been characterized for phenotype and genotype.


Assuntos
Glucuronidase/genética , Mucopolissacaridose VII/genética , Mutação , Polimorfismo Genético , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Glucuronidase/deficiência , Humanos , Dados de Sequência Molecular , Mucopolissacaridose VII/enzimologia , Mucopolissacaridose VII/patologia , Homologia de Sequência de Aminoácidos
10.
J Neuropathol Exp Neurol ; 67(10): 954-62, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18800012

RESUMO

Cellular transplantation in the form of bone marrow has been one of the primary treatments of many lysosomal storage diseases (LSDs). Although bone marrow transplantation can help central nervous system manifestations in some cases, it has little impact in many LSD patients. Canine models of neurogenetic LSDs provide the opportunity for modeling central nervous system transplantation strategies in brains that more closely approximate the size and architectural complexity of the brains of children. Canine olfactory bulb-derived neural progenitor cells (NPCs) isolated from dog brains were expanded ex vivo and implanted into the caudate nucleus/thalamus or cortex of allogeneic dogs. Canine olfactory bulb-derived NPCs labeled with micron-sized superparamagnetic iron oxide particles were detected by magnetic resonance imaging both in vivo and postmortem. Grafts expressed markers of NPCs (i.e. nestin and glial fibrillary acidic protein), but not the neuronal markers Map2ab or beta-tubulin III. The NPCs were from dogs with the LSD mucopolysaccharidosis VII, which is caused by a deficiency of beta-glucuronidase. When mucopolysaccharidosis VII canine olfactory bulb-NPCs that were genetically corrected with a lentivirus vector ex vivo were transplanted into mucopolysaccharidosis VII recipient brains, they were detected histologically by beta-glucuronidase expression in areas identified by antemortem magnetic resonance imaging tracking. These results demonstrate the potential for ex vivo stem cell-based gene therapy and noninvasive tracking of therapeutic grafts in vivo.


Assuntos
Encéfalo/patologia , Mucopolissacaridose VII/terapia , Neurônios/transplante , Transplante de Células-Tronco , Animais , Animais Recém-Nascidos , Cães , Enzimas/metabolismo , Compostos Férricos , Marcadores Genéticos , Proteína Glial Fibrilar Ácida/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Proteínas de Filamentos Intermediários/metabolismo , Imageamento por Ressonância Magnética , Microscopia Confocal , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Mucopolissacaridose VII/diagnóstico por imagem , Mucopolissacaridose VII/patologia , Nanopartículas , Proteínas do Tecido Nervoso/metabolismo , Nestina , Bulbo Olfatório/citologia , Fenótipo , Tubulina (Proteína)/metabolismo , Ultrassonografia
11.
Stem Cells ; 26(3): 611-20, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18055447

RESUMO

Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However, development of cell-based regenerative therapies has been hindered by the lack of preclinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/mucopolysaccharidosis type VII mice, we characterized the distribution of lineage-depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase (ALDH) activity with CD133 coexpression. ALDH(hi) or ALDH(hi)CD133+ cells produced robust hematopoietic reconstitution and variable levels of tissue distribution in multiple organs. GUSB+ donor cells that coexpressed human leukocyte antigen (HLA-A,B,C) and hematopoietic (CD45+) cell surface markers were the primary cell phenotype found adjacent to the vascular beds of several tissues, including islet and ductal regions of mouse pancreata. In contrast, variable phenotypes were detected in the chimeric liver, with HLA+/CD45+ cells demonstrating robust GUSB expression adjacent to blood vessels and CD45-/HLA- cells with diluted GUSB expression predominant in the liver parenchyma. However, true nonhematopoietic human (HLA+/CD45-) cells were rarely detected in other peripheral tissues, suggesting that these GUSB+/HLA-/CD45- cells in the liver were a result of downregulated human surface marker expression in vivo, not widespread seeding of nonhematopoietic cells. However, relying solely on continued expression of cell surface markers, as used in traditional xenotransplantation models, may underestimate true tissue distribution. ALDH-expressing progenitor cells demonstrated widespread and tissue-specific distribution of variable cellular phenotypes, indicating that these adult progenitor cells should be explored in transplantation models of tissue damage.


Assuntos
Aldeído Desidrogenase/metabolismo , Sistema Hematopoético/citologia , Transplante de Células-Tronco , Células-Tronco/enzimologia , Animais , Biomarcadores/metabolismo , Separação Celular , Citometria de Fluxo , Glucuronidase/metabolismo , Humanos , Ilhotas Pancreáticas/citologia , Fígado/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mucopolissacaridose VII/patologia , Doadores de Tecidos
12.
J Inherit Metab Dis ; 30(2): 227-38, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17308887

RESUMO

Mucopolysaccharidosis type VII (MPS VII) is a lysosomal storage disease caused by beta-glucuronidase (GUSB) deficiency. This disease exhibits a broad spectrum of clinical signs including skeletal dysplasia, retinal degeneration, cognitive deficits and hearing impairment. Sustained, high-level expression of GUSB significantly improves the clinical course of the disease in the murine model of MPS VII. Low levels of enzyme expression (1-5% of normal) can significantly reduce the biochemical and histopathological manifestations of MPS VII. However, it has not been clear from previous studies whether persistent, low levels of circulating GUSB lead to significant improvements in the clinical presentation of this disease. We generated a rAAV2 vector that mediates persistent, low-level GUSB expression in the liver. Liver and serum levels of GUSB were maintained at approximately 5% and approximately 2.5% of normal, respectively, while other tissue ranged from background levels to 0.9%. This level of activity significantly reduced the secondary elevations of alpha-galactosidase and the levels of glycosaminoglycans in multiple tissues. Interestingly, this level of GUSB was also sufficient to reduce lysosomal storage in neurons in the brain. Although there were small but statistically significant improvements in retinal function, auditory function, skeletal dysplasia, and reproduction in rAAV-treated MPS VII mice, the clinical deficits were still profound and there was no improvement in lifespan. These data suggest that circulating levels of GUSB greater than 2.5% will be required to achieve substantial clinical improvements in MPS VII.


Assuntos
Técnicas de Transferência de Genes , Glucuronidase/genética , Mucopolissacaridose VII/fisiopatologia , Animais , Doenças do Desenvolvimento Ósseo/etiologia , Doenças do Desenvolvimento Ósseo/patologia , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos , Glucuronidase/sangue , Glucuronidase/metabolismo , Glicosaminoglicanos/metabolismo , Audição , Fígado/enzimologia , Longevidade , Lisossomos/ultraestrutura , Camundongos , Mucopolissacaridose VII/complicações , Mucopolissacaridose VII/metabolismo , Mucopolissacaridose VII/patologia , Reprodução , Retina/fisiopatologia , Distribuição Tecidual , alfa-Galactosidase/metabolismo
13.
Mol Ther ; 13(3): 548-55, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16316785

RESUMO

The therapeutic efficacy of neural stem cell transplantation for central nervous system (CNS) lesions in lysosomal storage disorders was explored using a murine model of mucopolysaccharidosis type VII (MPS VII). We used fetal neural stem cells derived from embryonic mouse striata and expanded in vitro by neurosphere formation as the source of graft materials. We transplanted neurospheres into the lateral ventricles of newborn MPS VII mice and found that donor cells migrated far beyond the site of injection within 24 h, and some of them could reach the olfactory bulb. A quantitative measurement indicated that the GUSB activity in the brain was 12.5 to 42.3% and 5.5 to 6.3% of normal activity at 24 h and 3 weeks after transplantation. In addition, histological analysis revealed a widespread decrease in lysosomal storage in the recipient's hippocampus, cortex, and ependyma. A functional assessment with novel-object recognition tests confirmed improvements in behavioral patterns. These results suggest that intracerebral transplantation of neural stem cells is feasible for treatment of CNS lesions associated with lysosomal storage disorders.


Assuntos
Terapia Genética , Glucuronidase/genética , Mucopolissacaridose VII/patologia , Mucopolissacaridose VII/terapia , Transplante de Células-Tronco , Telencéfalo/fisiopatologia , Animais , Animais Recém-Nascidos , Comportamento Animal/fisiologia , Encéfalo/enzimologia , Encéfalo/patologia , Células-Tronco Embrionárias/enzimologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/transplante , Glucuronidase/análise , Glucuronidase/metabolismo , Audição/genética , Lisossomos/enzimologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucopolissacaridose VII/fisiopatologia , Neurônios/enzimologia , Neurônios/metabolismo , Transporte Proteico/genética
14.
Pediatr Dev Pathol ; 8(4): 453-62, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16222480

RESUMO

Lysosomal storage diseases (LSDs), due to deficiency of a lysosomal enzyme, are inherited, progressive disorders that are often fatal during childhood. The mucopolysaccharidoses (MPS) are LSDs caused by deficiency of a lysosomal enzyme needed for the stepwise degradation of glycosaminoglycans. A murine model of MPS VII shares many clinical, biochemical, and pathologic features with human MPS and has proved valuable for the study of the pathophysiology of MPS and for evaluation of therapies for LSDs. Early therapy of MPS VII mice, initiated in the first weeks of life, is much more effective in decreasing clinical and morphologic evidence of disease than treatment begun in mature animals. Whether such early therapy decreases existing storage or prevents its accumulation is incompletely investigated. We performed an analysis of storage in very young MPS VII mice to define the extent of disease at and before the time of initiation of early treatments. MPS VII pups from 12 days postcoitus (dpc) to 31 days postnatal (dpn) were studied. Storage accumulated in fixed tissue macrophages in the liver and cartilage as soon as 12 dpc and was present in central nervous system glia, leptomeninges, and perivascular cells by 15 dpc. Osteoblast and primitive neocortical cell storage was apparent at 18 to 19 dpc. At 2 dpn, lysosomal distention appeared in circulating leukocytes. Abundant lysosomal storage was present in many sites by 14 dpn. Secondary accumulation of beta-hexosaminidase paralleled increasing glycosaminoglycan storage. These results confirm the presence of widespread storage even in utero and in the very young MPS VII mouse and highlight the importance of early treatment to prevent storage accumulation.


Assuntos
Animais Recém-Nascidos/metabolismo , Feto/metabolismo , Mucopolissacaridose VII/patologia , Animais , Osso e Ossos/anormalidades , Osso e Ossos/diagnóstico por imagem , Cartilagem/metabolismo , Cartilagem/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Feminino , Fígado/metabolismo , Fígado/patologia , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mucopolissacaridose VII/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patologia , Gravidez , Radiografia , Vísceras/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
15.
Mol Ther ; 10(3): 478-91, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15336648

RESUMO

Mucopolysaccharidosis type VII is a lysosomal storage disease caused by deficiency of the acid hydrolase beta-glucuronidase. MPS VII mice develop progressive lysosomal accumulation of glycosaminoglycans within multiple organs, including the brain. Using this animal model, we investigated whether gene transfer mediated by a recombinant adeno-associated virus (rAAV) type 2 vector is capable of reversing the progression of storage in adult mice. We engineered an rAAV2 vector to carry the murine beta-glucuronidase cDNA under the transcriptional direction of the human elongation factor-1alpha promoter. Intrahepatic administration of this vector in adult MPS VII mice resulted in stable hepatic beta-glucuronidase expression (473 +/- 254% of that found in wild-type mouse liver) for at least 1 year postinjection. There was widespread distribution of vector genomes and beta-glucuronidase within extrahepatic organs. The level of enzyme activity was sufficient to reduce lysosomal storage within the liver, spleen, kidney, heart, lung, and brain. Within selected regions of the brain, neuronal, glial, and perivascular cells had histopathologic evidence of reduced storage. Also, brain alpha-galactosidase and beta-hexosaminidase enzyme levels, secondarily elevated by the storage abnormality, were normalized. These data demonstrate that peripheral administration of an rAAV2 vector in adult MPS VII mice can lead to transgene expression levels sufficient for improvements in both the peripheral and the central manifestations of this disease.


Assuntos
Adenoviridae/genética , Terapia Genética , Glucuronidase/genética , Fígado/enzimologia , Lisossomos/enzimologia , Mucopolissacaridose VII/terapia , Animais , Técnicas de Transferência de Genes , Vetores Genéticos , Glucuronidase/biossíntese , Injeções , Camundongos , Microscopia Eletrônica de Transmissão , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/patologia , Especificidade de Órgãos , Fator 1 de Elongação de Peptídeos/genética , Regiões Promotoras Genéticas , alfa-Galactosidase/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
16.
Gene Ther ; 11(19): 1475-81, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15295619

RESUMO

Current therapies for lysosomal storage diseases (LSDs), enzyme replacement therapy and bone marrow transplantation are effective for visceral organ pathology of LSD, but their effectiveness for brain involvement in LSDs is still a subject of controversy. As an alternative approach, we transplanted genetically modified bone marrow stromal (BMS) cells to lateral ventricle of newborn mucopolysaccharidosis VII (MPS VII) mice. MPS VII is one of LSDs and caused by deficiency of beta-glucuronidase (GUSB), resulting in accumulation of glycosaminoglycans (GAGs) in brain. At 2 weeks after transplantation, the GUSB enzyme-positive cells were identified in olfactory bulb, striatum and cerebral cortex, and the enzymatic activities in various brain areas increased. The GAGs contents in brain were reduced to near normal level at 4 weeks after transplantation. Although GUSB activity declined to homozygous level after 8 weeks, the reduction of GAGs persisted for 16 weeks. Microscopic examination indicated that the lysosomal distention was not found in treated animal brain. Cognitive function in MPS VII animals as evaluated by Morris Water Maze test in treated mice showed a marked improvement over nontreated animals. Brain transplantation of genetically modified BMS cells appears to be a promising approach to treat diffuse CNS involvement of LSDs.


Assuntos
Comportamento Animal , Transplante de Medula Óssea , Encéfalo/enzimologia , Terapia Genética/métodos , Glucuronidase/genética , Mucopolissacaridose VII/terapia , Animais , Células da Medula Óssea/enzimologia , Encéfalo/patologia , Expressão Gênica , Vetores Genéticos/administração & dosagem , Glucuronidase/metabolismo , Injeções Intraventriculares , Camundongos , Camundongos Mutantes , Mucopolissacaridose VII/patologia , Mucopolissacaridose VII/psicologia , Retroviridae/genética , Transdução Genética/métodos
17.
Mol Ther ; 9(6): 856-65, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15194052

RESUMO

As a group, lysosomal storage diseases (LSDs) affect roughly 1 in 6700 live births. Treatment of patients with enzyme replacement therapy or allogeneic bone marrow transplantation is severely limited by cost and clinical complications, respectively. In this study, the efficacy of gene therapy targeted to human hematopoietic progenitor cells was investigated for mucopolysaccharidosis type VII (MPSVII), a LSD caused by beta-glucuronidase (GUSB) deficiency. Clinical experience has emphasized the need to evaluate transduction protocols directly with human cells through in vivo assays. Therefore, GUSB-deficient mobilized peripheral blood CD34(+) cells from a patient with MPSVII were transduced with a third-generation lentiviral vector encoding human GUSB and then assessed in a xenotransplantation system. In this novel strategy, the xenotransplanted murine recipients were also GUSB-deficient, allowing a detailed evaluation of therapeutic efficacy in a host with MPSVII. Twelve weeks posttransplantation, lymphomyeloid expression of GUSB was detected in 10.8 +/- 1.6% of the human cells in the bone marrow with an average of 1 to 2 vector genomes measured per positive cell. The corrected cells distributed widely throughout recipient tissues, resulting in significant therapeutic effects including improvements in biochemical parameters and reduction of the lysosomal distension of several host tissues.


Assuntos
Antígenos CD34/análise , Terapia Genética/métodos , Glucuronidase/genética , Transplante de Células-Tronco Hematopoéticas , Lentivirus/genética , Mucopolissacaridose VII/terapia , Animais , Medula Óssea/química , Vetores Genéticos/genética , Glucuronidase/análise , Células-Tronco Hematopoéticas/química , Humanos , Masculino , Camundongos , Camundongos Knockout , Mucopolissacaridose VII/patologia , Distribuição Tecidual , Transdução Genética , Transplante Heterólogo
18.
Spine (Phila Pa 1976) ; 29(5): E92-4, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15129089

RESUMO

STUDY DESIGN: A case study with review of surgical technique in craniovertebral stabilization for young children with mucopolysaccharidosis. OBJECTIVES: To describe an interesting patient with a rare metabolic disorder and review surgical technique for craniovertebral instability in this rare patient population. SUMMARY OF BACKGROUND DATA: Craniovertebral instability has been reported in patients with mucopolysaccharidosis and poses a problem for spinal surgery because of the inherent metabolic disorder and age at presentation. We present the first case of craniovertebral instability and spinal cord compression occurring in Sly syndrome (mucopolysaccharidosis type VII) who is the youngest patient afflicted with this metabolic disorder to undergo craniovertebral stabilization. METHODS: A 17-month-old boy presented with inability to support his head, decreasing muscle strength in all extremities, distended abdomen, and shortness of breath. The patient was found to have a dilated cardiomyopathy, hepatosplenomegaly, abnormal hepatobiliary function, corneal clouding, and a questionable tracheal anomaly. Genetic testing provided a diagnosis of Sly syndrome, mucopolysaccharidosis type VII. Magnetic resonance imaging revealed focal stenosis with significant spinal cord compression at the craniovertebral junction. Neurologic examination revealed normal muscle volume with strength 3/5 in all extremities and significant weakness in the neck muscles with instability at the craniovertebral junction. RESULTS: On a concerted preoperative medical clearance by pediatric intensive care, pediatric neuroanesthesia, pediatric cardiology, pediatric gastroenterology, and pediatric neurosurgery, the patient underwent occipital to C3 decompression and fusion with autogenous rib grafts. The patient was placed in a prefitted halo-vest after surgery and was neurologically intact. CONCLUSIONS: This case demonstrates the heterogeneity of cervical spine deformities among the mucopolysaccharidosis syndromes and confirms the propensity for deposition of glycosaminoglycans at the craniovertebral junction. Further studies should investigate the etiology for this propensity of glycosaminoglycan deposition at the craniovertebral junction. We think that this case demonstrates that, with appropriate preoperative planning, these patients can undergo successful posterior cervical arthrodesis despite their age or metabolic defects.


Assuntos
Articulação Atlantoccipital/cirurgia , Instabilidade Articular/cirurgia , Compressão da Medula Espinal/etiologia , Fusão Vertebral/métodos , Articulação Atlantoccipital/patologia , Transplante Ósseo , Braquetes , Constrição Patológica , Descompressão Cirúrgica , Humanos , Lactente , Instabilidade Articular/etiologia , Instabilidade Articular/patologia , Imageamento por Ressonância Magnética , Masculino , Mucopolissacaridose VII/patologia , Debilidade Muscular/complicações , Debilidade Muscular/etiologia , Músculos do Pescoço/fisiopatologia , Cuidados Pré-Operatórios , Costelas/transplante
19.
Mol Genet Metab ; 82(1): 4-19, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15110316

RESUMO

Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease caused by deficient beta-glucuronidase (GUSB) activity. Accumulation of glycosaminoglycans (GAGs) in bone, cartilage, and synovium likely contributes to reduced mobility in untreated MPS VII individuals. We previously reported that neonatal intravenous injection of a retroviral vector (RV) expressing canine GUSB resulted in hepatocyte transduction in mice and dogs, and secreted GUSB was taken up from blood by other organs. Here we report the effect of this therapy on bone, cartilage, and joint disease. Osteocytes and bone-lining cells from RV-treated MPS VII mice had GUSB activity, resulting in a marked reduction, as compared with untreated MPS VII mice, in lysosomal storage in bone and at the bone:growth plate interface where bone elongation occurs. Although chondrocytes did not have detectable GUSB activity and had little reduction in lysosomal storage, the thickness of the growth plate was reduced toward normal. These pathological changes were likely responsible for improvements in facial morphology and long bone lengths. The synovium had reduced hyperplasia and lysosomal storage, and the thickness of the articular cartilage was reduced. Similarly, RV-treated MPS VII dogs had improved facial morphology and reduced lysosomal storage in osteocytes and synovium, but not chondrocytes. Nevertheless, the internal area of the trachea was increased, and erosions of the femoral head were reduced. We conclude that neonatal gene therapy can improve bone and joint disease in MPS VII mice and dogs. However, better delivery of GUSB to chondrocytes will be necessary to achieve more profound effects in cartilage.


Assuntos
Terapia Genética , Vetores Genéticos , Glucuronidase/genética , Vírus da Leucemia Murina de Moloney/genética , Mucopolissacaridose VII/terapia , Doenças Musculoesqueléticas/terapia , Animais , Animais Recém-Nascidos , Doenças Ósseas/terapia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Doenças das Cartilagens/terapia , Cães , Face/anormalidades , Feminino , Hepatócitos/virologia , Artropatias/terapia , Articulações/patologia , Masculino , Camundongos , Mucopolissacaridose VII/patologia , Doenças Musculoesqueléticas/patologia , Radiografia , Traqueia/patologia
20.
J Neurosci ; 23(8): 3302-7, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12716937

RESUMO

The mucopolysaccharidoses (MPSs) are lysosomal storage diseases resulting from impaired catabolism of sulfated glycosaminoglycans. MPS VII mice lack lysosomal beta-glucuronidase (GUSB) activity, leading to the accumulation of partially degraded chondroitin, dermatan, and heparan sulfates in most tissues. Consequently, these mice develop most of the symptoms exhibited by human MPS VII patients, including progressive visual and cognitive deficits. To investigate the effects of reducing lysosomal storage in nervous tissues, we injected recombinant adeno-associated virus encoding GUSB directly into the vitreous humor of young adult mice. Interestingly, GUSB activity was subsequently detected in the brains of the recipients. At 8-12 weeks after treatment, increased GUSB activity and reduced lysosomal distension were found in regions of the thalamus and tectum that received inputs from the injected eye. Lysosomal storage was also reduced in adjacent nonvisual regions, including the hippocampus, as well as in the visual cortex. The findings suggest that both diffusion and trans-synaptic transfer contribute to the dissemination of enzyme activity within the CNS. Intravitreal injection may thus provide a means of delivering certain therapeutic gene products to specific areas within the CNS.


Assuntos
Sistema Nervoso Central/enzimologia , Terapia Genética/métodos , Glucuronidase/genética , Lisossomos/enzimologia , Mucopolissacaridose VII/enzimologia , Animais , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , DNA Viral/análise , Dependovirus/genética , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Ativação Enzimática/genética , Olho/enzimologia , Olho/virologia , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Glucuronidase/biossíntese , Glucuronidase/deficiência , Hipocampo/enzimologia , Hipocampo/patologia , Hipocampo/virologia , Humanos , Lisossomos/patologia , Camundongos , Camundongos Mutantes Neurológicos , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/patologia , Reação em Cadeia da Polimerase , Colículos Superiores/enzimologia , Colículos Superiores/patologia , Colículos Superiores/virologia , Tálamo/enzimologia , Tálamo/patologia , Tálamo/virologia , Resultado do Tratamento , Córtex Visual/enzimologia , Córtex Visual/patologia , Córtex Visual/virologia , Vias Visuais/enzimologia , Vias Visuais/patologia , Vias Visuais/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA