Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Stem Cell Reports ; 19(5): 629-638, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38670110

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection primarily affects the lung but can also cause gastrointestinal (GI) symptoms. In vitro experiments confirmed that SARS-CoV-2 robustly infects intestinal epithelium. However, data on infection of adult gastric epithelium are sparse and a side-by-side comparison of the infection in the major segments of the GI tract is lacking. We provide this direct comparison in organoid-derived monolayers and demonstrate that SARS-CoV-2 robustly infects intestinal epithelium, while gastric epithelium is resistant to infection. RNA sequencing and proteome analysis pointed to angiotensin-converting enzyme 2 (ACE2) as a critical factor, and, indeed, ectopic expression of ACE2 increased susceptibility of gastric organoid-derived monolayers to SARS-CoV-2. ACE2 expression pattern in GI biopsies of patients mirrors SARS-CoV-2 infection levels in monolayers. Thus, local ACE2 expression limits SARS-CoV-2 expression in the GI tract to the intestine, suggesting that the intestine, but not the stomach, is likely to be important in viral replication and possibly transmission.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Mucosa Gástrica , Mucosa Intestinal , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/fisiologia , Humanos , COVID-19/virologia , COVID-19/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/virologia , Tropismo Viral , Organoides/virologia , Organoides/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Replicação Viral , Animais
2.
Front Cell Infect Microbiol ; 14: 1371429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650735

RESUMO

Background: Achieving sustained virologic response (SVR) in patients infected with hepatitis C virus (HCV) reduces all-cause mortality. However, the mechanisms and risk factors for liver fibrosis and portal hypertension post-SVR remain incompletely understood. In the gut-liver axis, mucosa-associated microbiota (MAM) substantially influence immune and metabolic functions, displaying spatial heterogeneity at the anatomical intestinal site. We analyzed MAM composition and function to isolate the locoregional MAM involved in chronic liver disease progression in HCV post-SVR patients. Methods: We collected MAM samples from three intestinal sites (terminal ileum, ascending colon, and sigmoid colon) via brushing during colonoscopy in 23 HCV post-SVR patients and 25 individuals without liver disease (controls). The 16S rRNA of bacterial DNA in specimens collected with a brush and in feces was sequenced. The molecular expression of intestinal tissues and hepatic tissues were evaluated by quantitative real-time PCR. Results: In the post-SVR group, the microbial ß-diversity of MAM, especially in the ascending colon, differed from the control group and was associated with liver fibrosis progression. In PICRUSt analysis, MAM in the ascending colon in the liver cirrhosis (LC) group showed compromised functions associated with the intestinal barrier and bile acid production, and FGF19 expression was markedly decreased in the terminal ileum biopsy tissue in the LC group. At the genus level, six short-chain fatty acid (SCFA)-producing bacterial genera, Blautia, Alistipes, Roseburia, Agathobaculum, Dorea, and Pseudoflavonifractor were reduced in the ascending colon of post-SVR LC patients. Conclusion: In patients of HCV post-SVR, we identified the association between the degree of liver fibrosis and dysbiosis of mucosa-associated SCFA-producing bacterial genera that may be related to intestinal barrier and bile acid production in the ascending colon.


Assuntos
Colo Ascendente , Disbiose , Microbioma Gastrointestinal , Mucosa Intestinal , Cirrose Hepática , RNA Ribossômico 16S , Resposta Viral Sustentada , Humanos , Cirrose Hepática/virologia , Cirrose Hepática/microbiologia , Masculino , Pessoa de Meia-Idade , Feminino , RNA Ribossômico 16S/genética , Colo Ascendente/microbiologia , Colo Ascendente/patologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/virologia , Hepacivirus/genética , Fezes/microbiologia , Fezes/virologia , Idoso , Hepatite C Crônica/complicações , Hepatite C Crônica/microbiologia , Hepatite C Crônica/virologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Adulto , DNA Bacteriano/genética , Ácidos e Sais Biliares/metabolismo
3.
J Virol ; 96(18): e0096222, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36073923

RESUMO

Intestinal stem cells (ISCs) play an important role in tissue repair after injury. A recent report delineates the effect of transmissible gastroenteritis virus (TGEV) infection on the small intestine of recovered pigs. However, the mechanism behind the epithelium regeneration upon TGEV infection remains unclear. To address this, we established a TGEV infection model based on the porcine intestinal organoid monolayer. The results illustrated that the porcine intestinal organoid monolayer was susceptible to TGEV. In addition, the TGEV infection initiated the interferon and inflammatory responses following the loss of absorptive enterocytes and goblet cells. However, TGEV infection did not disturb epithelial integrity but induced the proliferation of ISCs. Furthermore, TGEV infection activated the Wnt/ß-catenin pathway by upregulating the accumulation and nuclear translocation of ß-catenin, as well as promoting the expression of Wnt target genes, such as C-myc, Cyclin D1, Mmp7, Lgr5, and Sox9, which were associated with the self-renewal of ISCs. Collectively, these data demonstrated that the TGEV infection activated the Wnt/ß-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. IMPORTANCE The intestinal epithelium is a physical barrier to enteric viruses and commensal bacteria. It plays an essential role in maintaining the balance between the host and intestinal microenvironment. In addition, intestinal stem cells (ISCs) are responsible for tissue repair after injury. Therefore, prompt self-renewal of intestinal epithelium will facilitate the rebuilding of the physical barrier and maintain gut health. In the manuscript, we found that the transmissible gastroenteritis virus (TGEV) infection did not disturb epithelial integrity but induced the proliferation of ISCs and facilitated epithelium regeneration. Detailed mechanism investigations revealed that the TGEV infection activated the Wnt/ß-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. These findings will contribute to understanding the mechanism of intestinal epithelial regeneration and reparation upon viral infection.


Assuntos
Células-Tronco , Vírus da Gastroenterite Transmissível , Animais , Ciclina D1/metabolismo , Interferons/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/virologia , Metaloproteinase 7 da Matriz , Células-Tronco/citologia , Células-Tronco/virologia , Suínos , Vírus da Gastroenterite Transmissível/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
4.
J Virol ; 96(17): e0070622, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000839

RESUMO

Rotavirus infects intestinal epithelial cells and is the leading cause of gastroenteritis in infants worldwide. Upon viral infection, intestinal cells produce type I and type III interferons (IFNs) to alert the tissue and promote an antiviral state. These two types of IFN bind to different receptors but induce similar pathways that stimulate the activation of interferon-stimulated genes (ISGs) to combat viral infection. In this work, we studied the spread of a fluorescent wild-type (WT) SA11 rotavirus in human colorectal cancer cells lacking specific interferon receptors and compared it to that of an NSP1 mutant rotavirus that cannot interfere with the host intrinsic innate immune response. We could show that the WT rotavirus efficiently blocks the production of type I IFNs but that type III IFNs are still produced, whereas the NSP1 mutant rotavirus allows the production of both. Interestingly, while both exogenously added type I and type III IFNs could efficiently protect cells against rotavirus infection, endogenous type III IFNs were found to be key to limit infection of human intestinal cells by rotavirus. By using a fluorescent reporter cell line to highlight the cells mounting an antiviral program, we could show that paracrine signaling driven by type III IFNs efficiently controls the spread of both WT and NSP1 mutant rotavirus. Our results strongly suggest that NSP1 efficiently blocks the type I IFN-mediated antiviral response; however, its restriction of the type III IFN-mediated one is not sufficient to prevent type III IFNs from partially inhibiting viral spread in intestinal epithelial cells. Additionally, our findings further highlight the importance of type III IFNs in controlling rotavirus infection, which could be exploited as antiviral therapeutic measures. IMPORTANCE Rotavirus is one of the most common causes of gastroenteritis worldwide. In developing countries, rotavirus infections lead to more than 200,000 deaths in infants and children. The intestinal epithelial cells lining the gastrointestinal tract combat rotavirus infection by two key antiviral compounds known as type I and III interferons. However, rotavirus has developed countermeasures to block the antiviral actions of the interferons. In this work, we evaluated the arms race between rotavirus and type I and III interferons. We determined that although rotavirus could block the induction of type I interferons, it was unable to block type III interferons. The ability of infected cells to produce and release type III interferons leads to the protection of the noninfected neighboring cells and the clearance of rotavirus infection from the epithelium. This suggests that type III interferons are key antiviral agents and could be used to help control rotavirus infections in children.


Assuntos
Células Epiteliais , Interferons , Mucosa Intestinal , Infecções por Rotavirus , Rotavirus , Antivirais/imunologia , Criança , Células Epiteliais/imunologia , Células Epiteliais/virologia , Gastroenterite/virologia , Humanos , Imunidade Inata , Lactente , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Interferons/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Mutação , Rotavirus/genética , Rotavirus/crescimento & desenvolvimento , Rotavirus/imunologia , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia , Proteínas não Estruturais Virais/genética
5.
J Virol ; 96(7): e0020222, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35297667

RESUMO

In the United States, most new cases of human immunodeficiency virus (HIV) belong to the at-risk group of gay and bisexual men. Developing therapies to reverse viral latency and prevent spread is paramount for the HIV cure agenda. In gay and bisexual men, a major, yet poorly characterized, route of HIV entry is via transport across the colonic epithelial barrier. While colonic tears and paracellular transport contribute to infection, we hypothesize that HIV entry through the colonic mucosa proceeds via a process known as transcytosis, involving (i) virion binding to the apical surface of the colonic epithelium, (ii) viral endocytosis, (iii) transport of virions across the cell, and (iv) HIV release from the basolateral membrane. Using Caco-2 colonic epithelial cells plated as a polarized monolayer in transwells, we characterized the mechanism of HIV transport. After exposing the monolayer to HIV apically, reverse transcription quantitative PCR (RT-qPCR) of the viral genome present in the basolateral chamber revealed that transport is dose dependent, cooperative, and inefficient, with released virus first detectable at 12 h. Inefficiency may be associated with >50% decline in detectable intracellular virus that correlates temporally with increased association of the virion with lysosomal-associated membrane protein 1 (LAMP-1+) endosomes. Microscopy revealed green fluorescent protein (GFP)-labeled HIV within the confines of the epithelial monolayer, with no virus detectable between cells, suggesting that viral transport is transcellular. Treatment of the monolayer with endocytosis inhibitors, cholesterol reducing agents, and small interfering RNA (siRNA) to caveolin showed that viral endocytosis is mediated by caveolin-coated endosomes contained in lipid rafts. These results indicate that HIV transport across the intestinal epithelial barrier via transcytosis is a viable mechanism for viral spread and a potential therapeutic target. IMPORTANCE Despite the success of combination antiretroviral therapy in suppressing HIV replication and the emergence and effectiveness of PrEP-based prevention strategies, in 2018, 37,968 people in the United States received a new HIV diagnosis, accompanied by 15,820 deaths. While the annual number of new diagnoses decreased 7% from 2014 to 2018, 14% of people with HIV did not know they were infected. Gay and bisexual men accounted for 69% of all HIV diagnoses and 83% of diagnoses among males. Due to the scope of the HIV epidemic, determining and understanding precise routes of infection and the mechanisms of viral spread are paramount to ending the epidemic. Since transcellular transport of HIV across an intact colonic epithelial barrier is poorly understood, our overall goal is to characterize the molecular events involved in HIV transcytosis across the intestinal epithelial cell.


Assuntos
Colo , Endocitose , Infecções por HIV , HIV , Mucosa Intestinal , Células CACO-2 , Caveolinas/metabolismo , Colo/imunologia , Colo/virologia , Endossomos/metabolismo , HIV/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/prevenção & controle , Infecções por HIV/transmissão , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Masculino
6.
Front Immunol ; 12: 741425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858400

RESUMO

Porcine epidemic diarrhea (PED) is an acute, highly contagious intestinal swine disease caused by porcine epidemic diarrhea virus (PEDV). In addition to known PEDV infection targets (villous small intestinal epithelial cells), recent reports suggest that dendritic cells (DCs) may also be targeted by PEDV in vivo. Thus, in this study we used bone marrow-derived dendritic cells (BM-DCs) as an in vitro model of antigen-presenting cells (APCs). Our results revealed that PEDV replicated in BM-DCs and that PEDV infection of cells inhibited expression of swine leukocyte antigen II DR (SLA-DR), a key MHC-II molecule involved in antigen presentation and initiation of CD4+ T cell activation. Notably, SLA-DR inhibition in BM-DCs did not require PEDV replication, suggesting that PEDV structural proteins participated in SLA-DR transcriptional inhibition. Moreover, reporter assay-based screening indicated that PEDV envelope protein blocked activation of SLA-DRα and ß promoters, as did PEDV-ORF3 protein when present during PEDV replication. Meanwhile, treatment of PEDV-infected BM-DCs with MG132, a ubiquitin-proteasome degradation pathway inhibitor, did not restore SLA-DR protein levels. Additionally, PEDV infection of BM-DCs did not alter SLA-DR ubiquitination status, suggesting that PEDV infection did not affect SLA-DR degradation. Furthermore, additions of PEDV structural proteins to HEK-293T-SLA-DR stably transfected cells had no effect on SLA-DR protein levels, indicating that PEDV-mediated inhibition of SLA-DR expression acted mainly at the transcriptional level, not at the protein level. These results provide novel insights into PEDV pathogenic mechanisms and viral-host interactions.


Assuntos
Infecções por Coronavirus/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Mucosa Intestinal/fisiologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Regiões Promotoras Genéticas/genética , Animais , Apresentação de Antígeno , Células da Medula Óssea/citologia , Regulação da Expressão Gênica , Células HEK293 , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Mucosa Intestinal/virologia , Suínos
7.
Front Immunol ; 12: 695674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367156

RESUMO

CD4+ T-cell depletion is pathognomonic for AIDS in both HIV and simian immunodeficiency virus (SIV) infections. It occurs early, is massive at mucosal sites, and is not entirely reverted by antiretroviral therapy (ART), particularly if initiated when T-cell functions are compromised. HIV/SIV infect and kill activated CCR5-expressing memory and effector CD4+ T-cells from the intestinal lamina propria. Acute CD4+ T-cell depletion is substantial in progressive, nonprogressive and controlled infections. Clinical outcome is predicted by the mucosal CD4+ T-cell recovery during chronic infection, with no recovery occurring in rapid progressors, and partial, transient recovery, the degree of which depends on the virus control, in normal and long-term progressors. The nonprogressive infection of African nonhuman primate SIV hosts is characterized by partial mucosal CD4+ T-cell restoration, despite high viral replication. Complete, albeit very slow, recovery of mucosal CD4+ T-cells occurs in controllers. Early ART does not prevent acute mucosal CD4+ T-cell depletion, yet it greatly improves their restoration, sometimes to preinfection levels. Comparative studies of the different models of SIV infection support a critical role of immune activation/inflammation (IA/INFL), in addition to viral replication, in CD4+ T-cell depletion, with immune restoration occurring only when these parameters are kept at bay. CD4+ T-cell depletion is persistent, and the recovery is very slow, even when both the virus and IA/INFL are completely controlled. Nevertheless, partial mucosal CD4+ T-cell recovery is sufficient for a healthy life in natural hosts. Cell death and loss of CD4+ T-cell subsets critical for gut health contribute to mucosal inflammation and enteropathy, which weaken the mucosal barrier, leading to microbial translocation, a major driver of IA/INFL. In turn, IA/INFL trigger CD4+ T-cells to become either viral targets or apoptotic, fueling their loss. CD4+ T-cell depletion also drives opportunistic infections, cancers, and comorbidities. It is thus critical to preserve CD4+ T cells (through early ART) during HIV/SIV infection. Even in early-treated subjects, residual IA/INFL can persist, preventing/delaying CD4+ T-cell restoration. New therapeutic strategies limiting mucosal pathology, microbial translocation and IA/INFL, to improve CD4+ T-cell recovery and the overall HIV prognosis are needed, and SIV models are extensively used to this goal.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , HIV/patogenicidade , Imunidade nas Mucosas , Mucosa Intestinal/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Animais , Translocação Bacteriana , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Microbioma Gastrointestinal , HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/microbiologia , Haplorrinos , Interações Hospedeiro-Patógeno , Humanos , Hospedeiro Imunocomprometido , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Fenótipo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/microbiologia , Vírus da Imunodeficiência Símia/imunologia , Fatores de Tempo
8.
Viruses ; 13(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210024

RESUMO

Infection with EBV has been associated with various inflammatory disorders including inflammatory bowel diseases (IBD). Contribution of this virus to intestinal disease processes has not been assessed. We previously detected that EBV DNA triggers proinflammatory responses via the activation of endosomal Toll-like receptor (TLR) signaling. Hence, to examine the colitogenic potential of EBV DNA, we used the dextran sodium sulfate (DSS) mouse colitis model. C57BL/6J mice received either DSS-containing or regular drinking water. Mice were then administered EBV DNA by rectal gavage. Administration of EBV DNA to the DSS-fed mice aggravated colonic disease activity as well as increased the damage to the colon histologic architecture. Moreover, we observed enhanced expression of IL-17A, IFNγ and TNFα in colon tissues from the colitis mice (DSS-treated) given the EBV DNA compared to the other groups. This group also had a marked decrease in expression of the CTLA4 immunoregulatory marker. On the other hand, we observed enhanced expression of endosomal TLRs in colon tissues from the EBV DNA-treated colitis mice. These findings indicate that EBV DNA exacerbates proinflammatory responses in colitis. The ubiquity of EBV in the population indicates that possible similar responses may be of pertinence in a relevant proportion of IBD patients.


Assuntos
DNA Viral/genética , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Doenças Inflamatórias Intestinais/virologia , Animais , Colo/imunologia , Colo/patologia , Colo/virologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Herpesvirus Humano 4/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo
9.
Viruses ; 13(6)2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205050

RESUMO

Acute gastroenteritis (AGE) has a significant disease burden on society. Noroviruses, rotaviruses, and astroviruses are important viral causes of AGE but are relatively understudied enteric pathogens. Recent developments in novel biomimetic human models of enteric disease are opening new possibilities for studying human-specific host-microbe interactions. Human intestinal enteroids (HIE), which are epithelium-only intestinal organoids derived from stem cells isolated from human intestinal biopsy tissues, have been successfully used to culture representative norovirus, rotavirus, and astrovirus strains. Previous studies investigated host-virus interactions at the intestinal epithelial interface by individually profiling the epithelial transcriptional response to a member of each virus family by RNA sequencing (RNA-seq). Despite differences in the tissue origin, enteric virus used, and hours post infection at which RNA was collected in each data set, the uniform analysis of publicly available datasets identified a conserved epithelial response to virus infection focused around "type I interferon production" and interferon-stimulated genes. Additionally, transcriptional changes specific to only one or two of the enteric viruses were also identified. This study can guide future explorations into common and unique aspects of the host response to virus infections in the human intestinal epithelium and demonstrates the promise of comparative RNA-seq analysis, even if performed under different experimental conditions, to discover universal and virus-specific genes and pathways responsible for antiviral host defense.


Assuntos
Bases de Dados de Ácidos Nucleicos , Gastroenterite/virologia , Mucosa Intestinal/virologia , Intestinos/citologia , Organoides/citologia , Organoides/virologia , Análise de Sequência de RNA , Linhagem Celular , Humanos , Imunidade Inata , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Intestinos/imunologia , Intestinos/virologia , Norovirus/genética , Norovirus/imunologia , Rotavirus/genética , Rotavirus/imunologia , Replicação Viral
10.
J Virol ; 95(18): e0085321, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232065

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing acute intestinal infection in pigs, with high mortality often seen in neonatal pigs. The newborns rely on innate immune responses against invading pathogens because of lacking adaptive immunity. However, how PEDV disables the innate immunity of newborns toward severe infection remains unknown. We found that PEDV infection led to reduced expression of histone deacetylases (HDACs), especially HDAC1, in porcine IPEC-J2 cells. HDACs are considered important regulators of innate immunity. We hypothesized that PEDV interacts with certain host factors to regulate HDAC1 expression in favor of its replication. We show that HDAC1 acted as a negative regulator of PEDV replication in IPEC-J2 cells, as shown by chemical inhibition, gene knockout, and overexpression. A GC-box (GCCCCACCCCC) within the HDAC1 promoter region was identified for Sp1 binding in IPEC-J2 cells. Treatment of the cells with Sp1 inhibitor mithramycin A inhibited HDAC1 expression, indicating direct regulation of HDAC1 expression by Sp1. Of the viral proteins that were overexpressed in IPEC-J2 cells, the N protein was found to be present in the nuclei and more inhibitory to HDAC1 transcription. The putative nuclear localization sequence 261PKKNKSR267 contributed to its nuclear localization. The N protein interacted with Sp1 and interfered with its binding to the promoter region, thereby inhibiting its transcriptional activity for HDAC1 expression. Our findings reveal a novel mechanism of PEDV evasion of the host responses, offering implications for studying the infection processes of other coronaviruses. IMPORTANCE The enteric coronavirus porcine epidemic diarrhea virus (PEDV) causes fatal acute intestinal infection in neonatal pigs that rely on innate immune responses. Histone deacetylases (HDACs) play important roles in innate immune regulation. Our study found PEDV suppresses HDAC1 expression via the interaction of its N protein and porcine Sp1, which identified a novel mechanism of PEDV evasion of the host responses to benefit its replication. This study suggests that other coronaviruses, including SARS-CoV and SARS-CoV-2, also make use of their N proteins to intercept the host immune responses in favor of their infection.


Assuntos
Infecções por Coronavirus/veterinária , Células Epiteliais/virologia , Histona Desacetilase 1/antagonistas & inibidores , Mucosa Intestinal/virologia , Fator de Transcrição Sp1/metabolismo , Doenças dos Suínos/virologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Células Cultivadas , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Vírus da Diarreia Epidêmica Suína/patogenicidade , Fator de Transcrição Sp1/genética , Suínos , Doenças dos Suínos/metabolismo , Doenças dos Suínos/patologia , Proteínas não Estruturais Virais/genética
11.
Stem Cell Reports ; 16(4): 940-953, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852884

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leading to coronavirus disease 2019 (COVID-19) usually results in respiratory disease, but extrapulmonary manifestations are of major clinical interest. Intestinal symptoms of COVID-19 are present in a significant number of patients, and include nausea, diarrhea, and viral RNA shedding in feces. Human induced pluripotent stem cell-derived intestinal organoids (HIOs) represent an inexhaustible cellular resource that could serve as a valuable tool to study SARS-CoV-2 as well as other enteric viruses that infect the intestinal epithelium. Here, we report that SARS-CoV-2 productively infects both proximally and distally patterned HIOs, leading to the release of infectious viral particles while stimulating a robust transcriptomic response, including a significant upregulation of interferon-related genes that appeared to be conserved across multiple epithelial cell types. These findings illuminate a potential inflammatory epithelial-specific signature that may contribute to both the multisystemic nature of COVID-19 as well as its highly variable clinical presentation.


Assuntos
COVID-19/patologia , Colo/patologia , Mucosa Intestinal/patologia , Organoides/patologia , Linhagem Celular , Colo/virologia , Células Epiteliais/virologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Inflamação/virologia , Mucosa Intestinal/virologia , Modelos Biológicos , Organoides/citologia , Organoides/virologia , SARS-CoV-2 , Replicação Viral/fisiologia
12.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805888

RESUMO

Oral administration of medications is highly preferred in healthcare owing to its simplicity and convenience; however, problems of drug membrane permeability can arise with any administration method in drug discovery and development. In particular, commonly used monoclonal antibody (mAb) drugs are directly injected through intravenous or subcutaneous routes across physical barriers such as the cell membrane, including the epithelium and endothelium. However, intravenous administration has disadvantages such as pain, discomfort, and stress. Oral administration is an ideal route for mAbs. Nonetheless, proteolysis and denaturation, in addition to membrane impermeability, pose serious challenges in delivering peroral mAbs to the systemic circulation, biologically, through enzymatic and acidic blocks and, physically, through the small intestinal epithelium barrier. A number of clinical trials have been performed using oral mAbs for the local treatment of gastrointestinal diseases, some of which have adopted capsules or tablets as formulations. Surprisingly, no oral mAbs have been approved clinically. An enteric nanodelivery system can protect cargos from proteolysis and denaturation. Moreover, mAb cargos released in the small intestine may be delivered to the systemic circulation across the intestinal epithelium through receptor-mediated transcytosis. Oral Abs in milk are transported by neonatal Fc receptors to the systemic circulation in neonates. Thus, well-designed approaches can establish oral mAb delivery. In this review, I will introduce the implementation and possibility of delivering orally administered mAbs with or without nanoparticles not only to the local gastrointestinal tract but also to the systemic circulation.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Administração Oral , Albuminas/química , Animais , Ensaios Clínicos como Assunto , Endocitose , Humanos , Concentração de Íons de Hidrogênio , Imunoterapia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virologia , Intestino Delgado/metabolismo , Intestino Delgado/virologia , Camundongos , Norovirus , Peptídeos/química , Ratos , Transcitose
13.
Sci Rep ; 11(1): 6552, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753826

RESUMO

Puerarin has been reported to be an excellent antioxidant, anti-inflammatory and antimicrobial agent, but the potential effect of puerarin on porcine epidemic diarrhea virus (PEDV) is unclear. This study aimed to determine whether puerarin could alleviate intestinal injury in piglets infected with PEDV. A PEDV (Yunnan province strain) infection model was applied to 7-day-old piglets at 104.5 TCID50 (50% tissue culture infectious dose). Piglets were orally administered with puerarin at the dosage of 0.5 mg/kg body weight from day 5 to day 9. On day 9 of the trial, piglets were inoculated orally with PEDV. Three days later, jugular vein blood and intestinal samples were collected. Results showed puerarin reduced morbidity of piglets infected with PEDV. In addition, puerarin reduced the activities of aspartate aminotransferase and alkaline phosphatase, the ratio of serum aspartate aminotransferase to serum alanine aminotransferase, the number of white blood cells and neutrophils, and the plasma concentrations of interleukin-6, interleukin-8 and tumor necrosis factor-α, as well as protein abundances of heat shock protein-70 in PEDV-infected piglets. Moreover, puerarin increased D-xylose concentration but decreased intestinal fatty acid-binding protein concentration and diamine oxidase activity in the plasma of piglets infected with PEDV. Puerarin increased the activities of total superoxide dismutase, glutathione peroxidase and catalase, while decreasing the activities of myeloperoxidase and concentration of hydrogen peroxide in both the intestine and plasma of PEDV-infected piglets. Puerarin decreased mRNA levels of glutathione S-transferase omega 2 but increased the levels of nuclear factor erythroid 2-related factor 2. Furthermore, puerarin increased the abundance of total eubacteria (16S rRNA), Enterococcus genus, Lactobacillus genus and Enterobacteriaceae family in the intestine, but reduced the abundance of Clostridium coccoides in the caecum. These data indicate puerarin improved intestinal function in piglets infected by PEDV and may be a promising supplement for the prevention of PEDV infection.


Assuntos
Intestinos/efeitos dos fármacos , Intestinos/virologia , Isoflavonas/farmacologia , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Doenças dos Suínos/virologia , Animais , Animais Recém-Nascidos , Antioxidantes/metabolismo , Biomarcadores , Citocinas/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Intestinos/patologia , Oxirredução , Estresse Oxidativo , Suínos , Doenças dos Suínos/metabolismo , Doenças dos Suínos/patologia
14.
Gastroenterology ; 160(7): 2435-2450.e34, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676971

RESUMO

BACKGROUND & AIMS: Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of COVID-19, we investigated intestinal infection with SARS-CoV-2, its effect on pathogenesis, and clinical significance. METHODS: Human intestinal biopsy tissues were obtained from patients with COVID-19 (n = 19) and uninfected control individuals (n = 10) for microscopic examination, cytometry by time of flight analyses, and RNA sequencing. Additionally, disease severity and mortality were examined in patients with and without GI symptoms in 2 large, independent cohorts of hospitalized patients in the United States (N = 634) and Europe (N = 287) using multivariate logistic regressions. RESULTS: COVID-19 case patients and control individuals in the biopsy cohort were comparable for age, sex, rates of hospitalization, and relevant comorbid conditions. SARS-CoV-2 was detected in small intestinal epithelial cells by immunofluorescence staining or electron microscopy in 15 of 17 patients studied. High-dimensional analyses of GI tissues showed low levels of inflammation, including down-regulation of key inflammatory genes including IFNG, CXCL8, CXCL2, and IL1B and reduced frequencies of proinflammatory dendritic cells compared with control individuals. Consistent with these findings, we found a significant reduction in disease severity and mortality in patients presenting with GI symptoms that was independent of sex, age, and comorbid illnesses and despite similar nasopharyngeal SARS-CoV-2 viral loads. Furthermore, there was reduced levels of key inflammatory proteins in circulation in patients with GI symptoms. CONCLUSIONS: These data highlight the absence of a proinflammatory response in the GI tract despite detection of SARS-CoV-2. In parallel, reduced mortality in patients with COVID-19 presenting with GI symptoms was observed. A potential role of the GI tract in attenuating SARS-CoV-2-associated inflammation needs to be further examined.


Assuntos
COVID-19/virologia , Gastroenteropatias/virologia , Imunidade nas Mucosas , Mucosa Intestinal/virologia , SARS-CoV-2/patogenicidade , Idoso , Idoso de 80 Anos ou mais , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/mortalidade , Estudos de Casos e Controles , Células Cultivadas , Citocinas/sangue , Feminino , Gastroenteropatias/diagnóstico , Gastroenteropatias/imunologia , Gastroenteropatias/mortalidade , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/sangue , Mucosa Intestinal/imunologia , Itália , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Prognóstico , Medição de Risco , Fatores de Risco , SARS-CoV-2/imunologia , Carga Viral
15.
Commun Biol ; 4(1): 377, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742093

RESUMO

Mammalian three-dimensional (3D) enteroids mirror in vivo intestinal organisation and are powerful tools to investigate intestinal cell biology and host-pathogen interactions. We have developed complex multilobulated 3D chicken enteroids from intestinal embryonic villi and adult crypts. These avian enteroids develop optimally in suspension without the structural support required to produce mammalian enteroids, resulting in an inside-out enteroid conformation with media-facing apical brush borders. Histological and transcriptional analyses show these enteroids comprise of differentiated intestinal epithelial cells bound by cell-cell junctions, and notably, include intraepithelial leukocytes and an inner core of lamina propria leukocytes. The advantageous polarisation of these enteroids has enabled infection of the epithelial apical surface with Salmonella Typhimurium, influenza A virus and Eimeria tenella without the need for micro-injection. We have created a comprehensive model of the chicken intestine which has the potential to explore epithelial and leukocyte interactions and responses in host-pathogen, food science and pharmaceutical research.


Assuntos
Eimeria tenella/patogenicidade , Células Epiteliais , Vírus da Influenza A/patogenicidade , Mucosa Intestinal , Leucócitos , Salmonella typhimurium/patogenicidade , Animais , Células Cultivadas , Microambiente Celular , Galinhas , Eimeria tenella/imunologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/parasitologia , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Vírus da Influenza A/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/parasitologia , Mucosa Intestinal/virologia , Leucócitos/imunologia , Leucócitos/microbiologia , Leucócitos/parasitologia , Leucócitos/virologia , Camundongos Endogâmicos C57BL , Organoides , Permeabilidade , Fagocitose , Fenótipo , Codorniz , Salmonella typhimurium/imunologia
16.
Gut Microbes ; 13(1): 1-9, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33550892

RESUMO

Microbiota-derived molecules called short-chain fatty acids (SCFAs) play a key role in the maintenance of the intestinal barrier and regulation of immune response during infectious conditions. Recent reports indicate that SARS-CoV-2 infection changes microbiota and SCFAs production. However, the relevance of this effect is unknown. In this study, we used human intestinal biopsies and intestinal epithelial cells to investigate the impact of SCFAs in the infection by SARS-CoV-2. SCFAs did not change the entry or replication of SARS-CoV-2 in intestinal cells. These metabolites had no effect on intestinal cells' permeability and presented only minor effects on the production of anti-viral and inflammatory mediators. Together our findings indicate that the changes in microbiota composition of patients with COVID-19 and, particularly, of SCFAs do not interfere with the SARS-CoV-2 infection in the intestine.


Assuntos
COVID-19/virologia , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/virologia , Adulto , Idoso , Células CACO-2 , Colo/virologia , Células Epiteliais/virologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Carga Viral , Internalização do Vírus , Adulto Jovem
17.
Nat Immunol ; 22(3): 381-390, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589816

RESUMO

The integrin α4ß7 selectively regulates lymphocyte trafficking and adhesion in the gut and gut-associated lymphoid tissue (GALT). Here, we describe unexpected involvement of the tyrosine phosphatase Shp1 and the B cell lectin CD22 (Siglec-2) in the regulation of α4ß7 surface expression and gut immunity. Shp1 selectively inhibited ß7 endocytosis, enhancing surface α4ß7 display and lymphocyte homing to GALT. In B cells, CD22 associated in a sialic acid-dependent manner with integrin ß7 on the cell surface to target intracellular Shp1 to ß7. Shp1 restrained plasma membrane ß7 phosphorylation and inhibited ß7 endocytosis without affecting ß1 integrin. B cells with reduced Shp1 activity, lacking CD22 or expressing CD22 with mutated Shp1-binding or carbohydrate-binding domains displayed parallel reductions in surface α4ß7 and in homing to GALT. Consistent with the specialized role of α4ß7 in intestinal immunity, CD22 deficiency selectively inhibited intestinal antibody and pathogen responses.


Assuntos
Linfócitos B/enzimologia , Imunidade nas Mucosas , Cadeias beta de Integrinas/metabolismo , Integrinas/metabolismo , Mucosa Intestinal/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Endocitose , Feminino , Cadeias beta de Integrinas/imunologia , Integrinas/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Rotavirus/imunologia , Rotavirus/patogenicidade , Infecções por Rotavirus/genética , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/deficiência , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Transdução de Sinais , Técnicas de Cultura de Tecidos
18.
mSphere ; 6(1)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504663

RESUMO

Human noroviruses (HuNoVs) are the leading cause of epidemic and sporadic acute gastroenteritis worldwide. We previously demonstrated human intestinal stem cell-derived enteroids (HIEs) support cultivation of several HuNoV strains. However, HIEs did not support virus replication from every HuNoV-positive stool sample, which led us to test and optimize new medium conditions, identify characteristics of stool samples that allow replication, and evaluate consistency of replication over time. Optimization of our HIE-HuNoV culture system has shown the following: (i) a new HIE culture medium made with conditioned medium from a single cell line and commercial media promotes robust replication of HuNoV strains that replicated poorly in HIEs grown in our original culture medium made with conditioned media from 3 separate cell lines; (ii) GI.1, 11 GII genotypes (GII.1, GII.2, GII.3, GII.4, GII.6, GII.7, GII.8, GII.12, GII.13, GII.14, and GII.17), and six GII.4 variants can be cultivated in HIEs; (iii) successful replication is more likely with virus in stools with higher virus titers; (iv) GII.4_Sydney_2012 virus replication was reproducible over 3 years; and (v) HuNoV infection is restricted to the small intestine, based on replication of two viral strains in duodenal and ileal HIEs, but not colonoids, from two susceptible donors. These results improve the HIE culture system for HuNoV replication. Use of HIEs by several laboratories worldwide to study the molecular mechanisms that regulate HuNoV replication confirms the usefulness of this culture system, and our optimized methods for virus replication will advance the development of effective therapies and methods for virus control.IMPORTANCE Human noroviruses (HuNoVs) are highly contagious and cause acute and sporadic diarrheal illness in all age groups. In addition, chronic infections occur in immunocompromised cancer and transplant patients. These viruses are antigenically and genetically diverse, and there are strain-specific differences in binding to cellular attachment factors. In addition, new discoveries are being made on strain-specific differences in virus entry and replication and the epithelial cell response to infection in human intestinal enteroids. Human intestinal enteroids are a biologically relevant model to study HuNoVs; however, not all strains can be cultivated at this time. A complete understanding of HuNoV biology thus requires cultivation conditions that will allow the replication of multiple strains. We report optimization of HuNoV cultivation in human intestinal enteroid cultures to increase the numbers of cultivatable strains and the magnitude of replication, which is critical for testing antivirals, neutralizing antibodies, and methods of virus inactivation.


Assuntos
Mucosa Intestinal/virologia , Norovirus/crescimento & desenvolvimento , Organoides/virologia , Criança , Pré-Escolar , Meios de Cultura , Humanos , Lactente , Mucosa Intestinal/citologia , Células-Tronco/citologia , Replicação Viral/fisiologia
19.
J Pept Sci ; 27(3): e3292, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33200451

RESUMO

To investigate whether peptide sequences with specific translocation across the gastrointestinal barrier can be identified as drug delivery vehicles, in vivo phage display was conducted. For this purpose, a random library of 12-mer peptides displayed on M13 bacteriophage was orally administered to mice followed by recovery of the phage particles from the blood samples after three consecutive biopanning rounds. The obtained peptide sequences were analyzed using bioinformatics tools and software. The results demonstrated that M13 bacteriophage bearing peptides translocate nonspecifically across the mice intestinal mucosal barrier deduced from random distribution of amino acids in different positions of the identified peptide sequences. The most probable reason for entering the phage particles into systemic circulation after oral administration of the peptide library can be related to the nanoscale nature of their structures which provides a satisfying platform for the purpose of designing nanocarriers in pharmaceutical applications.


Assuntos
Bacteriófago M13/metabolismo , Mucosa Intestinal/metabolismo , Peptídeos/metabolismo , Administração Oral , Animais , Sistemas de Liberação de Medicamentos , Mucosa Intestinal/virologia , Masculino , Camundongos , Biblioteca de Peptídeos , Peptídeos/administração & dosagem
20.
Cell Mol Gastroenterol Hepatol ; 11(4): 935-948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33186749

RESUMO

BACKGROUND AND AIMS: The COVID-19 pandemic has spread worldwide and poses a severe health risk. While most patients present mild symptoms, descending pneumonia can lead to severe respiratory insufficiency. Up to 50% of patients show gastrointestinal symptoms like diarrhea or nausea, intriguingly associating with prolonged symptoms and increased severity. Thus, models to understand and validate drug efficiency in the gut of COVID-19 patients are of urgent need. METHODS: Human intestinal organoids derived from pluripotent stem cells (PSC-HIOs) have led, due to their complexity in mimicking human intestinal architecture, to an unprecedented number of successful disease models including gastrointestinal infections. Here, we employed PSC-HIOs to dissect SARS-CoV-2 pathogenesis and its inhibition by remdesivir, one of the leading drugs investigated for treatment of COVID-19. RESULTS: Immunostaining for viral entry receptor ACE2 and SARS-CoV-2 spike protein priming protease TMPRSS2 showed broad expression in the gastrointestinal tract with highest levels in the intestine, the latter faithfully recapitulated by PSC-HIOs. Organoids could be readily infected with SARS-CoV-2 followed by viral spread across entire PSC-HIOs, subsequently leading to organoid deterioration. However, SARS-CoV-2 spared goblet cells lacking ACE2 expression. Importantly, we challenged PSC-HIOs for drug testing capacity. Specifically, remdesivir effectively inhibited SARS-CoV-2 infection dose-dependently at low micromolar concentration and rescued PSC-HIO morphology. CONCLUSIONS: Thus, PSC-HIOs are a valuable tool to study SARS-CoV-2 infection and to identify and validate drugs especially with potential action in the gut.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , Células-Tronco Embrionárias Humanas , Mucosa Intestinal , Organoides , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Células CACO-2 , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Células-Tronco Embrionárias Humanas/virologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Organoides/metabolismo , Organoides/patologia , Organoides/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA