Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.391
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(7): 2748-2762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725859

RESUMO

Abnormal nuclear enlargement is a diagnostic and physical hallmark of malignant tumors. Large nuclei are positively associated with an increased risk of developing metastasis; however, a large nucleus is inevitably more resistant to cell migration due to its size. The present study demonstrated that the nuclear size of primary colorectal cancer (CRC) cells at an advanced stage was larger than cells at an early stage. In addition, the nuclei of CRC liver metastases were larger than those of the corresponding primary CRC tissues. CRC cells were sorted into large-nucleated cells (LNCs) and small-nucleated cells (SNCs). Purified LNCs exhibited greater constricted migratory and metastatic capacity than SNCs in vitro and in vivo. Mechanistically, ErbB4 was highly expressed in LNCs, which phosphorylated lamin A/C at serine 22 via the ErbB4-Akt1 signaling pathway. Furthermore, the level of phosphorylated lamin A/C was a negative determinant of nuclear stiffness. Taken together, CRC LNCs possessed greater constricted migratory and metastatic potential than SNCs due to ErbB4-Akt1-mediated lamin A/C phosphorylation and nuclear softening. These results may provide a potential treatment strategy for tumor metastasis by targeting nuclear stiffness in patients with cancer, particularly CRC.


Assuntos
Neoplasias Colorretais , Lamina Tipo A , Proteínas Proto-Oncogênicas c-akt , Receptor ErbB-4 , Transdução de Sinais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Receptor ErbB-4/metabolismo , Receptor ErbB-4/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lamina Tipo A/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Núcleo Celular/metabolismo , Movimento Celular , Masculino , Feminino , Fosforilação , Metástase Neoplásica , Camundongos Nus
2.
J Nanobiotechnology ; 22(1): 261, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760744

RESUMO

Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.


Assuntos
Diferenciação Celular , Histona Desacetilases , Células-Tronco Mesenquimais , Nanopartículas , Animais , Camundongos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Diferenciação Celular/efeitos dos fármacos , Histona Desacetilases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoblastos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Masculino , Regeneração Óssea/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Núcleo Celular/metabolismo , Consolidação da Fratura/efeitos dos fármacos , Humanos , Proteínas de Membrana
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732093

RESUMO

The chromatin organization and its dynamic remodeling determine its accessibility and sensitivity to DNA damage oxidative stress, the main source of endogenous DNA damage. We studied the role of the VRK1 chromatin kinase in the response to oxidative stress. which alters the nuclear pattern of histone epigenetic modifications and phosphoproteome pathways. The early effect of oxidative stress on chromatin was studied by determining the levels of 8-oxoG lesions and the alteration of the epigenetic modification of histones. Oxidative stress caused an accumulation of 8-oxoG DNA lesions that were increased by VRK1 depletion, causing a significant accumulation of DNA strand breaks detected by labeling free 3'-DNA ends. In addition, oxidative stress altered the pattern of chromatin epigenetic marks and the nuclear phosphoproteome pathways that were impaired by VRK1 depletion. Oxidative stress induced the acetylation of H4K16ac and H3K9 and the loss of H3K4me3. The depletion of VRK1 altered all these modifications induced by oxidative stress and resulted in losses of H4K16ac and H3K9ac and increases in the H3K9me3 and H3K4me3 levels. All these changes were induced by the oxidative stress in the epigenetic pattern of histones and impaired by VRK1 depletion, indicating that VRK1 plays a major role in the functional reorganization of chromatin in the response to oxidative stress. The analysis of the nuclear phosphoproteome in response to oxidative stress detected an enrichment of the phosphorylated proteins associated with the chromosome organization and chromatin remodeling pathways, which were significantly decreased by VRK1 depletion. VRK1 depletion alters the histone epigenetic pattern and nuclear phosphoproteome pathways in response to oxidative stress. The enzymes performing post-translational epigenetic modifications are potential targets in synthetic lethality strategies for cancer therapies.


Assuntos
Epigênese Genética , Histonas , Estresse Oxidativo , Proteínas Serina-Treonina Quinases , Humanos , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteoma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Dano ao DNA , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Linhagem Celular Tumoral , Acetilação , Processamento de Proteína Pós-Traducional
4.
Nat Commun ; 15(1): 3901, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724505

RESUMO

Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.


Assuntos
Citoplasma , Inibidor de NF-kappaB alfa , NF-kappa B , Proteínas Tirosina Quinases , Fator de Transcrição RelA , Animais , Fosforilação , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/genética , Camundongos , Fator de Transcrição RelA/metabolismo , Humanos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , NF-kappa B/metabolismo , Citoplasma/metabolismo , Proteólise , Núcleo Celular/metabolismo , Replicação Viral , Células HEK293 , Transdução de Sinais , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Serina-Treonina Quinases
5.
Nat Commun ; 15(1): 4328, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773155

RESUMO

Parental experiences can affect the phenotypic plasticity of offspring. In locusts, the population density that adults experience regulates the number and hatching synchrony of their eggs, contributing to locust outbreaks. However, the pathway of signal transmission from parents to offspring remains unclear. Here, we find that transcription factor Forkhead box protein N1 (FOXN1) responds to high population density and activates the polypyrimidine tract-binding protein 1 (Ptbp1) in locusts. FOXN1-PTBP1 serves as an upstream regulator of miR-276, a miRNA to control egg-hatching synchrony. PTBP1 boosts the nucleo-cytoplasmic transport of pre-miR-276 in a "CU motif"-dependent manner, by collaborating with the primary exportin protein exportin 5 (XPO5). Enhanced nuclear export of pre-miR-276 elevates miR-276 expression in terminal oocytes, where FOXN1 activates Ptbp1 and leads to egg-hatching synchrony in response to high population density. Additionally, PTBP1-prompted nuclear export of pre-miR-276 is conserved in insects, implying a ubiquitous mechanism to mediate transgenerational effects.


Assuntos
Transporte Ativo do Núcleo Celular , Gafanhotos , MicroRNAs , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Gafanhotos/genética , Gafanhotos/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Óvulo/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Núcleo Celular/metabolismo , Oócitos/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(19): e2401341121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696466

RESUMO

Neurotropic alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), recruit microtubule motor proteins to invade cells. The incoming viral particle traffics to nuclei in a two-step process. First, the particle uses the dynein-dynactin motor to sustain transport to the centrosome. In neurons, this step is responsible for long-distance retrograde axonal transport and is an important component of the neuroinvasive property shared by these viruses. Second, a kinesin-dependent mechanism redirects the particle from the centrosome to the nucleus. We have reported that the kinesin motor used during the second step of invasion is assimilated into nascent virions during the previous round of infection. Here, we report that the HSV-1 pUL37 tegument protein suppresses the assimilated kinesin-1 motor during retrograde axonal transport. Region 2 (R2) of pUL37 was required for suppression and functioned independently of the autoinhibitory mechanism native to kinesin-1. Furthermore, the motor domain and proximal coiled coil of kinesin-1 were sufficient for HSV-1 assimilation, pUL37 suppression, and nuclear trafficking. pUL37 localized to the centrosome, the site of assimilated kinesin-1 activation during infection, when expressed in cells in the absence of other viral proteins; however, pUL37 did not suppress kinesin-1 in this context. These results indicate that the pUL37 tegument protein spatially and temporally regulates kinesin-1 via the amino-terminal motor region in the context of the incoming viral particle.


Assuntos
Herpesvirus Humano 1 , Cinesinas , Proteínas Estruturais Virais , Cinesinas/metabolismo , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/metabolismo , Humanos , Animais , Transporte Axonal/fisiologia , Chlorocebus aethiops , Centrossomo/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Células Vero , Núcleo Celular/metabolismo , Núcleo Celular/virologia
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167224, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723872

RESUMO

BACKGROUND: Pentamethylquercetin (PMQ) is a natural polymethyl flavonoid that possesses anti-apoptotic and other biological properties. Abdominal aortic aneurysm (AAA), a fatal vascular disease with a high risk of rupture, is associated with phenotypic switching and apoptosis of medial vascular smooth muscle cells (VSMCs). This study aimed to investigate the protective effects of PMQ on the development of AAA and the underlying mechanism. METHODS: ApoE-/- mice were continuously infused with angiotensin II (Ang II) for 4 weeks to develop the AAA model. Intragastric administration of PMQ was initiated 5 days before Ang II infusion and continued for 4 weeks. In vitro, VSMCs were cultured and pretreated with PMQ, stimulated with Ang II. Real-time PCR, western blotting, and immunofluorescence staining were used to examine the roles and mechanisms of PMQ on the phenotypic switching and apoptosis of VSMCs. RESULTS: PMQ dose-dependently reduced the incidence of Ang II-induced AAA, aneurysm diameter enlargement, elastin degradation, VSMCs phenotypic switching and apoptosis. Furthermore, PMQ also inhibited phenotypic switching and apoptosis in Ang II-stimulated VSMCs. PMQ exerted protective effects by regulating the C/EBPß/PTEN/AKT/GSK-3ß axis. AAV-mediated overexpression of PTEN reduced the therapeutic effects of PMQ in the AAA model mice, suggesting that the effects of PMQ on Ang II-mediated AAA formation were related to the PTEN/AKT/GSK-3ß axis. PMQ inhibited VSMCs phenotypic switching and apoptosis by bounding to C/EBPß at Lys253 with hydrogen bond to regulate C/EBPß nuclear translocation and PTEN/AKT/GSK-3ß axis, thereby inhibiting Ang II-induced AAA formation. CONCLUSIONS: Pentamethylquercetin inhibits angiotensin II-induced abdominal aortic aneurysm formation by bounding to C/EBPß at Lys253. Therefore, PMQ prevents the formation of AAA and reduces the incidence of AAA.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Apoptose , Músculo Liso Vascular , Quercetina , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Angiotensina II/farmacologia , Camundongos , Quercetina/análogos & derivados , Quercetina/farmacologia , Apoptose/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Modelos Animais de Doenças , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos
8.
Ann Med ; 56(1): 2282184, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38738386

RESUMO

AURKA is a threonine or serine kinase that needs to be activated by TPX2, Bora and other factors. AURKA is located on chromosome 20 and is amplified or overexpressed in many human cancers, such as breast cancer. AURKA regulates some basic cellular processes, and this regulation is realized via the phosphorylation of downstream substrates. AURKA can function in either the cytoplasm or the nucleus. It can promote the transcription and expression of oncogenes together with other transcription factors in the nucleus, including FoxM1, C-Myc, and NF-κB. In addition, it also sustains carcinogenic signaling, such as N-Myc and Wnt signaling. This article will focus on the role of AURKA in the nucleus and its carcinogenic characteristics that are independent of its kinase activity to provide a theoretical explanation for mechanisms of resistance to kinase inhibitors and a reference for future research on targeted inhibitors.


AURKA plays an important role in the control of the proliferation, invasion, cell cycle regulation and self-renewal of cancer stem cells.Small molecule kinase inhibitors targeting AURKA have been developed, but the overall response rate of patients in clinical trials is not ideal, prompting us to pay attention to the non-kinase activity of AURKA.This review focuses on the nuclear function of AURKA and its oncogenic properties independent of kinase activity, demonstrating that the nuclear substrate of AURKA and the remote allosteric site of the kinase may be targets of anticancer therapy.


Assuntos
Aurora Quinase A , Carcinogênese , Núcleo Celular , Humanos , Aurora Quinase A/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Núcleo Celular/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Inibidores de Proteínas Quinases/farmacologia , Animais
9.
Nucleus ; 15(1): 2351957, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38753956

RESUMO

Abnormal cell nuclear shapes are hallmarks of diseases, including progeria, muscular dystrophy, and many cancers. Experiments have shown that disruption of heterochromatin and increases in euchromatin lead to nuclear deformations, such as blebs and ruptures. However, the physical mechanisms through which chromatin governs nuclear shape are poorly understood. To investigate how heterochromatin and euchromatin might govern nuclear morphology, we studied chromatin microphase separation in a composite coarse-grained polymer and elastic shell simulation model. By varying chromatin density, heterochromatin composition, and heterochromatin-lamina interactions, we show how the chromatin phase organization may perturb nuclear shape. Increasing chromatin density stabilizes the lamina against large fluctuations. However, increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations by a "wetting"-like interaction. In contrast, fluctuations are insensitive to heterochromatin's internal structure. Our simulations suggest that peripheral heterochromatin accumulation could perturb nuclear morphology, while nuclear shape stabilization likely occurs through mechanisms other than chromatin microphase organization.


Assuntos
Núcleo Celular , Cromatina , Heterocromatina , Núcleo Celular/metabolismo , Heterocromatina/metabolismo , Heterocromatina/química , Cromatina/metabolismo , Cromatina/química , Polímeros/química , Polímeros/metabolismo , Eucromatina/metabolismo , Eucromatina/química , Humanos , Separação de Fases
10.
Nucleus ; 15(1): 2353249, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38753965

RESUMO

In the nucleus, the VRK1 Ser-Thr kinase is distributed in nucleoplasm and chromatin, where it has different roles. VRK1 expression increases in response to mitogenic signals. VRK1 regulates cyclin D1 expression at G0 exit and facilitates chromosome condensation at the end of G2 and G2/M progression to mitosis. These effects are mediated by the phosphorylation of histone H3 at Thr3 by VRK1, and later in mitosis by haspin. VRK1 regulates the apigenetic patterns of histones in processes requiring chromating remodeling, such as transcription, replication and DNA repair. VRK1 is overexpressed in tumors, facilitating tumor progression and resistance to genotoxic treatments. VRK1 also regulates the organization of Cajal bodies assembled on coilin, which are necessary for the assembly of different types of RNP complexes. VRK1 pathogenic variants cuase defects in Cajal bodies, functionally altering neurons with long axons and leading to neurological diseases, such as amyotrophic laterla sclerosis, spinal muscular atrophy, distal hereditay motor neuropathies and Charcot-Marie-Tooth.


Assuntos
Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Núcleo Celular/metabolismo , Corpos Enovelados/metabolismo , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
11.
Nat Commun ; 15(1): 4095, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750021

RESUMO

Polymerized ß-actin may provide a structural basis for chromatin accessibility and actin transport into the nucleus can guide mesenchymal stem cell (MSC) differentiation. Using MSC, we show that using CK666 to inhibit Arp2/3 directed secondary actin branching results in decreased nuclear actin structure, and significantly alters chromatin access measured with ATACseq at 24 h. The ATAC-seq results due to CK666 are distinct from those caused by cytochalasin D (CytoD), which enhances nuclear actin structure. In addition, nuclear visualization shows Arp2/3 inhibition decreases pericentric H3K9me3 marks. CytoD, alternatively, induces redistribution of H3K27me3 marks centrally. Such alterations in chromatin landscape are consistent with differential gene expression associated with distinctive differentiation patterns. Further, knockdown of the non-enzymatic monomeric actin binding protein, Arp4, leads to extensive chromatin unpacking, but only a modest increase in transcription, indicating an active role for actin-Arp4 in transcription. These data indicate that dynamic actin remodeling can regulate chromatin interactions.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Actinas , Núcleo Celular , Cromatina , Células-Tronco Mesenquimais , Actinas/metabolismo , Cromatina/metabolismo , Núcleo Celular/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Citocalasina D/farmacologia , Histonas/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Camundongos , Montagem e Desmontagem da Cromatina
12.
Sci Adv ; 10(18): eadl6082, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701207

RESUMO

The AAA+-ATPase valosin-containing protein (VCP; also called p97 or Cdc48), a major protein unfolding machinery with a variety of essential functions, localizes to different subcellular compartments where it has different functions. However, the processes regulating the distribution of VCP between the cytosol and nucleus are not understood. Here, we identified p37 (also called UBXN2B) as a major factor regulating VCP nucleocytoplasmic shuttling. p37-dependent VCP localization was crucial for local cytosolic VCP functions, such as autophagy, and nuclear functions in DNA damage repair. Mutations in VCP causing multisystem proteinopathy enhanced its association with p37, leading to decreased nuclear localization of VCP, which enhanced susceptibility to DNA damage accumulation. Both VCP localization and DNA damage susceptibility in cells with such mutations were normalized by lowering p37 levels. Thus, we uncovered a mechanism by which VCP nucleocytoplasmic distribution is fine-tuned, providing a means for VCP to respond appropriately to local needs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Núcleo Celular , Citosol , Proteína com Valosina , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Humanos , Citosol/metabolismo , Núcleo Celular/metabolismo , Mutação , Transporte Ativo do Núcleo Celular , Dano ao DNA , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transporte Proteico , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Reparo do DNA , Autofagia , Ligação Proteica , Células HEK293
13.
Elife ; 132024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757931

RESUMO

Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron-sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron-sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.


Assuntos
Eritropoese , Fosfatidilinositol 3-Quinases , Trombopoese , Fatores de Transcrição , Eritropoese/fisiologia , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células K562 , Trombopoese/fisiologia , Transdução de Sinais , Proteínas Nucleares/metabolismo , Núcleo Celular/metabolismo , Transporte Proteico , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Transporte Ativo do Núcleo Celular
14.
Cells ; 13(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38727317

RESUMO

mTOR is a central regulator of cell growth and metabolism in response to mitogenic and nutrient signals. Notably, mTOR is not only found in the cytoplasm but also in the nucleus. This review highlights direct involvement of nuclear mTOR in regulating transcription factors, orchestrating epigenetic modifications, and facilitating chromatin remodeling. These effects intricately modulate gene expression programs associated with growth and metabolic processes. Furthermore, the review underscores the importance of nuclear mTOR in mediating the interplay between metabolism and epigenetic modifications. By integrating its functions in nutrient signaling and gene expression related to growth and metabolism, nuclear mTOR emerges as a central hub governing cellular homeostasis, malignant transformation, and cancer progression. Better understanding of nuclear mTOR signaling has the potential to lead to novel therapies against cancer and other growth-related diseases.


Assuntos
Núcleo Celular , Proliferação de Células , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Núcleo Celular/metabolismo , Animais , Epigênese Genética , Transcrição Gênica , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia
15.
Anal Chem ; 96(16): 6301-6310, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38597061

RESUMO

Single-cell RNA sequencing (scRNA-seq) is a transformative technology that unravels the intricate cellular state heterogeneity. However, the Poisson-dependent cell capture and low sensitivity in scRNA-seq methods pose challenges for throughput and samples with a low RNA-content. Herein, to address these challenges, we present Well-Paired-Seq2 (WPS2), harnessing size-exclusion and quasi-static hydrodynamics for efficient cell capture. WPS2 exploits molecular crowding effect, tailing activity enhancement in reverse transcription, and homogeneous enzymatic reaction in the initial bead-based amplification to achieve 3116 genes and 8447 transcripts with an average of ∼20000 reads per cell. WPS2 detected 1420 more genes and 4864 more transcripts than our previous Well-Paired-Seq. It sensitively characterizes transcriptomes of low RNA-content single cells and nuclei, overcoming the Poisson limit for cell and barcoded bead capture. WPS2 also profiles transcriptomes from frozen clinical samples, revealing heterogeneous tumor copy number variations and intercellular crosstalk in clear cell renal cell carcinomas. Additionally, we provide the first single-cell-level characterization of rare metanephric adenoma (MA) and uncover potential specific markers. With the advantages of high sensitivity and high throughput, WPS2 holds promise for diverse basic and clinical research.


Assuntos
Análise de Célula Única , Transcriptoma , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , RNA/genética , Análise de Sequência de RNA , Neoplasias Renais/genética , Neoplasias Renais/patologia , Sequenciamento de Nucleotídeos em Larga Escala
16.
J Am Chem Soc ; 146(19): 12941-12949, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38685727

RESUMO

Nucleic acids are mainly found in the mitochondria and nuclei of cells. Detecting nucleic acids in the mitochondrion and nucleus in cascade mode is crucial for understanding diverse biological processes. This study introduces a novel nucleic acid-based fluorescent styrene dye (SPP) that exhibits light-driven cascade migration from the mitochondrion to the nucleus. By introducing N-arylpyridine on one side of the styrene dye skeleton and a bis(2-ethylsulfanyl-ethy)-amino unit on the other side, we found that SPP exhibits excellent DNA specificity (16-fold, FDNA/Ffree) and a stronger binding force to nuclear DNA (-5.09 kcal/mol) than to mitochondrial DNA (-2.59 kcal/mol). SPP initially accumulates in the mitochondrion and then migrates to the nucleus within 10 s under light irradiation. By tracking the damage to nucleic acids in apoptotic cells, SPP allows the successful visualization of the differences between apoptosis and ferroptosis. Finally, a triphenylamine segment with photodynamic effects was incorporated into SPP to form a photosensitizer (MTPA-SPP), which targets the mitochondria for photosensitization and then migrates to the nucleus under light irradiation for enhanced photodynamic cancer cell treatment. This innovative nucleic acid-based fluorescent molecule with light-triggered mitochondrion-to-nucleus migration ability provides a feasible approach for the in situ identification of nucleic acids, monitoring of subcellular physiological events, and efficient photodynamic therapy.


Assuntos
Núcleo Celular , Corantes Fluorescentes , Luz , Mitocôndrias , Imagem Óptica , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/química , Núcleo Celular/metabolismo , Núcleo Celular/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , DNA/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Células HeLa , Apoptose/efeitos dos fármacos , Fotoquimioterapia , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem
17.
Mol Biol Cell ; 35(6): ar82, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630521

RESUMO

Stathmins are small, unstructured proteins that bind tubulin dimers and are implicated in several human diseases, but whose function remains unknown. We characterized a new stathmin, STMND1 (Stathmin Domain Containing 1) as the human representative of an ancient subfamily. STMND1 features a N-terminal myristoylated and palmitoylated motif which directs it to membranes and a tubulin-binding stathmin-like domain (SLD) that contains an internal nuclear localization signal. Biochemistry and proximity labeling showed that STMND1 binds tubulin, and live imaging showed that tubulin binding inhibits translocation from cellular membranes to the nucleus. STMND1 is highly expressed in multiciliated epithelial cells, where it localizes to motile cilia. Overexpression in a model system increased the length of primary cilia. Our study suggests that the most ancient stathmins have cilium-related functions that involve sensing soluble tubulin.


Assuntos
Núcleo Celular , Cílios , Estatmina , Tubulina (Proteína) , Cílios/metabolismo , Tubulina (Proteína)/metabolismo , Humanos , Estatmina/metabolismo , Núcleo Celular/metabolismo , Filogenia , Ligação Proteica , Sinais de Localização Nuclear/metabolismo , Animais , Células Epiteliais/metabolismo , Transporte Proteico , Sequência de Aminoácidos
18.
Nat Commun ; 15(1): 3634, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688897

RESUMO

Central nervous system (CNS) tumors are the leading cause of pediatric cancer death, and these patients have an increased risk for developing secondary neoplasms. Due to the low prevalence of pediatric CNS tumors, major advances in targeted therapies have been lagging compared to other adult tumors. We collect single nuclei RNA-seq data from 84,700 nuclei of 35 pediatric CNS tumors and three non-tumoral pediatric brain tissues and characterize tumor heterogeneity and transcriptomic alterations. We distinguish cell subpopulations associated with specific tumor types including radial glial cells in ependymomas and oligodendrocyte precursor cells in astrocytomas. In tumors, we observe pathways important in neural stem cell-like populations, a cell type previously associated with therapy resistance. Lastly, we identify transcriptomic alterations among pediatric CNS tumor types compared to non-tumor tissues, while accounting for cell type effects on gene expression. Our results suggest potential tumor type and cell type-specific targets for pediatric CNS tumor treatment. Here we address current gaps in understanding single nuclei gene expression profiles of previously under-investigated tumor types and enhance current knowledge of gene expression profiles of single cells of various pediatric CNS tumors.


Assuntos
Neoplasias do Sistema Nervoso Central , Ependimoma , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Humanos , Criança , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/metabolismo , Ependimoma/genética , Ependimoma/patologia , Ependimoma/metabolismo , Pré-Escolar , Astrocitoma/genética , Astrocitoma/patologia , Astrocitoma/metabolismo , Perfilação da Expressão Gênica/métodos , Feminino , RNA-Seq , Masculino , Adolescente , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Núcleo Celular/metabolismo , Núcleo Celular/genética
19.
Mol Cancer ; 23(1): 85, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678233

RESUMO

Nuclear condensates have been shown to regulate cell fate control, but its role in oncogenic transformation remains largely unknown. Here we show acquisition of oncogenic potential by nuclear condensate remodeling. The proto-oncogene SS18 and its oncogenic fusion SS18-SSX1 can both form condensates, but with drastically different properties and impact on 3D genome architecture. The oncogenic condensates, not wild type ones, readily exclude HDAC1 and 2 complexes, thus, allowing aberrant accumulation of H3K27ac on chromatin loci, leading to oncogenic expression of key target genes. These results provide the first case for condensate remodeling as a transforming event to generate oncogene and such condensates can be targeted for therapy. One sentence summary: Expulsion of HDACs complexes leads to oncogenic transformation.


Assuntos
Histona Desacetilase 1 , Histona Desacetilase 2 , Proto-Oncogene Mas , Humanos , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Histonas/metabolismo , Animais
20.
Genes Dev ; 38(7-8): 291-293, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38688680

RESUMO

The Malat1 (metastasis-associated lung adenocarcinoma transcript 1) long noncoding RNA is highly and broadly expressed in mammalian tissues, accumulating in the nucleus where it modulates expression and pre-mRNA processing of many protein-coding genes. In this issue of Genes & Development, Xiao and colleagues (doi:10.1101/gad.351557.124) report that a significant fraction of Malat1 transcripts in cultured mouse neurons are surprisingly exported from the nucleus. These transcripts are packaged with Staufen proteins in RNA granules and traffic down the lengths of neurites. They then can be released in a stimulus-dependent manner to be locally translated into a microprotein that alters neuronal gene expression patterns.


Assuntos
Núcleo Celular , Neurônios , Biossíntese de Proteínas , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neurônios/metabolismo , Camundongos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA