Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mSphere ; 9(4): e0006124, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38564709

RESUMO

Mycobacterium tuberculosis (Mtb), the pathogenic bacterium that causes tuberculosis, has evolved sophisticated defense mechanisms to counteract the cytotoxicity of reactive oxygen species (ROS) generated within host macrophages during infection. The melH gene in Mtb and Mycobacterium marinum (Mm) plays a crucial role in defense mechanisms against ROS generated during infection. We demonstrate that melH encodes an epoxide hydrolase and contributes to ROS detoxification. Deletion of melH in Mm resulted in a mutant with increased sensitivity to oxidative stress, increased accumulation of aldehyde species, and decreased production of mycothiol and ergothioneine. This heightened vulnerability is attributed to the increased expression of whiB3, a universal stress sensor. The absence of melH also resulted in reduced intracellular levels of NAD+, NADH, and ATP. Bacterial growth was impaired, even in the absence of external stressors, and the impairment was carbon source dependent. Initial MelH substrate specificity studies demonstrate a preference for epoxides with a single aromatic substituent. Taken together, these results highlight the role of melH in mycobacterial bioenergetic metabolism and provide new insights into the complex interplay between redox homeostasis and generation of reactive aldehyde species in mycobacteria. IMPORTANCE: This study unveils the pivotal role played by the melH gene in Mycobacterium tuberculosis and in Mycobacterium marinum in combatting the detrimental impact of oxidative conditions during infection. This investigation revealed notable alterations in the level of cytokinin-associated aldehyde, para-hydroxybenzaldehyde, as well as the redox buffer ergothioneine, upon deletion of melH. Moreover, changes in crucial cofactors responsible for electron transfer highlighted melH's crucial function in maintaining a delicate equilibrium of redox and bioenergetic processes. MelH prefers epoxide small substrates with a phenyl substituted substrate. These findings collectively emphasize the potential of melH as an attractive target for the development of novel antitubercular therapies that sensitize mycobacteria to host stress, offering new avenues for combating tuberculosis.


Assuntos
Proteínas de Bactérias , Cisteína , Metabolismo Energético , Glicopeptídeos , Homeostase , Mycobacterium tuberculosis , Oxirredução , Estresse Oxidativo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antituberculosos/farmacologia , Ergotioneína/metabolismo , Inositol/metabolismo , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Deleção de Genes
2.
Pathog Dis ; 80(1)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35438161

RESUMO

Mycobacterial granuloma formation involves significant stromal remodeling including the growth of leaky, granuloma-associated vasculature. These permeable blood vessels aid mycobacterial growth, as antiangiogenic or vascular normalizing therapies are beneficial host-directed therapies in preclinical models of tuberculosis across host-mycobacterial pairings. Using the zebrafish-Mycobacterium marinum infection model, we demonstrate that vascular normalization by inhibition of vascular endothelial protein tyrosine phosphatase (VE-PTP) decreases granuloma hypoxia, the opposite effect of hypoxia-inducing antiangiogenic therapy. Inhibition of VE-PTP decreased neutrophil recruitment to granulomas in adult and larval zebrafish, and decreased the proportion of neutrophils that extravasated distal to granulomas. Furthermore, VE-PTP inhibition increased the accumulation of T cells at M. marinum granulomas. Our study provides evidence that, similar to the effect in solid tumors, vascular normalization during mycobacterial infection increases the T cell:neutrophil ratio in lesions which may be correlates of protective immunity.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium marinum , Mycobacterium , Animais , Permeabilidade Capilar , Modelos Animais de Doenças , Granuloma , Hipóxia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/metabolismo , Neutrófilos , Peixe-Zebra/microbiologia
3.
Proc Natl Acad Sci U S A ; 119(11): e2122161119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35271388

RESUMO

SignificanceTuberculosis (TB), an ancient disease of humanity, continues to be a major cause of worldwide death. The causative agent of TB, Mycobacterium tuberculosis, and its close pathogenic relative Mycobacterium marinum, initially infect, evade, and exploit macrophages, a major host defense against invading pathogens. Within macrophages, mycobacteria reside within host membrane-bound compartments called phagosomes. Mycobacterium-induced damage of the phagosomal membranes is integral to pathogenesis, and this activity has been attributed to the specialized mycobacterial secretion system ESX-1, and particularly to ESAT-6, its major secreted protein. Here, we show that the integrity of the unstructured ESAT-6 C terminus is required for macrophage phagosomal damage, granuloma formation, and virulence.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Mycobacterium marinum , Mycobacterium tuberculosis , Fagossomos , Tuberculoma , Sistemas de Secreção Tipo VII , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Mycobacterium marinum/metabolismo , Mycobacterium marinum/patogenicidade , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Fagossomos/metabolismo , Fagossomos/microbiologia , Conformação Proteica , Tuberculoma/microbiologia , Sistemas de Secreção Tipo VII/metabolismo , Virulência
4.
PLoS Pathog ; 17(4): e1009186, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826679

RESUMO

Pathogenic mycobacteria actively dysregulate protective host immune signalling pathways during infection to drive the formation of permissive granuloma microenvironments. Dynamic regulation of host microRNA (miRNA) expression is a conserved feature of mycobacterial infections across host-pathogen pairings. Here we examine the role of miR-206 in the zebrafish model of Mycobacterium marinum infection, which allows investigation of the early stages of granuloma formation. We find miR-206 is upregulated following infection by pathogenic M. marinum and that antagomir-mediated knockdown of miR-206 is protective against infection. We observed striking upregulation of cxcl12a and cxcr4b in infected miR-206 knockdown zebrafish embryos and live imaging revealed enhanced recruitment of neutrophils to sites of infection. We used CRISPR/Cas9-mediated knockdown of cxcl12a and cxcr4b expression and AMD3100 inhibition of Cxcr4 to show that the enhanced neutrophil response and reduced bacterial burden caused by miR-206 knockdown was dependent on the Cxcl12/Cxcr4 signalling axis. Together, our data illustrate a pathway through which pathogenic mycobacteria induce host miR-206 expression to suppress Cxcl12/Cxcr4 signalling and prevent protective neutrophil recruitment to granulomas.


Assuntos
Quimiocina CXCL12/metabolismo , MicroRNAs/genética , Infiltração de Neutrófilos/imunologia , Receptores CXCR4/metabolismo , Animais , Quimiocina CXCL12/imunologia , Técnicas de Silenciamento de Genes/métodos , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium marinum/metabolismo , Receptores CXCR4/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Peixe-Zebra/imunologia
5.
Elife ; 92020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33226343

RESUMO

Several virulence lipids populate the outer cell wall of pathogenic mycobacteria. Phthiocerol dimycocerosate (PDIM), one of the most abundant outer membrane lipids, plays important roles in both defending against host antimicrobial programs and in evading these programs altogether. Immediately following infection, mycobacteria rely on PDIM to evade Myd88-dependent recruitment of microbicidal monocytes which can clear infection. To circumvent the limitations in using genetics to understand virulence lipids, we developed a chemical approach to track PDIM during Mycobacterium marinum infection of zebrafish. We found that PDIM's methyl-branched lipid tails enabled it to spread into host epithelial membranes to prevent immune activation. Additionally, PDIM's affinity for cholesterol promoted this phenotype; treatment of zebrafish with statins, cholesterol synthesis inhibitors, decreased spreading and provided protection from infection. This work establishes that interactions between host and pathogen lipids influence mycobacterial infectivity and suggests the use of statins as tuberculosis preventive therapy by inhibiting PDIM spread.


Assuntos
Membrana Celular/microbiologia , Células Epiteliais/microbiologia , Lipídeos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/patogenicidade , Fatores de Virulência/metabolismo , Células A549 , Animais , Animais Geneticamente Modificados , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lipídeos/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Estrutura Molecular , Infecções por Mycobacterium não Tuberculosas/metabolismo , Infecções por Mycobacterium não Tuberculosas/prevenção & controle , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Relação Estrutura-Atividade , Células THP-1 , Virulência , Fatores de Virulência/química , Peixe-Zebra
6.
Infect Immun ; 88(12)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32900815

RESUMO

Mycobacterium tuberculosis, the cause of human tuberculosis, and Mycobacterium marinum, a nontubercular pathogen with a broad host range, require the ESX-1 secretion system for virulence. The ESX-1 system secretes proteins which cause phagosomal lysis within the macrophage via an unknown mechanism. As reported elsewhere (R. E. Bosserman et al., Proc Natl Acad Sci U S A 114:E10772-E10781, 2017, https://doi.org/10.1073/pnas.1710167114), we recently discovered that the ESX-1 system regulates gene expression in M. marinum This finding was confirmed in M. tuberculosis in reports by C. Sala et al. (PLoS Pathog 14:e1007491, 2018, https://doi.org/10.1371/journal.ppat.1007491) and A. M. Abdallah et al. (PLoS One 14:e0211003, 2019, https://doi.org/10.1371/journal.pone.0211003). We further demonstrated that a feedback control mechanism connects protein secretion to WhiB6-dependent expression of the esx-1 genes via an unknown mechanism. Here, we connect protein secretion and gene expression by showing for the first time that specific ESX-1 substrates have dual functions inside and outside the mycobacterial cell. We demonstrate that the EspE and EspF substrates negatively control esx-1 gene expression in the M. marinum cytoplasm through the conserved WhiB6 transcription factor. We found that EspE and EspF are required for virulence and promote lytic activity independently of the major EsxA and EsxB substrates. We show that the dual functions of EspE and EspF are conserved in the orthologous proteins from M. tuberculosis Our findings support a role for EspE and EspF in virulence that is independent of the EsxA and EsxB substrates and demonstrate that ESX-1 substrates have a conserved role in regulating gene expression.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium marinum/metabolismo , Sistemas de Secreção Tipo VII/metabolismo , Fatores de Virulência/metabolismo , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Mycobacterium marinum/genética , Mycobacterium marinum/patogenicidade , Células RAW 264.7 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sistemas de Secreção Tipo VII/genética , Fatores de Virulência/genética
7.
PLoS One ; 15(7): e0233252, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32701962

RESUMO

Phthiocerol dimycocerosates (PDIMs) are a class of mycobacterial lipids that promote virulence in Mycobacterium tuberculosis and Mycobacterium marinum. It has recently been shown that PDIMs work in concert with the M. tuberculosis Type VII secretion system ESX-1 to permeabilize the phagosomal membranes of infected macrophages. As the zebrafish-M. marinum model of infection has revealed the critical role of PDIM at the host-pathogen interface, we set to determine if PDIMs contributed to phagosomal permeabilization in M. marinum. Using an ΔmmpL7 mutant defective in PDIM transport, we find the PDIM-ESX-1 interaction to be conserved in an M. marinum macrophage infection model. However, we find PDIM and ESX-1 mutants differ in their degree of defect, with the PDIM mutant retaining more membrane damaging activity. Using an in vitro hemolysis assay-a common surrogate for cytolytic activity, we find that PDIM and ESX-1 differ in their contributions: the ESX-1 mutant loses hemolytic activity while PDIM retains it. Our observations confirm the involvement of PDIMs in phagosomal permeabilization in M. marinum infection and suggest that PDIM enhances the membrane disrupting activity of pathogenic mycobacteria and indicates that the role they play in damaging phagosomal and red blood cell membranes may differ.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Lipídeos/farmacologia , Macrófagos/citologia , Mycobacterium marinum/metabolismo , Fagossomos/efeitos dos fármacos , Linhagem Celular , Humanos , Macrófagos/efeitos dos fármacos , Mycobacterium marinum/fisiologia , Permeabilidade/efeitos dos fármacos , Fagossomos/metabolismo
8.
Mol Microbiol ; 114(1): 66-76, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32096294

RESUMO

Mycobacteria use type VII secretion systems (T7SSs) to translocate a wide range of proteins across their diderm cell envelope. These systems, also called ESX systems, are crucial for the viability and/or virulence of mycobacterial pathogens, including Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. We have previously shown that the M. tuberculosis ESX-5 system is unable to fully complement secretion in an M. marinum esx-5 mutant, suggesting species specificity in secretion. In this study, we elaborated on this observation and established that the membrane ATPase EccC5 , possessing four (putative) nucleotide-binding domains (NBDs), is responsible for this. By creating M. marinum-M. tuberculosis EccC5 chimeras, we observed both in M. marinum and in M. tuberculosis that secretion specificity of PE_PGRS proteins depends on the presence of the cognate linker 2 domain of EccC5 . This region connects NBD1 and NBD2 of EccC5 and is responsible for keeping NBD1 in an inhibited state. Notably, the ESX-5 substrate EsxN, predicted to bind to NBD3 on EccC5 , showed a distinct secretion profile. These results indicate that linker 2 is involved in species-specific substrate recognition and might therefore be an additional substrate recognition site of EccC5 .


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Bactérias/metabolismo , Mycobacterium marinum/metabolismo , Mycobacterium tuberculosis/metabolismo , Sistemas de Secreção Tipo VII/genética , Fatores de Virulência/metabolismo , Membrana Celular/metabolismo , Quimera/genética , Mycobacterium marinum/genética , Mycobacterium marinum/patogenicidade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Domínios Proteicos/genética , Especificidade da Espécie , Virulência/genética
9.
Emerg Microbes Infect ; 9(1): 129-139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31913766

RESUMO

Mycobacterial persistence mechanisms remain to be fully characterized. Screening a transposon insertion library of Mycobacterium marinum identified kdpA, whose inactivation reduced the fraction of persisters after exposure to rifampicin. kdpA encodes a transmembrane protein that is part of the Kdp-ATPase, an ATP-dependent high-affinity potassium (K+) transport system. We found that kdpA is induced under low K+ conditions and is required for pH homeostasis and growth in media with low concentrations of K+. The inactivation of the Kdp system in a kdpA insertion mutant caused hyperpolarization of the cross-membrane potential, increased proton motive force (PMF) and elevated levels of intracellular ATP. The KdpA mutant phenotype could be complemented with a functional kdpA gene or supplementation with high K+ concentrations. Taken together, our results suggest that the Kdp system is required for ATP homeostasis and persister formation. The results also confirm that ATP-mediated regulation of persister formation is a general mechanism in bacteria, and suggest that K+ transporters could play a role in the regulation of ATP levels and persistence. These findings could have implications for the development of new drugs that could either target persisters or reduce their presence.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/metabolismo , Potássio/metabolismo , Trifosfato de Adenosina/genética , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Mycobacterium marinum/genética
10.
Proc Natl Acad Sci U S A ; 117(2): 1160-1166, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31879349

RESUMO

Following mycobacterial entry into macrophages the ESX-1 type VII secretion system promotes phagosomal permeabilization and type I IFN production, key features of tuberculosis pathogenesis. The current model states that the secreted substrate ESAT-6 is required for membrane permeabilization and that a subsequent passive leakage of extracellular bacterial DNA into the host cell cytosol is sensed by the cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING) pathway to induce type I IFN production. We employed a collection of Mycobacterium marinum ESX-1 transposon mutants in a macrophage infection model and show that permeabilization of the phagosomal membrane does not require ESAT-6 secretion. Moreover, loss of membrane integrity is insufficient to induce type I IFN production. Instead, type I IFN production requires intact ESX-1 function and correlates with release of mitochondrial and nuclear host DNA into the cytosol, indicating that ESX-1 affects host membrane integrity and DNA release via genetically separable mechanisms. These results suggest a revised model for major aspects of ESX-1-mediated host interactions and put focus on elucidating the mechanisms by which ESX-1 permeabilizes host membranes and induces the type I IFN response, questions of importance for our basic understanding of mycobacterial pathogenesis and innate immune sensing.


Assuntos
Antígenos de Bactérias/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Interferon Tipo I/metabolismo , Infecções por Mycobacterium não Tuberculosas/metabolismo , Mycobacterium marinum/patogenicidade , Fagossomos/metabolismo , Antígenos de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Mitocôndrias/metabolismo , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/genética , Mycobacterium marinum/imunologia , Mycobacterium marinum/metabolismo , Tuberculose/imunologia , Sistemas de Secreção Tipo VII
11.
Transl Res ; 212: 1-13, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31287998

RESUMO

EsxA is an essential virulence factor for Mycobacterium tuberculosis (Mtb) pathogenesis as well as an important biomarker for Mtb detection. In this study, we use light microscopy and deep learning-based image analysis to classify the morphologic changes of macrophages infected by Mycobacterium marinum (Mm), a surrogate model for Mtb. Macrophages were infected either with the mCherry-expressing Mm wild type strain (Mm(WT)), or a mutant strain with deletion of the esxA-esxB operon (Mm(ΔEsxA:B)). The mCherry serves as an infection marker to train the convolution neural network (CNN) and to validate the classification results. Data show that CNN can distinguish the Mm(WT)-infected cells from uninfected cells with an accuracy of 92.4% at 2 hours postinfection (hpi). However, the accuracy at 12 and 24 hpi is decreased to ∼75% and ∼83%, respectively, suggesting dynamic morphologic changes through different stages of infection. The accuracy of discriminating Mm(ΔEsxA:B)-infected cells from uninfected cells is lower than 80% at all time, which is consistent to attenuated virulence of Mm(ΔEsxA:B). Interestingly, CNN distinguishes Mm(WT)-infected cells from Mm(ΔEsxA:B)-infected cells with ∼90% accuracy, implicating EsxA induces unique morphologic changes in macrophages. Deconvolutional analysis successfully reconstructed the morphologic features used by CNN for classification, which are indistinguishable to naked eyes and distinct from intracellular mycobacteria. This study presents a deep learning-aided imaging analytical tool that can accurately detect virulent mycobacteria-infected macrophages by cellular morphologic changes. The observed morphologic changes induced by EsxA warrant further studies to fill the gap from molecular actions of bacterial virulence factors to cellular morphology.


Assuntos
Proteínas de Bactérias/metabolismo , Macrófagos/microbiologia , Mycobacterium marinum/metabolismo , Redes Neurais de Computação , Células A549 , Animais , Proteínas de Bactérias/genética , Humanos , Camundongos , Mycobacterium marinum/genética , Mycobacterium marinum/patogenicidade , Células RAW 264.7 , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
12.
Tuberculosis (Edinb) ; 116: 8-16, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31153521

RESUMO

The second messenger 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) has been shown to be involved in the regulation of many biological processes ranging from carbon catabolite repression in bacteria to cell signalling in eukaryotes. In mycobacteria, the role of cAMP and the mechanisms utilized by the bacterium to adapt to and resist immune and pharmacological sterilization remain poorly understood. Among the stresses encountered by bacteria, ionic and non-ionic osmotic stresses are among the best studied. However, in mycobacteria, the link between ionic osmotic stress, particularly sodium chloride, and cAMP has been relatively unexplored. Using a targeted metabolic analysis combined with stable isotope tracing, we show that the pathogenic Mycobacterium tuberculosis but not the opportunistic pathogen Mycobacterium marinum nor the non-pathogenic Mycobacterium smegmatis responds to NaCl stress via an increase in intracellular cAMP levels. We further showed that this increase in cAMP is dependent on the cAMP receptor protein and in part on the threonine/serine kinase PnkD, which has previously been associated with the NaCl stress response in mycobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , AMP Cíclico/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Receptores de AMP Cíclico/metabolismo , Cloreto de Sódio/farmacologia , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Pressão Osmótica , Proteínas Serina-Treonina Quinases/metabolismo , Sistemas do Segundo Mensageiro
13.
mBio ; 10(3)2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113891

RESUMO

Mycofactocin (MFT) belongs to the class of ribosomally synthesized and posttranslationally modified peptides conserved in many ActinobacteriaMycobacterium tuberculosis assimilates cholesterol during chronic infection, and its in vitro growth in the presence of cholesterol requires most of the MFT biosynthesis genes (mftA, mftB, mftC, mftD, mftE, and mftF), although the reasons for this requirement remain unclear. To identify the function of MFT, we characterized MFT biosynthesis mutants constructed in Mycobacterium smegmatis, M. marinum, and M. tuberculosis We found that the growth deficit of mft deletion mutants in medium containing cholesterol-a phenotypic basis for gene essentiality prediction-depends on ethanol, a solvent used to solubilize cholesterol. Furthermore, functionality of MFT was strictly required for growth of free-living mycobacteria in ethanol and other primary alcohols. Among other genes encoding predicted MFT-associated dehydrogenases, MSMEG_6242 was indispensable for M. smegmatis ethanol assimilation, suggesting that it is a candidate catalytic interactor with MFT. Despite being a poor growth substrate, ethanol treatment resulted in a reductive cellular state with NADH accumulation in M. tuberculosis During ethanol treatment, mftC mutant expressed the transcriptional signatures that are characteristic of respirational dysfunction and a redox-imbalanced cellular state. Counterintuitively, there were no differences in cellular bioenergetics and redox parameters in mftC mutant cells treated with ethanol. Therefore, further understanding of the function of MFT in ethanol metabolism is required to identify the cause of growth retardation of MFT mutants in cholesterol. Nevertheless, our results establish the physiological role of MFT and also provide new insights into the specific functions of MFT homologs in other actinobacterial systems.IMPORTANCE Tuberculosis is caused by Mycobacterium tuberculosis, and the increasing emergence of multidrug-resistant strains renders current treatment options ineffective. Although new antimycobacterial drugs are urgently required, their successful development often relies on complete understanding of the metabolic pathways-e.g., cholesterol assimilation-that are critical for persistence and for pathogenesis of M. tuberculosis In this regard, mycofactocin (MFT) function appears to be important because its biosynthesis genes are predicted to be essential for M. tuberculosisin vitro growth in cholesterol. In determining the metabolic basis of this genetic requirement, our results unexpectedly revealed the essential function of MFT in ethanol metabolism. The metabolic dysfunction thereof was found to affect the mycobacterial growth in cholesterol which is solubilized by ethanol. This knowledge is fundamental in recognizing the bona fide function of MFT, which likely resembles the pyrroloquinoline quinone-dependent ethanol oxidation in acetic acid bacteria exploited for industrial production of vinegar.


Assuntos
Fatores Biológicos/metabolismo , Etanol/metabolismo , Mycobacterium marinum/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Peptídeos/metabolismo , Vias Biossintéticas/genética , Colesterol/metabolismo , Deleção de Genes , Mycobacterium marinum/genética , Mycobacterium marinum/crescimento & desenvolvimento , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento
14.
Langmuir ; 35(5): 1818-1827, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30103609

RESUMO

Self-assembled monolayers (SAMs) are widely used in science and engineering, and recent progress has demonstrated the utility of zwitterionic peptides with alternating lysine (K) and glutamic acid (E) residues for antifouling purposes. Aiming at developing a peptide-based fouling-resistant SAM suitable for presentation of surface-attached pheromones for barnacle larvae, we have investigated five different peptide SAMs, where four are based on the EK motif, and the fifth was designed based on general principles for fouling resistance. The SAMs were formed by self-assembly onto gold substrates via cysteine residues on the peptides, and formation of SAMs was verified via ellipsometry, wettability, infrared reflection-absorption spectroscopy and cyclic voltammetry. Settlement of cypris larvae of the barnacle Balanus (=Amphibalanus) amphitrite, the target of pheromone studies, was tested. SAMs were also subjected to fouling assays using protein solutions, blood serum, and the bacterium Mycobacterium marinum. The results confirm the favorable antifouling properties of EK-containing peptides in most of the assays, although this did not apply to the barnacle larvae settlement test, where settlement was low on only one of the peptide SAMs. The one peptide that had antifouling properties for barnacles did not contain a pheromone motif, and would not be susceptible to degredation by common serine proteases. We conclude that the otherwise broadly effective antifouling properties of EK-containing peptide SAMs is not directly applicable to barnacles, and that great care must be exercised in the design of peptide-based SAMs for presentation of barnacle-specific ligands.


Assuntos
Incrustação Biológica/prevenção & controle , Membranas Artificiais , Peptídeos/química , Adsorção/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sangue , Ouro/química , Humanos , Mycobacterium marinum/metabolismo , Proteínas/química , Propriedades de Superfície , Thoracica/metabolismo
15.
ACS Nano ; 12(8): 8646-8661, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30081622

RESUMO

The enhanced permeability and retention (EPR) effect is the only described mechanism enabling nanoparticles (NPs) flowing in blood to reach tumors by a passive targeting mechanism. Here, using the transparent zebrafish model infected with Mycobacterium marinum we show that an EPR-like process also occurs allowing different types of NPs to extravasate from the vasculature to reach granulomas that assemble during tuberculosis (TB) infection. PEGylated liposomes and other NP types cross endothelial barriers near infection sites within minutes after injection and accumulate close to granulomas. Although ∼100 and 190 nm NPs concentrated most in granulomas, even ∼700 nm liposomes reached these infection sites in significant numbers. We show by confocal microscopy that NPs can concentrate in small aggregates in foci on the luminal side of the endothelium adjacent to the granulomas. These spots are connected to larger foci of NPs on the ablumenal side of these blood vessels. EM analysis suggests that NPs cross the endothelium via the paracellular route. PEGylated NPs also accumulated efficiently in granulomas in a mouse model of TB infection with Mycobacterium tuberculosis, arguing that the zebrafish embryo model can be used to predict NP behavior in mammalian hosts. In earlier studies we and others showed that uptake of NPs by macrophages that are attracted to infection foci is one pathway for NPs to reach TB granulomas. This study reveals that when NPs are designed to avoid macrophage uptake, they can also efficiently target granulomas via an alternative mechanism that resembles EPR.


Assuntos
Modelos Animais de Doenças , Granuloma/metabolismo , Mycobacterium marinum/química , Nanopartículas/metabolismo , Artéria Pulmonar/metabolismo , Tuberculose Pulmonar/metabolismo , Peixe-Zebra/microbiologia , Animais , Granuloma/microbiologia , Camundongos , Microscopia Confocal , Mycobacterium marinum/metabolismo , Nanopartículas/química , Permeabilidade , Artéria Pulmonar/microbiologia , Tuberculose Pulmonar/microbiologia
16.
J Proteome Res ; 17(9): 3246-3258, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30080413

RESUMO

N-terminal acetylation (NTA) is a post-transcriptional modification of proteins that is conserved from bacteria to humans. In bacteria, the enzymes that mediate protein NTA also promote antimicrobial resistance. In pathogenic mycobacteria, which cause human tuberculosis and other chronic infections, NTA has been linked to pathogenesis and stress response, yet the fundamental biology underlying NTA of mycobacterial proteins remains unclear. We enriched, defined, and quantified the NT-acetylated populations of both cell-associated and secreted proteins from both the human pathogen, Mycobacterium tuberculosis, and the nontuberculous opportunistic pathogen, Mycobacterium marinum. We used a parallel N-terminal enrichment strategy from proteolytic digests coupled to charge-based selection and stable isotope ratio mass spectrometry. We show that NTA of the mycobacterial proteome is abundant, diverse, and primarily on Thr residues, which is unique compared with other bacteria. We isolated both the acetylated and unacetylated forms of 256 proteins, indicating that NTA of mycobacterial proteins is homeostatic. We identified 16 mycobacterial proteins with differential levels of NTA on the cytoplasmic and secreted forms, linking protein modification and localization. Our findings reveal novel biology underlying the NTA of mycobacterial proteins, which may provide a basis to understand NTA in mycobacterial physiology, pathogenesis, and antimicrobial resistance.


Assuntos
Proteínas de Bactérias/química , Mycobacterium marinum/química , Mycobacterium tuberculosis/química , Peptídeos/análise , Processamento de Proteína Pós-Traducional , Acetilação , Proteínas de Bactérias/classificação , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Biologia Computacional/métodos , Humanos , Mycobacterium marinum/isolamento & purificação , Mycobacterium marinum/metabolismo , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/metabolismo , Peptídeos/química , Proteólise , Especificidade da Espécie , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem , Tuberculose Pulmonar/microbiologia
17.
PLoS Pathog ; 14(8): e1007247, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30102741

RESUMO

The pathogen Mycobacterium tuberculosis employs a range of ESX-1 substrates to manipulate the host and build a successful infection. Although the importance of ESX-1 secretion in virulence is well established, the characterization of its individual components and the role of individual substrates is far from complete. Here, we describe the functional characterization of the Mycobacterium marinum accessory ESX-1 proteins EccA1, EspG1 and EspH, i.e. proteins that are neither substrates nor structural components. Proteomic analysis revealed that EspG1 is crucial for ESX-1 secretion, since all detectable ESX-1 substrates were absent from the cell surface and culture supernatant in an espG1 mutant. Deletion of eccA1 resulted in minor secretion defects, but interestingly, the severity of these secretion defects was dependent on the culture conditions. Finally, espH deletion showed a partial secretion defect; whereas several ESX-1 substrates were secreted in normal amounts, secretion of EsxA and EsxB was diminished and secretion of EspE and EspF was fully blocked. Interaction studies showed that EspH binds EspE and therefore could function as a specific chaperone for this substrate. Despite the observed differences in secretion, hemolytic activity was lost in all M. marinum mutants, implying that hemolytic activity is not strictly correlated with EsxA secretion. Surprisingly, while EspH is essential for successful infection of phagocytic host cells, deletion of espH resulted in a significantly increased virulence phenotype in zebrafish larvae, linked to poor granuloma formation and extracellular outgrowth. Together, these data show that different sets of ESX-1 substrates play different roles at various steps of the infection cycle of M. marinum.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium marinum/metabolismo , Mycobacterium marinum/patogenicidade , Sistemas de Secreção Tipo VII/genética , Fatores de Virulência/fisiologia , Animais , Proteínas de Bactérias/genética , Células Cultivadas , Embrião não Mamífero , Larva , Camundongos , Mycobacterium marinum/genética , Células RAW 264.7 , Ovinos , Sistemas de Secreção Tipo VII/metabolismo , Virulência/genética , Fatores de Virulência/genética , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento
18.
PLoS Genet ; 13(12): e1007131, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29281637

RESUMO

The cell envelope of mycobacteria is a highly unique and complex structure that is functionally equivalent to that of Gram-negative bacteria to protect the bacterial cell. Defects in the integrity or assembly of this cell envelope must be sensed to allow the induction of stress response systems. The promoter that is specifically and most strongly induced upon exposure to ethambutol and isoniazid, first line drugs that affect cell envelope biogenesis, is the iniBAC promoter. In this study, we set out to identify the regulator of the iniBAC operon in Mycobacterium marinum using an unbiased transposon mutagenesis screen in a constitutively iniBAC-expressing mutant background. We obtained multiple mutants in the mce1 locus as well as mutants in an uncharacterized putative transcriptional regulator (MMAR_0612). This latter gene was shown to function as the iniBAC regulator, as overexpression resulted in constitutive iniBAC induction, whereas a knockout mutant was unable to respond to the presence of ethambutol and isoniazid. Experiments with the M. tuberculosis homologue (Rv0339c) showed identical results. RNAseq experiments showed that this regulatory gene was exclusively involved in the regulation of the iniBAC operon. We therefore propose to name this dedicated regulator iniBAC Regulator (IniR). IniR belongs to the family of signal transduction ATPases with numerous domains, including a putative sugar-binding domain. Upon testing different sugars, we identified trehalose as an activator and metabolic cue for iniBAC activation, which could also explain the effect of the mce1 mutations. In conclusion, cell envelope stress in mycobacteria is regulated by IniR in a cascade that includes trehalose.


Assuntos
Adenosina Trifosfatases/genética , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Trealose/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Mutagênese Insercional , Óperon , Regiões Promotoras Genéticas , Transdução de Sinais , Transcrição Gênica
19.
Cell ; 170(5): 973-985.e10, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28841420

RESUMO

Mycobacterium leprae causes leprosy and is unique among mycobacterial diseases in producing peripheral neuropathy. This debilitating morbidity is attributed to axon demyelination resulting from direct interaction of the M. leprae-specific phenolic glycolipid 1 (PGL-1) with myelinating glia and their subsequent infection. Here, we use transparent zebrafish larvae to visualize the earliest events of M. leprae-induced nerve damage. We find that demyelination and axonal damage are not directly initiated by M. leprae but by infected macrophages that patrol axons; demyelination occurs in areas of intimate contact. PGL-1 confers this neurotoxic response on macrophages: macrophages infected with M. marinum-expressing PGL-1 also damage axons. PGL-1 induces nitric oxide synthase in infected macrophages, and the resultant increase in reactive nitrogen species damages axons by injuring their mitochondria and inducing demyelination. Our findings implicate the response of innate macrophages to M. leprae PGL-1 in initiating nerve damage in leprosy.


Assuntos
Antígenos de Bactérias/metabolismo , Modelos Animais de Doenças , Glicolipídeos/metabolismo , Hanseníase/microbiologia , Hanseníase/patologia , Macrófagos/imunologia , Mycobacterium leprae/fisiologia , Animais , Axônios/metabolismo , Axônios/patologia , Doenças Desmielinizantes , Larva/crescimento & desenvolvimento , Hanseníase/imunologia , Mycobacterium marinum/metabolismo , Bainha de Mielina/química , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Neuroglia/metabolismo , Neuroglia/patologia , Óxido Nítrico/metabolismo , Peixe-Zebra
20.
Nucleic Acids Res ; 45(13): 7760-7773, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28549155

RESUMO

The mechanism of mitochondrial DNA (mtDNA) replication in Saccharomyces cerevisiae is controversial. Evidence exists for double-strand break (DSB) mediated recombination-dependent replication at mitochondrial replication origin ori5 in hypersuppressive ρ- cells. However, it is not clear if this replication mode operates in ρ+ cells. To understand this, we targeted bacterial Ku (bKu), a DSB binding protein, to the mitochondria of ρ+ cells with the hypothesis that bKu would bind persistently to mtDNA DSBs, thereby preventing mtDNA replication or repair. Here, we show that mitochondrial-targeted bKu binds to ori5 and that inducible expression of bKu triggers petite formation preferentially in daughter cells. bKu expression also induces mtDNA depletion that eventually results in the formation of ρ0 cells. This data supports the idea that yeast mtDNA replication is initiated by a DSB and bKu inhibits mtDNA replication by binding to a DSB at ori5, preventing mtDNA segregation to daughter cells. Interestingly, we find that mitochondrial-targeted bKu does not decrease mtDNA content in human MCF7 cells. This finding is in agreement with the fact that human mtDNA replication, typically, is not initiated by a DSB. Therefore, this study provides evidence that DSB-mediated replication is the predominant form of mtDNA replication in ρ+ yeast cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Replicação do DNA , DNA Fúngico/metabolismo , DNA Mitocondrial/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Replicação do DNA/genética , DNA Fúngico/genética , DNA Mitocondrial/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Fúngicos , Humanos , Células MCF-7 , Modelos Biológicos , Mutação , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Origem de Replicação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA