Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuropathol Exp Neurol ; 81(12): 1018-1025, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36137254

RESUMO

Immune-mediated neuropathies are a heterogenous group of inflammatory peripheral nerve disorders. They can be classified according to the domain where the autoimmune process begins: the internode, paranode, or node. However, conventional diagnostic tools, electrodiagnosis (EDX), and autoantibody testing do not fully address this issue. In this institutional cohort study, we investigated the value of dermal myelinated fiber analysis for target domain-based classification. Twenty-seven consecutive patients with immune-mediated neuropathies underwent skin biopsies. The sections were stained with antibodies representative of myelinated fiber domains and were scanned using a confocal microscope. Clinical and pathological features of each patient were reviewed comprehensively. Quantitative morphometric parameters were subjected to clustering analysis, which stratified patients into 3 groups. Cluster 1 ("internodopathy") was characterized by prominent internodal disruption, intact nodes and paranodes, demyelinating EDX pattern, and absence of nodal-paranodal antibodies. Cluster 2 ("paranodopathy") was characterized by paranodal disruption and corresponding antibodies. Morphological changes were restricted to the nodes in cluster 3; we designated this cluster as "nodopathy." This report highlights the utility of skin biopsy as a diagnostic aid to gain pathogenic insight and classify patients with immune-mediated neuropathies.


Assuntos
Doenças do Sistema Nervoso Periférico , Nós Neurofibrosos , Humanos , Nós Neurofibrosos/patologia , Estudos de Coortes , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/patologia , Axônios/patologia , Pele/patologia , Biópsia
2.
J Neurochem ; 158(2): 217-232, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864399

RESUMO

Gangliosides are expressed on plasma membranes throughout the body and enriched in the nervous system. A critical role for complex a- and b-series gangliosides in central and peripheral nervous system ageing has been established through transgenic manipulation of enzymes in ganglioside biosynthesis. Disrupting GalNAc-transferase (GalNAc-T), thus eliminating all a- and b-series complex gangliosides (with consequent over-expression of GM3 and GD3) leads to an age-dependent neurodegeneration. Mice that express only GM3 ganglioside (double knockout produced by crossing GalNAc-T-/- and GD3 synthase-/- mice, Dbl KO) display markedly accelerated neurodegeneration with reduced survival. Degenerating axons and disrupted node of Ranvier architecture are key features of complex ganglioside-deficient mice. Previously, we have shown that reintroduction of both a- and b-series gangliosides into neurons on a global GalNAcT-/- background is sufficient to rescue this age-dependent neurodegenerative phenotype. To determine the relative roles of a- and b-series gangliosides in this rescue paradigm, we herein reintroduced GalNAc-T into neurons of Dbl KO mice, thereby reconstituting a-series but not b-series complex gangliosides. We assessed survival, axon degeneration, axo-glial integrity, inflammatory markers and lipid-raft formation in these Rescue mice compared to wild-type and Dbl KO mice. We found that this neuronal reconstitution of a-series complex gangliosides abrogated the adult lethal phenotype in Dbl KO mice, and partially attenuated the neurodegenerative features. This suggests that whilst neuronal expression of a-series gangliosides is critical for survival during ageing, it is not entirely sufficient to restore complete nervous system integrity in the absence of either b-series or glial a-series gangliosides.


Assuntos
Gangliosídeo G(M3)/metabolismo , Gangliosídeos/metabolismo , Genes Letais/genética , Neurônios/metabolismo , Animais , Axônios/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Inflamação/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , N-Acetilgalactosaminiltransferases/genética , Fenótipo , Nós Neurofibrosos/patologia , Sialiltransferases/genética , Análise de Sobrevida , Polipeptídeo N-Acetilgalactosaminiltransferase
3.
PLoS Biol ; 18(12): e3001008, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315860

RESUMO

Changes to the structure of nodes of Ranvier in the normal-appearing white matter (NAWM) of multiple sclerosis (MS) brains are associated with chronic inflammation. We show that the paranodal domains in MS NAWM are longer on average than control, with Kv1.2 channels dislocated into the paranode. These pathological features are reproduced in a model of chronic meningeal inflammation generated by the injection of lentiviral vectors for the lymphotoxin-α (LTα) and interferon-γ (IFNγ) genes. We show that tumour necrosis factor (TNF), IFNγ, and glutamate can provoke paranodal elongation in cerebellar slice cultures, which could be reversed by an N-methyl-D-aspartate (NMDA) receptor blocker. When these changes were inserted into a computational model to simulate axonal conduction, a rapid decrease in velocity was observed, reaching conduction failure in small diameter axons. We suggest that glial cells activated by pro-inflammatory cytokines can produce high levels of glutamate, which triggers paranodal pathology, contributing to axonal damage and conduction deficits.


Assuntos
Esclerose Múltipla/patologia , Nós Neurofibrosos/patologia , Substância Branca/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Axônios/patologia , Encéfalo/patologia , Sinapses Elétricas/patologia , Sinapses Elétricas/efeitos da radiação , Feminino , Humanos , Inflamação/patologia , Masculino , Microglia/patologia , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Bainha de Mielina/patologia , Neuroglia/patologia , Neuroimunomodulação/imunologia , Neuroimunomodulação/fisiologia , Nós Neurofibrosos/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/imunologia
4.
J Neurol Neurosurg Psychiatry ; 91(6): 650-659, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32245766

RESUMO

OBJECTIVE: To describe the pathological features of Guillain-Barré syndrome focusing on macrophage-associated myelin lesions. METHODS: Longitudinal sections of sural nerve biopsy specimens from 11 patients with acute inflammatory demyelinating polyneuropathy (AIDP) exhibiting macrophage-associated demyelinating lesions were examined using electron microscopy. A total of 1205 nodes of Ranvier were examined to determine the relationship of the macrophage-associated demyelinating lesions with the nodal regions. Additionally, immunohistochemical and immunofluorescent studies were performed to elucidate the sites of complement deposition. RESULTS: Overall, 252 macrophage-associated myelin lesions were identified in longitudinal sections. Of these, 40 lesions exhibited complete demyelination with no association with the lamellar structures of myelin. In 183 lesions, macrophage cytoplasm was located at internodes without association with the nodes of Ranvier or paranodes. In particular, these internodal lesions were more frequent in one patient (152 lesions). In the remaining 29 lesions, the involvement of nodal regions was obvious. Lesions involving nodal regions were more frequently observed than those involving internodes in four patients. Invasion of the macrophage cytoplasmic processes into the space between the paranodal myelin terminal loops and the axolemma from the nodes of Ranvier was observed in three of these patients. Immunostaining suggested complement deposition corresponding to putative initial macrophage-associated demyelinating lesions. CONCLUSIONS: The initial macrophage-associated demyelinating lesions appeared to be located at internodes and at nodal regions. The sites at which the macrophages initiated phagocytosis of myelin might be associated with the location of complement deposition in certain patients with AIDP.


Assuntos
Doenças Desmielinizantes/patologia , Síndrome de Guillain-Barré/patologia , Macrófagos/ultraestrutura , Bainha de Mielina/ultraestrutura , Neurônios/ultraestrutura , Idoso , Axônios/patologia , Axônios/ultraestrutura , Feminino , Humanos , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Bainha de Mielina/patologia , Neurônios/patologia , Nós Neurofibrosos/patologia , Nós Neurofibrosos/ultraestrutura
5.
BMC Neurosci ; 18(1): 62, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806920

RESUMO

BACKGROUND: Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca2+ channel inhibitor Lomerizine (Lom), the Ca2+ permeable AMPA receptor inhibitor YM872 and the P2X7 receptor inhibitor oxATP. RESULTS: Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. CONCLUSIONS: Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs.


Assuntos
Canais de Cálcio/metabolismo , Degeneração Neural/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Receptores de AMPA/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Modelos Animais de Doenças , Feminino , Imidazóis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Degeneração Neural/tratamento farmacológico , Degeneração Neural/etiologia , Degeneração Neural/patologia , Nistagmo Optocinético/efeitos dos fármacos , Nistagmo Optocinético/fisiologia , Traumatismos do Nervo Óptico/complicações , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Piperazinas/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Quinoxalinas/farmacologia , Distribuição Aleatória , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Ratos , Receptores de AMPA/antagonistas & inibidores
6.
J Peripher Nerv Syst ; 22(3): 182-190, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28573768

RESUMO

Paranodal demyelination has been discussed as a potential mechanism of nerve fiber damage in diabetic neuropathy (DNP). Studies on human tissue are limited, as nerve biopsies are invasive and only rarely performed in patients with confirmed DNP. Skin biopsy has recently been suggested as a tool to analyze paranodal and nodal changes of myelinated fibers. We analyzed the myelinated fibers of skin biopsies of 35 patients with DNP, 17 patients with diabetes mellitus (DM) without neuropathy, and 30 normal controls. Immunofluorescence of skin sections with antibodies against Caspr, neurofascin, sodium channels, and myelin basic protein was performed to assess paranodal/nodal architecture, segmental demyelination, and myelinated nerve fibers. Staining with antibodies against protein gene product 9.5 was used to quantify unmyelinated nerve fibers. There was an increase of elongated Ranvier nodes and a dispersion of neurofascin at the distal leg in patients with DM with and without neuropathy and at the finger in patients with DNP. An increased dispersion of Caspr was only found in biopsies of the finger in patients with DNP. Skin biopsy may be an appropriate tool to analyze nodes of Ranvier in patients with DM. Structural nodal changes are detectable in DNP and even in diabetic patients without neuropathy.


Assuntos
Diabetes Mellitus/patologia , Fibras Nervosas Mielinizadas/patologia , Nós Neurofibrosos/patologia , Pele/inervação , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estatísticas não Paramétricas
7.
Exp Neurol ; 291: 134-140, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28214515

RESUMO

Autoantibodies binding to peripheral nerves followed by complement deposition and membrane attack complex formation results in nerve damage in Guillain-Barré syndrome (GBS). Strategies to remove the pathogenic autoantibodies or block the complement deposition benefit most patients with GBS. Immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS) is a cysteine protease which cleaves IgG antibodies into F(ab')2 and Fc fragments. In this study, using a rabbit model of axonal GBS, acute motor axonal neuropathy (AMAN), we demonstrated that IdeS treatment significantly reduced the disruption of Nav channels as well as activated C3 deposition at the anterior spinal root nodes of Ranvier in AMAN rabbits. IdeS significantly promoted the clinical recovery of AMAN rabbits and there were significant lower frequencies of axonal degeneration in anterior spinal roots of AMAN rabbits with IdeS treatment compared to the saline controls. Our data support that IdeS treatment is a promising therapeutic strategy for GBS.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Bactérias/uso terapêutico , Síndrome de Guillain-Barré/terapia , Imunoglobulina G/uso terapêutico , Animais , Autoanticorpos , Complemento C3/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Gangliosídeo G(M1)/imunologia , Síndrome de Guillain-Barré/imunologia , Imunoglobulina G/sangue , Condução Nervosa/fisiologia , Coelhos , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Canais de Sódio/metabolismo , Estatísticas não Paramétricas , Fatores de Tempo
8.
J Neurol Neurosurg Psychiatry ; 88(6): 465-473, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28073817

RESUMO

OBJECTIVE: To investigate the morphological features of chronic inflammatory demyelinating polyneuropathy (CIDP) with autoantibodies directed against paranodal junctional molecules, particularly focusing on the fine structures of the paranodes. METHODS: We assessed sural nerve biopsy specimens obtained from 9 patients with CIDP with anti-neurofascin-155 antibodies and 1 patient with anti-contactin-1 antibodies. 13 patients with CIDP without these antibodies were also examined to compare pathological findings. RESULTS: Characteristic light and electron microscopy findings in transverse sections from patients with anti-neurofascin-155 and anti-contactin-1 antibodies indicated a slight reduction in myelinated fibre density, with scattered myelin ovoids, and the absence of macrophage-mediated demyelination or onion bulbs. Teased-fibre preparations revealed that segmental demyelination tended to be found in patients with relatively higher frequencies of axonal degeneration and was tandemly found at consecutive nodes of Ranvier in a single fibre. Assessment of longitudinal sections by electron microscopy revealed that detachment of terminal myelin loops from the axolemma was frequently found at the paranode in patients with anti-neurofascin-155 and anti-contactin-1 antibody-positive CIDP compared with patients with antibody-negative CIDP. Patients with anti-neurofascin-155 antibodies showed a positive correlation between the frequencies of axo-glial detachment at the paranode and axonal degeneration, as assessed by teased-fibre preparations (p<0.05). CONCLUSIONS: Paranodal dissection without classical macrophage-mediated demyelination is the characteristic feature of patients with CIDP with autoantibodies to paranodal axo-glial junctional molecules.


Assuntos
Autoanticorpos/análise , Axônios/patologia , Moléculas de Adesão Celular/imunologia , Contactina 1/imunologia , Bainha de Mielina/patologia , Fatores de Crescimento Neural/imunologia , Neuroglia/patologia , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/patologia , Nós Neurofibrosos/patologia , Nervo Sural/patologia , Adolescente , Adulto , Idoso , Axônios/imunologia , Biópsia , Feminino , Humanos , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Bainha de Mielina/imunologia , Neuroglia/imunologia , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/imunologia , Nós Neurofibrosos/imunologia , Células de Schwann/imunologia , Células de Schwann/patologia , Nervo Sural/imunologia , Adulto Jovem
9.
J Neurosci ; 36(35): 9148-60, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581456

RESUMO

UNLABELLED: Action potential initiation and propagation in myelinated axons require ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Disruption of these domains after injury impairs nervous system function. Traditionally, injured CNS axons are considered refractory to regeneration, but some recent approaches challenge this view by showing robust long-distance regeneration. However, whether these approaches allow remyelination and promote the reestablishment of AIS and nodes of Ranvier is unknown. Using mouse optic nerve crush as a model for CNS traumatic injury, we performed a detailed analysis of AIS and node disruption after nerve crush. We found significant disruption of AIS and loss of nodes within days of the crush, and complete loss of nodes 1 week after injury. Genetic deletion of the tumor suppressor phosphatase and tensin homolog (Pten) in retinal ganglion cells (RGCs), coupled with stimulation of RGCs by inflammation and cAMP, dramatically enhanced regeneration. With this treatment, we found significant reestablishment of RGC AIS, remyelination, and even reassembly of nodes in regions proximal, within, and distal to the crush site. Remyelination began near the retina, progressed distally, and was confirmed by electron microscopy. Although axons grew rapidly, remyelination and nodal ion channel clustering was much slower. Finally, genetic deletion of ankyrinG from RGCs to block AIS reassembly did not affect axon regeneration, indicating that preservation of neuronal polarity is not required for axon regeneration. Together, our results demonstrate, for the first time, that regenerating CNS axons can be remyelinated and reassemble new AIS and nodes of Ranvier. SIGNIFICANCE STATEMENT: We show, for the first time, that regenerated CNS axons have the capacity to both remyelinate and reassemble the axon initial segments and nodes of Ranvier necessary for rapid and efficient action potential propagation.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Doenças do Nervo Óptico/patologia , Doenças do Nervo Óptico/fisiopatologia , Animais , Anquirinas/genética , Anquirinas/metabolismo , Axônios/ultraestrutura , Moléculas de Adesão Celular Neuronais , Toxina da Cólera/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Regeneração Nervosa/genética , Proteínas do Tecido Nervoso/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Nós Neurofibrosos/ultraestrutura , Espectrina/metabolismo , Estatísticas não Paramétricas , Fatores de Tempo
10.
J Exp Med ; 211(8): 1533-49, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25002752

RESUMO

In the human disorder multiple sclerosis (MS) and in the model experimental autoimmune encephalomyelitis (EAE), macrophages predominate in demyelinated areas and their numbers correlate to tissue damage. Macrophages may be derived from infiltrating monocytes or resident microglia, yet are indistinguishable by light microscopy and surface phenotype. It is axiomatic that T cell-mediated macrophage activation is critical for inflammatory demyelination in EAE, yet the precise details by which tissue injury takes place remain poorly understood. In the present study, we addressed the cellular basis of autoimmune demyelination by discriminating microglial versus monocyte origins of effector macrophages. Using serial block-face scanning electron microscopy (SBF-SEM), we show that monocyte-derived macrophages associate with nodes of Ranvier and initiate demyelination, whereas microglia appear to clear debris. Gene expression profiles confirm that monocyte-derived macrophages are highly phagocytic and inflammatory, whereas those arising from microglia demonstrate an unexpected signature of globally suppressed cellular metabolism at disease onset. Distinguishing tissue-resident macrophages from infiltrating monocytes will point toward new strategies to treat disease and promote repair in diverse inflammatory pathologies in varied organs.


Assuntos
Sistema Nervoso Central/patologia , Inflamação/patologia , Microglia/patologia , Monócitos/patologia , Animais , Receptor 1 de Quimiocina CX3C , Forma Celular , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Homeostase/genética , Humanos , Inflamação/genética , Cinética , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/ultraestrutura , Monócitos/ultraestrutura , Nós Neurofibrosos/patologia , Receptores CCR2/metabolismo , Receptores de Quimiocinas/metabolismo , Transdução de Sinais/genética , Fatores de Tempo
11.
Neuropharmacology ; 85: 417-26, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24950451

RESUMO

Ciguatoxins, mainly produced by benthic dinoflagellate Gambierdiscus species, are responsible for a complex human poisoning known as ciguatera. Previous pharmacological studies revealed that these toxins activate voltage-gated Na+ channels. In frog nodes of Ranvier, ciguatoxins induce spontaneous and repetitive action potentials (APs) and increase axonal volume that may explain alterations of nerve functioning in intoxicated humans. The present study aimed determining the ionic mechanisms involved in Pacific ciguatoxin-1B (P-CTX-1B)-induced membrane hyperexcitability and subsequent volume increase in frog nodes of Ranvier, using electrophysiology and confocal microscopy. The results reveal that P-CTX-1B action is not dependent on external Cl- ions since it was not affected by substituting Cl- by methylsulfate ions. In contrast, substitution of external Na+ by Li+ ions suppressed spontaneous APs and prevented nodal swelling. This suggests that P-CTX-1B-modified Na+ channels are not selective to Li+ ions and/or are blocked by these ions, and that Na+ influx through Na+ channels opened during spontaneous APs is required for axonal swelling. The fact that the K+ channel blocker tetraethylammonium modified, but did not suppress, spontaneous APs and greatly reduced nodal swelling induced by P-CTX-1B indicates that K+ efflux might also be involved. This is supported by the fact that P-CTX-1B, when tested in the presence of both tetraethylammonium and the K+ ionophore valinomycin, produced the characteristic nodal swelling. It is concluded that, during the action of P-CTX-1B, water movements responsible for axonal swelling depend on both Na+ influx and K+ efflux. These results pave the way for further studies regarding ciguatera treatment.


Assuntos
Axônios/efeitos dos fármacos , Ciguatoxinas/toxicidade , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Potássio/metabolismo , Sódio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Axônios/patologia , Axônios/fisiologia , Linhagem Celular Tumoral , Cloretos/metabolismo , Ciguatoxinas/química , Íons/metabolismo , Lítio/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/fisiologia , Canais de Potássio/metabolismo , Rana esculenta , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/patologia , Nós Neurofibrosos/fisiologia , Ratos , Canais de Sódio/metabolismo
12.
Muscle Nerve ; 50(2): 262-72, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24282080

RESUMO

INTRODUCTION: Skin-derived precursor cells (SKPs) are neural crest progenitor cells that can attain a Schwann cell-like phenotype through in vitro techniques (SKP-SCs). We hypothesized that SKP-SCs could produce mature myelin and, in doing so, facilitate the recovery of a focal demyelination injury. METHODS: We unilaterally injected DiI-labeled, green fluorescent protein (GFP)-producing SKP-SCs into the tibial nerves of 10 adult Lewis rats (with contralateral media control), 9 days after bilateral doxorubicin injury (0.38 µg). Tibial compound motor action potentials (CMAPs) were followed for 57 days. A separate morphometric cohort also included a Schwann cell injection group. RESULTS: SKP-injected nerves recovered fastest in terms of electrophysiology and morphometry. SKP-SCs formed morphologically mature myelin, accounting for 15.3 ± 5.3% of the total myelin in SKP-SC-injected nerves. CONCLUSIONS: SKP-SCs are robustly capable of myelination. They improve the recovery of a focal tibial nerve demyelination model by myelinating a measured percentage of axons.


Assuntos
Transplante de Células-Tronco de Sangue Periférico/métodos , Polirradiculoneuropatia/cirurgia , Células de Schwann/fisiologia , Pele/citologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Antibióticos Antineoplásicos/toxicidade , Células Cultivadas , Modelos Animais de Doenças , Doxorrubicina/toxicidade , Potencial Evocado Motor/fisiologia , Masculino , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Proteínas de Neurofilamentos/metabolismo , Polirradiculoneuropatia/induzido quimicamente , Polirradiculoneuropatia/fisiopatologia , Nós Neurofibrosos/patologia , Nós Neurofibrosos/ultraestrutura , Ratos , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Células de Schwann/ultraestrutura
13.
Neuropharmacology ; 75: 380-90, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23958451

RESUMO

Following neurotrauma, cells beyond the initial trauma site undergo secondary degeneration, with excess Ca2+ a likely trigger for loss of neurons, compact myelin and function. Treatment using inhibitors of specific Ca2+ channels has shown promise in preclinical studies, but clinical trials have been disappointing and combinatorial approaches are needed. We assessed efficacy of multiple combinations of three Ca2+ channel inhibitors at reducing secondary degeneration following partial optic nerve transection in rat. We used lomerizine to inhibit voltage gated Ca2+ channels; oxidised adenosine-triphosphate (oxATP) to inhibit purinergic P2X7 receptors and/or 2-[7-(1H-imidazol-1-yl)-6-nitro-2,3-dioxo-1,2,3,4-tetrahydro quinoxalin-1-yl]acetic acid (INQ) to inhibit Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Only the three Ca2+ channel inhibitors delivered in combination significantly preserved visual function, as assessed using the optokinetic nystagmus visual reflex, at 3 months after injury. Preservation of retinal ganglion cells was partial and is unlikely to have accounted for differential effects on function. A range of the Ca2+ channel inhibitor combinations prevented swelling of optic nerve vulnerable to secondary degeneration. Each of the treatments involving lomerizine significantly increased the proportion of axons with normal compact myelin. Nevertheless, limiting decompaction of myelin was not sufficient for preservation of function in our model. Multiple combinations of Ca2+ channel inhibitors reduced formation of atypical node/paranode complexes; outcomes were not associated with preservation of visual function. However, prevention of lengthening of the paranodal gap that was only achieved by treatment with the three Ca2+ channel inhibitors in combination was an important additional effect that likely contributed to the associated preservation of the optokinetic reflex using this combinatorial treatment strategy.


Assuntos
Bloqueadores dos Canais de Cálcio/uso terapêutico , Degeneração Neural/tratamento farmacológico , Degeneração Neural/etiologia , Traumatismos do Nervo Óptico/complicações , Trifosfato de Adenosina/uso terapêutico , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Modelos Animais de Doenças , Combinação de Medicamentos , Feminino , Espectroscopia de Ressonância Magnética , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/metabolismo , Nistagmo Optocinético/efeitos dos fármacos , Nervo Óptico/patologia , Nervo Óptico/ultraestrutura , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/patologia , Papiledema/etiologia , Papiledema/prevenção & controle , Piperazinas/uso terapêutico , Nós Neurofibrosos/patologia , Nós Neurofibrosos/ultraestrutura , Ratos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/ultraestrutura , Tetra-Hidroisoquinolinas/farmacologia , Trítio
14.
Neurobiol Dis ; 58: 281-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23816754

RESUMO

Mitochondrial defects can have significant consequences on many aspects of neuronal physiology. In particular, deficiencies in the first enzyme complex of the mitochondrial respiratory chain (complex I) are considered to be involved in a number of human neurodegenerative diseases. The current work highlights a tight correlation between the inhibition of complex I and the state of axonal myelination of the optic nerve. Exposing the visual pathway of rats to rotenone, a complex I inhibitor, resulted in disorganization of the node of Ranvier. The structure and function of the node depend on specific cell adhesion molecules, among others, CASPR (contactin associated protein) and contactin. CASPR and contactin are both on the axonal surfaces and need to be associated to be able to anchor their myelin counterpart. Here we show that inhibition of mitochondrial complex I by rotenone in rats induces reactive oxygen species, disrupts the interaction of CASPR and contactin couple, and thus damages the organization and function of the node of Ranvier. Demyelination of the optic nerve occurs as a consequence which is accompanied by a loss of vision. The physiological impairment could be reversed by introducing an alternative NADH dehydrogenase to the mitochondria of the visual system. The restoration of the nodal structure was specifically correlated with visual recovery in the treated animal.


Assuntos
Doenças Desmielinizantes/patologia , Complexo I de Transporte de Elétrons/metabolismo , Nervo Óptico/patologia , Nós Neurofibrosos/patologia , Animais , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Contagem de Células , Contactinas/genética , Contactinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Inseticidas/farmacologia , Masculino , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nervo Óptico/efeitos dos fármacos , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/ultraestrutura , Ratos , Ratos Long-Evans , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Fatores de Tempo , Vias Visuais/efeitos dos fármacos , Vias Visuais/metabolismo , Vias Visuais/ultraestrutura
15.
J Peripher Nerv Syst ; 18(2): 168-76, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23781964

RESUMO

Cutaneous nerves represent the most distal part of the sensory nervous system. We took advantage of the good discernibility of longitudinal myelinated fibers in skin biopsies to analyze the distribution of nodal and paranodal proteins in neuropathies and to assess nodal disorganization as a diagnostic marker of demyelinating neuropathy (NP). We analyzed myelinated nerve fibers in skin biopsies from the finger and the proximal leg of 52 prospectively recruited patients with different peripheral neuropathies and 17 controls. We performed immunohistochemical double labeling with anti-MBP, anti-PGP9.5, anti-caspr, anti-pan-neurofascin, and anti-pan-sodium-channel. Three potential features of demyelinating NP could be established: elongated nodes of Ranvier and dispersion of contactin-associated protein (caspr) staining were found more often in demyelinating than in axonal neuropathies (p < 0.05) and were not detectable in normal controls. Broadening of neurofascin staining was detectable more often in demyelinating neuropathies compared with normal controls (p < 0.05). Our data suggest that pathological changes of nodal architecture can be visualized in skin biopsies and that the detection of elongated nodes of Ranvier and alterations in the distribution of paranodal proteins may be useful in the diagnostic assessment of peripheral NP.


Assuntos
Doenças Desmielinizantes/patologia , Doenças do Sistema Nervoso Periférico/patologia , Nós Neurofibrosos/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Doenças Desmielinizantes/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Doenças do Sistema Nervoso Periférico/metabolismo , Nós Neurofibrosos/metabolismo , Pele/inervação , Pele/patologia , Adulto Jovem
16.
J Neurol ; 259(9): 1879-87, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22310941

RESUMO

Given the availability of effective but costly treatment for acquired demyelinating neuropathies, biomarkers for these disorders are urgently needed. Here we aimed to quantify morphological abnormalities of myelinated fibers in skin biopsies from the proximal leg of patients with neuropathies to determine a potential diagnostic role of this method. We used double immunofluorescence to detect myelinated and unmyelinated fibers in thigh skin from 81 patients with polyneuropathy, 19 patients with small fiber neuropathy, and 25 controls. Dermal myelinated fibers were reduced 6.8-fold in patients with polyneuropathy (p < 0.0001). The number of dermal nerve bundles with myelinated fibers was reduced 2.7-fold (p = 0.0025). In small fiber neuropathy, myelinated fibers in dermal nerve bundles were only reduced in the length-dependent type, indicating that this subgroup may represent an early stage of generalized polyneuropathy. Elongated nodes of Ranvier were detectable in demyelinating neuropathies only. Our data suggest that changes in the number and morphology of myelinated fibers in the proximal leg can confirm the diagnosis of neuropathy, and may help to distinguish between demyelinating and axonal neuropathy, and to differentiate pure small fiber neuropathy from early polyneuropathy.


Assuntos
Biópsia , Fibras Nervosas Mielinizadas/patologia , Polineuropatias/patologia , Pele/inervação , Adolescente , Adulto , Idoso , Feminino , Humanos , Indóis , Masculino , Pessoa de Meia-Idade , Proteína Básica da Mielina/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Polineuropatias/metabolismo , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Estudos Retrospectivos , Pele/patologia , Estatísticas não Paramétricas , Ubiquitina Tiolesterase/metabolismo , Adulto Jovem
17.
Muscle Nerve ; 45(3): 403-11, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22334175

RESUMO

INTRODUCTION: The neurotoxic side effects of oxaliplatin (a reference drug in the treatment of digestive tract tumors) can force suspension of treatment. The mechanisms of neuropathy are unclear. We aimed to simulate oxaliplatin-induced hyperactivity in myelinated axons (MA) based on published experimental data. METHODS: A Hodgkin-Huxley-type multi-cable MA model was used, which took into account active internodal processes and accumulation of ions in MA with 21 nodes. RESULTS: Even a very short (110-220 µm) internodal region devoid of potassium channels was sufficient to produce after-discharges in response to a saltatory action potential. An increase in the density of sodium channels, slowdown of their inactivation, and negative shifts along one node-internode region of the voltage dependence of sodium and potassium activation and of sodium inactivation induced no after-discharge. CONCLUSION: A combination of sodium channel blockers with drugs that obstruct the blockage of potassium channels or contribute to their opening could be effective in preventing oxaliplatin-induced "hyperexcitability."


Assuntos
Modelos Biológicos , Compostos Organoplatínicos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Canais de Potássio/deficiência , Potenciais de Ação/efeitos dos fármacos , Simulação por Computador , Estimulação Elétrica , Humanos , Bainha de Mielina/efeitos dos fármacos , Oxaliplatina , Doenças do Sistema Nervoso Periférico/patologia , Nós Neurofibrosos/patologia , Canais de Sódio/metabolismo
18.
J Neurosci ; 32(6): 2100-9, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22323722

RESUMO

New CNS neurons and glia are generated throughout adulthood from endogenous neural stem and progenitor cells. These progenitors can respond to injury, but their ability to proliferate, migrate, differentiate, and survive is usually insufficient to replace lost cells and restore normal function. Potentiating the progenitor response with exogenous factors is an attractive strategy for the treatment of nervous system injuries and neurodegenerative and demyelinating disorders. Previously, we reported that delivery of leukemia inhibitory factor (LIF) to the CNS stimulates the self-renewal of neural stem cells and the proliferation of parenchymal glial progenitors. Here we identify these parenchymal glia as oligodendrocyte (OL) progenitor cells (OPCs) and show that LIF delivery stimulates their proliferation through the activation of gp130 receptor signaling within these cells. Importantly, this effect of LIF on OPC proliferation can be harnessed to enhance the generation of OLs that express myelin proteins and reform nodes of Ranvier in the context of chronic demyelination in the adult mouse hippocampus. Our findings, considered together with the known beneficial effects of LIF on OL and neuron survival, suggest that LIF has both reparative and protective activities that make it a promising potential therapy for CNS demyelinating disorders and injuries.


Assuntos
Proliferação de Células , Hipocampo/fisiologia , Fator Inibidor de Leucemia/fisiologia , Bainha de Mielina/metabolismo , Oligodendroglia/fisiologia , Células-Tronco/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Hipocampo/citologia , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Bainha de Mielina/patologia , Neurogênese/fisiologia , Oligodendroglia/patologia , Nós Neurofibrosos/patologia , Nós Neurofibrosos/fisiologia , Células-Tronco/patologia
19.
Mol Pain ; 7: 58, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21838927

RESUMO

BACKGROUND: Modulation of M-type currents has been proposed as a new strategy for the treatment of neuropathic pain due to their role in regulating neuronal excitability. Using electrophysiological techniques we showed previously that the opening of Kv7 channels with retigabine, blocked ectopic discharges from axotomized fibers but did not alter transduction at intact skin afferents. We hypothesized that after nerve damage, accumulation of Kv7 channels in afferent fibers may increase M-type currents which then acquired a more important role at regulating fiber excitability. FINDINGS: In this study, we used an immunohistochemical approach to examine patterns of expression of Kv7.2 channels in afferent fibers after axotomy and compared them to patterns of expression of voltage gated Na+ channels (Nav) which are key electrogenic elements in peripheral axons known to accumulate in experimental and human neuromas.Axotomy induced an enlargement and narrowing of the nodes of Ranvier at the proximal end of the neuroma together with a dramatic demyelination and loss of structure at its distal end in which naked accumulations of Nav were present. In addition, axotomy also induced accumulations of Kv7.2 that co-localized with those of Nav channels. CONCLUSIONS: Whilst Nav channels are mandatory for initiation of action potentials, (i.e. responsible for the generation/propagation of ectopic discharges) an increased accumulation of Kv7.2 channels after axotomy may represent a homeostatic compensation to over excitability in axotomized fibers, opening a window for a peripheral action of M-current modulators under conditions of neuropathy.


Assuntos
Canal de Potássio KCNQ2/metabolismo , Terminações Nervosas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroma/metabolismo , Neuroma/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Axotomia , Camundongos , Terminações Nervosas/patologia , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Canais de Sódio/metabolismo
20.
PLoS One ; 6(1): e14533, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21267074

RESUMO

Chronic acquired neuropathies of unknown origin are classified as chronic inflammatory demyelinating polyneuropathies (CIDP) and chronic idiopathic axonal polyneuropathies (CIAP). The diagnosis can be very difficult, although it has important therapeutic implications since CIDP can be improved by immunomodulating treatment. The aim of this study was to examine the possible abnormalities of nodal and paranodal regions in these two types of neuropathies. Longitudinal sections of superficial peroneal nerves were obtained from biopsy material from 12 patients with CIDP and 10 patients with CIAP and studied by immunofluorescence and in some cases electron microscopy. Electron microscopy revealed multiple alterations in the nodal and paranodal regions which predominated in Schwann cells in CIDP and in axons in CIAP. In CIDP paranodin/Caspr immunofluorescence was more widespread than in control nerves, extending along the axon in internodes where it appeared intense. Nodal channels Nav and KCNQ2 were less altered but were also detected in the internodes. In CIAP paranodes, paranodin labeling was irregular and/or decreased. To test the consequences of acquired primary Schwann cells alteration on axonal proteins, we used a mouse model based on induced deletion of the transcription factor Krox-20 gene. In the demyelinated sciatic nerves of these mice we observed alterations similar to those found in CIDP by immunofluorescence, and immunoblotting demonstrated increased levels of paranodin. Finally we examined whether the alterations in paranodin immunoreactivity could have a diagnosis value. In a sample of 16 biopsies, the study of paranodin immunofluorescence by blind evaluators led to correct diagnosis in 70 ± 4% of the cases. This study characterizes for the first time the abnormalities of nodes of Ranvier in CIAP and CIDP, and the altered expression and distribution of nodal and paranodal proteins. Marked differences were observed between CIDP and CIAP and the alterations in paranodin immunofluorescence may be an interesting tool for their differential diagnosis.


Assuntos
Polineuropatias/patologia , Nós Neurofibrosos/patologia , Animais , Axônios , Moléculas de Adesão Celular Neuronais/análise , Doença Crônica , Imunofluorescência , Humanos , Camundongos , Microscopia Eletrônica , Proteínas do Tecido Nervoso/análise , Células de Schwann/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA