Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 42(11): 3027-3043, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31283836

RESUMO

To elucidate the mechanism of adaptation of leguminous plants to iron (Fe)-deficient environment, comprehensive analyses of soybean (Glycine max) plants (sampled at anthesis) were conducted under Fe-sufficient control and Fe-deficient treatment using metabolomic and physiological approach. Our results show that soybeans grown under Fe-deficient conditions showed lower nitrogen (N) fixation efficiency; however, ureides increased in different tissues, indicating potential N-feedback inhibition. N assimilation was inhibited as observed in the repressed amino acids biosynthesis and reduced proteins in roots and nodules. In Fe-deficient leaves, many amino acids increased, accompanied by the reduction of malate, fumarate, succinate, and α-ketoglutarate, which implies the N reprogramming was stimulated by the anaplerotic pathway. Accordingly, many organic acids increased in roots and nodules; however, enzymes involved in the related metabolic pathway (e.g., Krebs cycle) showed opposite activity between roots and nodules, indicative of different mechanisms. Sugars increased or maintained at constant level in different tissues under Fe deficiency, which probably relates to oxidative stress, cell wall damage, and feedback regulation. Increased ascorbate, nicotinate, raffinose, galactinol, and proline in different tissues possibly helped resist the oxidative stress induced by Fe deficiency. Overall, Fe deficiency induced the coordinated metabolic reprogramming in different tissues of symbiotic soybean plants.


Assuntos
Glycine max/metabolismo , Ferro/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Aminoácidos/biossíntese , Compostos de Amônio/metabolismo , Cromatografia Gasosa , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Espectrometria de Massas , Metaboloma/genética , Metaboloma/fisiologia , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/fisiologia , Nitrogenase/metabolismo , Folhas de Planta/química , Folhas de Planta/enzimologia , Raízes de Plantas/química , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/química , Nódulos Radiculares de Plantas/enzimologia , Glycine max/química , Açúcares/metabolismo , Simbiose
2.
J Food Biochem ; 43(3): e12756, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31353561

RESUMO

A novel asparaginase (designated srnASNase) has been purified from soybean root nodules and identified by MALDI-TOF/TOF-MS. And the enzymatic properties, antitumor activity and the ability to prevent acrylamide formation in fried foods of srnASNase were evaluated. SrnASNase had high specific activity (531.37 U/mg) toward L-asparagine under optimum conditions (pH 8.0 and 40°C), no activity toward L-glutamine and D-glutamine, but trace activity toward D-asparagine. It was stable in the pH range of 7.0-9.0 and up to 40°C. The Km and Vmax of srnASNase were 0.36 mM and 51.64 mM/min, respectively. Further, in vitro anti-proliferative activity on human cancer cells assay showed that srnASNase was superior to commercial asparaginase in solution by controlling the tumor cell growth with time. In addition, srnASNase showed more effective acrylamide mitigation than commercial asparaginase in fried foods. These results indicate that srnASNase is a potential candidate for applications in the food processing and pharmaceutical industry. PRACTICAL APPLICATIONS: L-asparaginase (L-asparagine amidohydrolase; EC 3.5.1.1) is an enzyme that catalyzes the hydrolysis of the amide group of the side-chain of L-asparagine into aspartic acid and ammonia. It has long been used as a primary component in the treatment of acute lymphoblastic leukemia (All) and other related blood cancers. Apart from its clinical usage, L-asparaginase has attracted more attention in the food processing industries as a promising acrylamide-mitigating agent in recent years. This research revealed that soybean root nodules might be good sources of novel asparaginase.


Assuntos
Acrilamida/química , Asparaginase/química , Glycine max/enzimologia , Proteínas de Plantas/química , Nódulos Radiculares de Plantas/enzimologia , Asparaginase/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Culinária , Estabilidade Enzimática , Temperatura Alta , Humanos , Proteínas de Plantas/farmacologia , Nódulos Radiculares de Plantas/química , Glycine max/química
3.
Nitric Oxide ; 88: 73-86, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026500

RESUMO

The identification of S-nitrosated substrates and their target cysteine residues is a crucial step to understand the signaling functions of nitric oxide (NO) inside the cells. Here, we show that the key nitrogen metabolic enzyme glutamine synthetase (GS) is a S-nitrosation target in Medicago truncatula and characterize the molecular determinants and the effects of this NO-induced modification on different GS isoenzymes. We found that all the four M. truncatula GS isoforms are S-nitrosated, but despite the high percentage of amino acid identity between the four proteins, S-nitrosation only affects the activity of the plastid-located enzymes, leading to inactivation. A biotin-switch/mass spectrometry approach revealed that cytosolic and plastid-located GSs share an S-nitrosation site at a conserved cysteine residue, but the plastidic enzymes contain additional S-nitrosation sites at non-conserved cysteines, which are accountable for enzyme inactivation. By site-directed mutagenesis, we identified Cys369 as the regulatory S-nitrosation site relevant for the catalytic function of the plastid-located GS and an analysis of the structural environment of the SNO-targeted cysteines in cytosolic and plastid-located isoenzymes explains their differential regulation by S-nitrosation and elucidates the mechanistic by which S-nitrosation of Cys369 leads to enzyme inactivation. We also provide evidence that both the cytosolic and plastid-located GSs are endogenously S-nitrosated in leaves and root nodules of M. truncatula, supporting a physiological meaning for S-nitrosation. Taken together, these results provide new insights into the molecular details of the differential regulation of individual GS isoenzymes by NO-derived molecules and open new paths to explore the biological significance of the NO-mediated regulation of this essential metabolic enzyme.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Cisteína/química , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/isolamento & purificação , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Medicago truncatula/enzimologia , Medicago truncatula/metabolismo , Mutagênese Sítio-Dirigida , Nitrosação , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Processamento de Proteína Pós-Traducional , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/metabolismo , Alinhamento de Sequência
4.
Sci Rep ; 8(1): 2367, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402985

RESUMO

Nitrogen-fixing nodules, which are also major sites of sulfur assimilation, contribute significantly to the sulfur needs of whole soybean plants. Nodules are the predominant sites for cysteine accumulation and the activity of O-acetylserine(thiol)lyase (OASS) is central to the sulfur assimilation process in plants. Here, we examined the impact of overexpressing OASS on soybean nodulation and nodule metabolome. Overexpression of OASS did not affect the nodule number, but negatively impacted plant growth. HPLC measurement of antioxidant metabolites demonstrated that levels of cysteine, glutathione, and homoglutathione nearly doubled in OASS overexpressing nodules when compared to control nodules. Metabolite profiling by LC-MS and GC-MS demonstrated that several metabolites related to serine, aspartate, glutamate, and branched-chain amino acid pathways were significantly elevated in OASS overexpressing nodules. Striking differences were also observed in the flavonoid levels between the OASS overexpressing and control soybean nodules. Our results suggest that OASS overexpressing plants compensate for the increase in carbon requirement for sulfur assimilation by reducing the biosynthesis of some amino acids, and by replenishing the TCA cycle through fatty acid hydrolysis. These data may indicate that in OASS overexpressing soybean nodules there is a moderate decease in the supply of energy metabolites to the nodule, which is then compensated by the degradation of cellular components to meet the needs of the nodule energy metabolism.


Assuntos
Cisteína Sintase/biossíntese , Citosol/enzimologia , Expressão Gênica , Glycine max/enzimologia , Metaboloma , Isoformas de Proteínas/biossíntese , Nódulos Radiculares de Plantas/enzimologia , Antioxidantes/análise , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Cisteína/análise , Cisteína Sintase/genética , Citosol/química , Cromatografia Gasosa-Espectrometria de Massas , Glutationa/análogos & derivados , Glutationa/análise , Isoformas de Proteínas/genética , Nódulos Radiculares de Plantas/química , Glycine max/química , Glycine max/crescimento & desenvolvimento
5.
Plant Cell Environ ; 40(11): 2706-2719, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28732146

RESUMO

Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone.


Assuntos
Medicago truncatula/enzimologia , Medicago truncatula/microbiologia , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/enzimologia , Zinco/metabolismo , Diferenciação Celular , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Medicago truncatula/genética , Modelos Biológicos , Fenótipo , Proteínas de Plantas/genética , Interferência de RNA , Nódulos Radiculares de Plantas/genética , Frações Subcelulares/metabolismo
6.
Plant Sci ; 240: 98-108, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26475191

RESUMO

Genes containing domains related to glutamine synthetase of the prokaryotic type (GSI-like) are widespread in higher plants, but their function is currently unknown. To gain insights into the possible role of GSI-like proteins, we characterized the GSI-like gene family of Medicago truncatula and investigated the functionality of the encoded proteins. M. truncatula contains two-expressed GSI-like genes, MtGSIa and MtGSIb, encoding polypeptides of 454 and 453 amino acids, respectively. Heterologous complementation assays of a bacterial glnA mutant indicate that the proteins are not catalytically functional for glutamine synthesis. Gene expression was investigated by qRT-PCR and western blot analysis in different organs of the plant and under different nitrogen (N) regimes, revealing that both genes are preferentially expressed in roots and root nodules, and that their expression is influenced by the N-status of the plant. Analysis of transgenic plants expressing MtGSI-like-promoter-gusA fusion, indicate that the two genes are strongly expressed in the root pericycle, and interestingly, the expression is enhanced at the sites of nodule emergence being particularly strong in specific cells located in front of the protoxylem poles. Taken together, the results presented here support a role of GSI-like proteins in N sensing and/or signaling, probably operating at the interface between perception of the N-status and the developmental processes underlying both root nodule and lateral root formation. This study indicates that GSI-like genes may represent a novel class of molecular players of the N-mediated signaling events.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glutamato-Amônia Ligase/genética , Medicago truncatula/genética , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais , Proteínas de Ligação a DNA , Proteínas de Drosophila , Glutamato-Amônia Ligase/metabolismo , Medicago truncatula/enzimologia , Medicago truncatula/metabolismo , Proteínas do Tecido Nervoso , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/enzimologia
7.
BMC Plant Biol ; 14: 321, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25429887

RESUMO

BACKGROUND: Induced aboveground plant defenses against pathogens can have negative effects on belowground microbial symbionts. While a considerable number of studies have utilized chemical elicitors to experimentally induce such defenses, there is surprisingly little evidence that actual aboveground pathogens affect root-associated microbes. We report here that an aboveground fungal pathogen of common bean (Phaseolus vulgaris) induces a defense response that inhibits both the belowground formation of root nodules elicited by rhizobia and the colonization with arbuscular mycorrhizal fungi (AMF). RESULTS: Foliage of plants inoculated with either rhizobia or AMF was treated with both live Colletotrichum gloeosporioides-a generalist hemibiotrophic plant pathogen-and C. gloeosporioides fragments. Polyphenol oxidase (PPO), chitinase and ß-1,3-glucanase activity in leaves and roots, as well as the number of rhizobia nodules and the extent of AMF colonization, were measured after pathogen treatments. Both the live pathogen and pathogen fragments significantly increased PPO, chitinase and ß-1,3-glucanase activity in the leaves, but only PPO activity was increased in roots. The number of rhizobia nodules and the extent of AMF colonization was significantly reduced in treatment plants when compared to controls. CONCLUSION: We demonstrate that aboveground fungal pathogens can affect belowground mutualism with two very different types of microbial symbionts-rhizobia and AMF. Our results suggest that systemically induced PPO activity is functionally involved in this above-belowground interaction. We predict that the top-down effects we show here can drastically impact plant performance in soils with limited nutrients and water; abiotic stress conditions usually mitigated by microbial belowground mutualists.


Assuntos
Colletotrichum/fisiologia , Micorrizas/fisiologia , Phaseolus/microbiologia , Proteínas de Plantas/genética , Rhizobium/fisiologia , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Quitinases/genética , Quitinases/metabolismo , Glucana 1,3-beta-Glucosidase/genética , Glucana 1,3-beta-Glucosidase/metabolismo , Phaseolus/enzimologia , Phaseolus/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose
8.
Plant Sci ; 223: 16-24, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24767111

RESUMO

Legumes are classified as salt-sensitive crops with their productivity particularly affected by salinity. Abcisic acid (ABA) plays an important role in the response to environmental stresses as signal molecule which led us to study its role in the response of nitrogen fixation and antioxidant metabolism in root nodules of Medicago sativa under salt stress conditions. Adult plants inoculated with Sinorhizobium meliloti were treated with 1 µM and 10 µM ABA two days before 200 mM salt addition. Exogenous ABA together with the salt treatment provoked a strong induction of the ABA content in the nodular tissue which alleviated the inhibition induced by salinity in the plant growth and nitrogen fixation. Antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) were induced by ABA pre-treatments under salt stress conditions which together with the reduction of the lipid peroxidation, suggest a role for ABA as signal molecule in the activation of the nodular antioxidant metabolism. Interaction between ABA and polyamines (PAs), described as anti-stress molecules, was studied being detected an induction of the common polyamines spermidine (Spd) and spermine (Spm) levels by ABA under salt stress conditions. In conclusion, ABA pre-treatment improved the nitrogen fixation capacity under salt stress conditions by the induction of the nodular antioxidant defenses which may be mediated by the common PAs Spd and Spm that seems to be involved in the anti-stress response induced by ABA.


Assuntos
Ácido Abscísico/farmacologia , Medicago sativa/microbiologia , Medicago sativa/fisiologia , Salinidade , Sinorhizobium meliloti/fisiologia , Simbiose/efeitos dos fármacos , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Biomassa , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Medicago sativa/efeitos dos fármacos , Medicago sativa/crescimento & desenvolvimento , Fixação de Nitrogênio/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Poliaminas/metabolismo , Prolina/metabolismo , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/enzimologia , Sinorhizobium meliloti/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos
9.
New Phytol ; 202(3): 849-863, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24527680

RESUMO

The symbiotic interaction between legumes and Rhizobiaceae leads to the formation of new root organs called nodules. Within the nodule, Rhizobiaceae differentiate into nitrogen-fixing bacteroids. However, this symbiotic interaction is time-limited as a result of the initiation of a senescence process, leading to a complete degradation of bacteroids and host plant cells. The increase in proteolytic activity is one of the key features of this process. In this study, we analysed the involvement of two different classes of cysteine proteinases, MtCP6 and MtVPE, in the senescence process of Medicago truncatula nodules. Spatiotemporal expression of MtCP6 and MtVPE was investigated using promoter- ß-glucuronidase fusions. Corresponding gene inductions were observed during both developmental and stress-induced nodule senescence. Both MtCP6 and MtVPE proteolytic activities were increased during stress-induced senescence. Down-regulation of both proteinases mediated by RNAi in the senescence zone delayed nodule senescence and increased nitrogen fixation, while their early expression promoted nodule senescence. Using green fluorescent protein fusions, in vivo confocal imaging showed that both proteinases accumulated in the vacuole of uninfected cells or the symbiosomes of infected cells. These data enlighten the crucial role of MtCP6 and MtVPE in the onset of nodule senescence.


Assuntos
Cisteína Endopeptidases/metabolismo , Medicago truncatula/enzimologia , Medicago truncatula/crescimento & desenvolvimento , Papaína/metabolismo , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Catepsina L/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Medicago truncatula/genética , Medicago truncatula/microbiologia , Nitrogênio/farmacologia , Fixação de Nitrogênio/efeitos dos fármacos , Fixação de Nitrogênio/genética , Filogenia , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium/efeitos dos fármacos , Sinorhizobium/fisiologia , Simbiose/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Vacúolos/microbiologia
10.
Planta ; 239(5): 1065-77, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24519544

RESUMO

Peanut (Arachis hypogaea L.) is an important legume providing edible proteins and N2 fixation. However, iron deficiency severely reduces peanut growth in calcareous soils. The maize/peanut intercropping effectively improves iron nutrition and N2 fixation of peanut under pot and field conditions on calcareous soils. However, little was known of how intercropping regulates iron transporters in peanut. We identified AhDMT1 as a Fe(2+) transporter which was highly expressed in mature nodules with stronger N2 fixation capacity. Promoter expression analysis indicated that AhDMT1 was localized in the vascular tissues of both roots and nodules in peanut. Short-term Fe-deficiency temporarily induced an AhDmt1 expression in mature nodules in contrast to roots. However, analysis of the correlation between the complex regulation pattern of AhDmt1 expression and iron nutrition status indicated that sufficient iron supply for long term was a prerequisite for keeping AhDmt1 at a high expression level in both, peanut roots and mature nodules. The AhDmt1 expression in peanut intercropped with maize under 3 years greenhouse experiments was similar to that of peanut supplied with sufficient iron in laboratory experiments. Thus, the positive interspecific effect of intercropping may supply sufficient iron to enhance the expression of AhDmt1 in peanut roots and mature nodules to improve the iron nutrition and N2 fixation in nodules. This study may also serve as a paradigm in which functionally important genes and their ecological significance in intercropping were characterized using a candidate gene approach.


Assuntos
Agricultura , Arachis/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fixação de Nitrogênio , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Sequência de Aminoácidos , Arachis/efeitos dos fármacos , Arachis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Teste de Complementação Genética , Ferro/farmacologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Fixação de Nitrogênio/efeitos dos fármacos , Fixação de Nitrogênio/genética , Nitrogenase/genética , Nitrogenase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/genética , Alinhamento de Sequência , Solo , Fatores de Tempo , Zea mays/efeitos dos fármacos
11.
Plant Physiol ; 163(3): 1179-90, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24082029

RESUMO

Nodule formation induced by nitrogen-fixing rhizobia depends on bacterial nodulation factors (NFs), modified chitin oligosaccharides with a fatty acid moiety. Certain NFs can be cleaved and inactivated by plant chitinases. However, the most abundant NF of Sinorhizobium meliloti, an O-acetylated and sulfated tetramer, is resistant to hydrolysis by all plant chitinases tested so far. Nevertheless, this NF is rapidly degraded in the host rhizosphere. Here, we identify and characterize MtNFH1 (for Medicago truncatula Nod factor hydrolase 1), a legume enzyme structurally related to defense-related class V chitinases (glycoside hydrolase family 18). MtNFH1 lacks chitinase activity but efficiently hydrolyzes all tested NFs of S. meliloti. The enzyme shows a high cleavage preference, releasing exclusively lipodisaccharides from NFs. Substrate specificity and kinetic properties of MtNFH1 were compared with those of class V chitinases from Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum), which cannot hydrolyze tetrameric NFs of S. meliloti. The Michaelis-Menten constants of MtNFH1 for NFs are in the micromolar concentration range, whereas nonmodified chitin oligosaccharides represent neither substrates nor inhibitors for MtNFH1. The three-dimensional structure of MtNFH1 was modeled on the basis of the known structure of class V chitinases. Docking simulation of NFs to MtNFH1 predicted a distinct binding cleft for the fatty acid moiety, which is absent in the class V chitinases. Point mutation analysis confirmed the modeled NF-MtNFH1 interaction. Silencing of MtNFH1 by RNA interference resulted in reduced NF degradation in the rhizosphere of M. truncatula. In conclusion, we have found a novel legume hydrolase that specifically inactivates NFs.


Assuntos
Hidrolases/metabolismo , Medicago truncatula/enzimologia , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/enzimologia , Transdução de Sinais , Sinorhizobium meliloti/metabolismo , Sequência de Aminoácidos , Sequência de Carboidratos , Quitina/química , Quitina/metabolismo , Clonagem Molecular , Interações Hospedeiro-Patógeno , Hidrolases/classificação , Hidrolases/genética , Immunoblotting , Cinética , Medicago truncatula/genética , Medicago truncatula/microbiologia , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Nodulação , Estrutura Terciária de Proteína , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sinorhizobium meliloti/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Simbiose
12.
Protoplasma ; 250(2): 531-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22872095

RESUMO

Ca(2+)-ATPase in the peribacteroid membrane (PBM) of symbiosomes isolated from Vicia faba root nodules was characterized in terms of its hydrolytic and transport activities. Both activities were found to be pH-dependent and exhibit pH optimum at pH 7.0. Translocation of Ca(2+) through the PBM by the Ca(2+)-ATPase was shown to be fueled by ATP and other nucleotide triphosphates in the following order: ATP > ITP ≅ GTP ≅ UTP ≅ CTP, the K m of the enzyme for MgATP being about 100 µM. Ca-dependent ITP-hydrolytic activity of symbiosomes was investigated in the presence of the Ca-EGTA buffer system and showed the affinity of PBM Ca(2+)-ATPase for Ca(2+) of about 0.1 µM. The transport activity of Ca(2+)-ATPase was inhibited by erythrosin B as well as orthovanadate, but markedly stimulated by calmodulin from bovine brain. These results allowed us to conclude that this enzyme belongs to IIB-type Ca(2+)-ATPases which are present in other plant membranes.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/metabolismo , Trifosfato de Adenosina/metabolismo , Antimônio/farmacologia , Transporte Biológico/efeitos dos fármacos , Calmodulina/farmacologia , Citidina Trifosfato/metabolismo , Eritrosina/farmacologia , Guanosina Trifosfato/metabolismo , Inosina Trifosfato/metabolismo , Uridina Trifosfato/metabolismo , Vanadatos/farmacologia
13.
Mol Plant Microbe Interact ; 25(2): 211-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22007601

RESUMO

Two photorespiratory mutants of Lotus japonicus deficient in plastid glutamine synthetase (GS(2)) were examined for their capacity to establish symbiotic association with Mesorhizobium loti bacteria. Biosynthetic glutamine synthetase (GS) activity was reduced by around 40% in crude nodule extracts from mutant plants as compared with the wild type (WT). Western blot analysis further confirmed the lack of GS(2) polypeptide in mutant nodules. The decrease in GS activity affected the nodular carbon metabolism under high CO(2) (suppressed photorespiration) conditions, although mutant plants were able to form nodules and fix atmospheric nitrogen. However, when WT and mutant plants were transferred to an ordinary air atmosphere (photorespiratory active conditions) the nodulation process and nitrogen fixation were substantially affected, particularly in mutant plants. The number and fresh weight of mutant nodules as well as acetylene reduction activity showed a strong inhibition compared with WT plants. Optical microscopy studies from mutant plant nodules revealed the anticipated senescence phenotype linked to an important reduction in starch and sucrose levels. These results show that, in Lotus japonicus, photorespiration and, particularly, GS(2) deficiency result in profound limitations in carbon metabolism that affect the nodulation process and nitrogen fixation.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Lotus/enzimologia , Mesorhizobium/fisiologia , Plastídeos/enzimologia , Nódulos Radiculares de Plantas/enzimologia , Carboidratos/análise , Carbono/metabolismo , Respiração Celular , Regulação da Expressão Gênica de Plantas/fisiologia , Glutamato-Amônia Ligase/genética , Isoenzimas , Lotus/genética , Lotus/microbiologia , Lotus/ultraestrutura , Mutação , Nitrogênio/metabolismo , Fixação de Nitrogênio/fisiologia , Fenótipo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/ultraestrutura , Simbiose
14.
Plant Sci ; 181(2): 151-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21683880

RESUMO

Iron is an important nutrient in N(2)-fixing legume nodules. The demand for this micronutrient increases during the symbiosis establishment, where the metal is utilized for the synthesis of various iron-containing proteins in both the plant and the bacteroid. Unfortunately, in spite of its importance, iron is poorly available to plant uptake since its solubility is very low when in its oxidized form Fe(III). In the present study, the effect of iron deficiency on the activity of some proteins involved in Strategy I response, such as Fe-chelate reductase (FC-R), H(+)-ATPase, and phosphoenolpyruvate carboxylase (PEPC) and the protein level of iron regulated transporter (IRT1) and H(+)-ATPase proteins has been investigated in both roots and nodules of a tolerant (Flamingo) and a susceptible (Coco blanc) cultivar of common bean plants. The main results of this study show that the symbiotic tolerance of Flamingo can be ascribed to a greater increase in the FC-R and H(+)-ATPase activities in both roots and nodules, leading to a more efficient Fe supply to nodulating tissues. The strong increase in PEPC activity and organic acid content, in the Flamingo root nodules, suggests that under iron deficiency nodules can modify their metabolism in order to sustain those activities necessary to acquire Fe directly from the soil solution.


Assuntos
FMN Redutase/metabolismo , Deficiências de Ferro , Proteínas Reguladoras de Ferro/metabolismo , Phaseolus/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico , Ácidos Carboxílicos/análise , Compostos Férricos/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Ferro/análise , Ferro/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio , Phaseolus/enzimologia , Phaseolus/genética , Fosfoenolpiruvato Carboxilase/genética , Doenças das Plantas , ATPases Translocadoras de Prótons/metabolismo , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose
15.
Biochim Biophys Acta ; 1814(4): 496-504, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21256984

RESUMO

Two cDNA clones coding for α-type carbonic anhydrases (CA; EC 4.2.1.1) in the nitrogen-fixing nodules of the model legume Lotus japonicus were identified. Functionality of the full-length proteins was confirmed by heterologous expression in Escherichia coli and purification of the encoded polypeptides. The developmental expression pattern of LjCAA1 and LjCAA2 revealed that both genes code for nodule enhanced carbonic anhydrase isoforms, which are induced early during nodule development. The genes were slightly to moderately down-regulated in ineffective nodules formed by mutant Mesorhizobium loti strains, indicating that these genes may also be involved in biochemical and physiological processes not directly linked to nitrogen fixation/assimilation. The spatial expression profiling revealed that both genes were expressed in nodule inner cortical cells, vascular bundles and central tissue. These results are discussed in the context of the possible roles of CA in nodule carbon dioxide (CO(2)) metabolism.


Assuntos
Anidrases Carbônicas/metabolismo , Lotus/enzimologia , Nódulos Radiculares de Plantas/enzimologia , Sequência de Aminoácidos , Anidrases Carbônicas/química , Anidrases Carbônicas/genética , DNA Complementar/genética , Ensaios Enzimáticos , Regulação da Expressão Gênica de Plantas , Lotus/citologia , Lotus/genética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/genética , Homologia de Sequência de Aminoácidos , Regulação para Cima/genética
16.
Planta ; 228(1): 37-49, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18320213

RESUMO

The biosynthesis of the polyamines spermidine (Spd) and spermine (Spm) from putrescine (Put) is catalysed by the consequent action of two aminopropyltransferases, spermidine synthase (SPDS EC: 2.5.1.16) and spermine synthase (SPMS EC: 2.5.1.22). Two cDNA clones coding for SPDS and SPMS homologues in the nitrogen-fixing nodules of the model legume Lotus japonicus were identified. Functionality of the encoded polypeptides was confirmed by their ability to complement spermidine and spermine deficiencies in yeast. The temporal and spatial expression pattern of the respective genes was correlated with the accumulation of total polyamines in symbiotic and non-symbiotic organs. Expression of both genes was maximal at early stages of nodule development, while at later stages the levels of both transcripts declined. Both genes were expressed in nodule inner cortical cells, vascular bundles, and central tissue. In contrast to gene expression, increasing amounts of Put, Spd, and Spm were found to accumulate during nodule development and after maturity. Interestingly, nodulated plants exhibited systemic changes in both LjSPDS and LjSPMS transcript levels and polyamine content in roots, stem and leaves, in comparison to uninoculated plants. These results give new insights into the neglected role of polyamines during nodule development and symbiotic nitrogen fixation (SNF).


Assuntos
Lotus/genética , Proteínas de Plantas/genética , Espermidina Sintase/genética , Espermina Sintase/genética , Sequência de Aminoácidos , Teste de Complementação Genética , Hibridização In Situ , Lotus/enzimologia , Lotus/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Espermidina Sintase/metabolismo , Espermina Sintase/metabolismo , Transcrição Gênica
17.
J Exp Bot ; 58(5): 1161-71, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17244628

RESUMO

The cDNAs encoding three germin-like proteins (PsGER1, PsGER2a, and PsGER2b) were isolated from Pisum sativum. The coding sequence of PsGER1 transiently expressed in tobacco leaves gave a protein with superoxide dismutase activity but no detectable oxalate oxidase activity according to in-gel activity stains. The transient expression of wheat germin gf-2.8 oxalate oxidase showed oxalate oxidase but no superoxide dismutase activity under the same conditions. The superoxide dismutase activity of PsGER1 was resistant to high temperature, denaturation by detergent, and high concentrations of hydrogen peroxide. In salt-stressed pea roots, a heat-resistant superoxide dismutase activity was observed with an electrophoretic mobility similar to that of the PsGER1 protein, but this activity was below the detection limit in non-stressed or H(2)O(2)-stressed pea roots. Oxalate oxidase activity was not detected in either pea roots or nodules. Following in situ hybridization in developing pea nodules, PsGER1 transcript was detected in expanding cells just proximal to the meristematic zone and also in the epidermis, but to a lesser extent. PsGER1 is the first known germin-like protein with superoxide dismutase activity to be associated with nodules. It shared protein sequence identity with the N-terminal sequence of a putative plant receptor for rhicadhesin, a bacterial attachment protein. However, its primary location in nodules suggests functional roles other than as a rhicadhesin receptor required for the first stage of bacterial attachment to root hairs.


Assuntos
Adesinas Bacterianas/metabolismo , Glicoproteínas/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/química , Nódulos Radiculares de Plantas/enzimologia , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , DNA Complementar/isolamento & purificação , DNA de Plantas/isolamento & purificação , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Glicoproteínas/química , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA