Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Neurosci Lett ; 792: 136942, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328292

RESUMO

Neuregulin-1 (NRG1)/erythroblastic leukaemia viral oncogene homologues 2 (ErbB2) pathway had been implicated in promoting differentiation and suppressing apoptosis of neuronal stem cells (NSCs) isolated from cochlear nucleus. In the current study, we aimed at determining the effects of NRG1/ErbB2 on mitochondrial (mt) function of NSCs. As expected, NRG1 increased the expression of mitofusin (Mfn) 1 and Mfn2 and decreased the expression of mitochondrial fission protein 1 (Fis1) and dynamin-related protein 1 (Drp1). However, after ErbB2 knockout, Mfn1 and Mfn2 expression decreased while Fis1 and Drp1 increased. Moreover, the increased mtDNA copy number and intracellular ATP level, elevated ATPase activities as well as decreased lactate production induced by NRG1 were partially reversed by ErbB2 knockout. Additionally, NRG1 treatment increased the activities of catalase, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and upregulated the protein expression of catalase, manganese superoxide dismutase (MnSOD), peroxisome proliferator-activated receptor-γ coactlvator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1) and transcription factor A, mitochondrial (TFAM), which were also reversed by ErbB2 knockout. Furthermore, PGC-1α overexpression partially reversed the above effects of ErbB2 knockout. In conclusion, these findings suggest that the promotion of mitochondrial function of NRG1/ErbB2 axis is at least in part mediated by PGC-1α in NSCs from cochlear nucleus.


Assuntos
Núcleo Coclear , Células-Tronco Neurais , Antioxidantes/farmacologia , Catalase/metabolismo , Neuregulina-1/metabolismo , Núcleo Coclear/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neurais/metabolismo
2.
Hear Res ; 426: 108645, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36347123

RESUMO

The cochlear nucleus receives numerous inputs from auditory and nonauditory systems. This extensive innervation of the cochlear nucleus is involved in sound source localization and the integration of auditory signals with other sensory modalities. The dorsal cochlear nucleus may also have an important role in tinnitus. Although its gross anatomy and function have been extensively studied, the metabolome of the cochlear nucleus remains poorly understood, particularly at different stages of auditory maturity. Here, we present a protocol for untargeted metabolomics analysis of the rat cochlear nucleus, then discuss differences in the metabolome of the rat cochlear nucleus between postnatal day (PD) 14 (hearing onset) and PD60 (hearing maturation). Cochlear nucleus samples collected from rats at PD14 or PD60 were analyzed by liquid chromatography-tandem mass spectrometry (LCMS). In total, 344 metabolites were identified. Principal component analysis and orthogonal partial least-square discriminant analysis showed that the metabolic profiles at these two stages had distinct distribution patterns. Moreover, 91 significantly differential metabolites (62 upregulated and 29 downregulated) were identified at PD60 vs. PD14. N-acetylaspartylglutamic acid (NAAG), γ-aminobutyric acid (GABA), taurine, adenosine monophosphate (AMP), and choline were significantly upregulated at PD60. Pathway enrichment analysis suggested that alanine, aspartate, and glutamate metabolism; glycine, serine, and threonine metabolism; the mammalian target of rapamycin (mTOR) signaling pathway; and the AMP-activated protein kinase (AMPK) signaling pathway may be involved in key developmental events during maturation of the cochlear nucleus. Taken together, the metabolic profiles identified in this study could lead to the identification and understanding of specific key biomarkers and metabolic pathways involved in the maturation of hearing. Moreover, LC-MS-based metabolomics provides an alternative approach for the characterization of auditory maturation and auditory diseases.


Assuntos
Núcleo Coclear , Ratos , Animais , Núcleo Coclear/metabolismo , Metabolômica/métodos , Metaboloma , Cromatografia Líquida/métodos , Espectrometria de Massas , Mamíferos
3.
Int. j. morphol ; 39(2): 538-547, abr. 2021. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1385353

RESUMO

SUMMARY: The term "circling mouse" refers to an animal model of deafness, in which the mouse exhibits circling, head tossing, and hyperactivity, with pathological features including degenerated spiral ganglion cells in the cochlea, and the loss of the organ of Corti. The cochlear nuclear (CN) complex, a part of the auditory brain circuit, is essential to process both ascending and descending auditory information. Considering calcium's (Ca2+) importance in homeostasis of numerous biological processes, hearing loss by cochlear damage, either by ablation or genetic defect, could cause changes in the Ca2+ concentration that might trigger functional and structural alterations in the auditory circuit. However, little is known about the correlation of the central nervous system (CNS) pathology in circling mice, especially of the auditory pathway circuit and Ca2+ changes. This present study investigates the distribution of Ca2+- binding proteins (CaBPs), calbindin D-28k (CB), parvalbumin (PV), and calretinin (CR) by using a free floating immunohistochemical method inthe CN of the wild-type mouse (+/+), the heterozygous mouse (+/cir), and the homozygous (cir/cir) mouse. CaBPs are well known to be an important factor that regulates Ca2+ concentrations. Compared with the dorsal and ventral cochlear nuclei of +/+ and +/ cirmice, prominent decreases of CaBPs' immunoreactivity (IR) in cir/cirmice were observed in the somas, as well as in the neuropil. The present study reportson the overall distribution and changes in the immunoreactivity of CaBPs in the CN of cir/cirmice because ofa hearing defect. This data might be helpful to morphologically elucidate CNS disorders and their relation to CaBPs immunoreactivity related to hearing defects.


RESUMEN: El término "ratón circulante" se refiere a un modelo animal con sordera, en el que el ratón exhibe hiperactividad, movimientos circulares y movimientos de la cabeza, con características patológicas que incluyen células ganglionares espirales degeneradas en la cóclea, un canal de Rosenthal vacío y la pérdida del órgano de Corti. El complejo nuclear coclear (CN), una parte del circuito cerebral auditivo, es esencial para procesar la información auditiva tanto ascendente como descendente. Considerando la importancia del calcio (Ca2+) en la homeostasis de numerosos procesos biológicos, la hipoacusia por daño coclear, por ablación o por defecto genético, podría provocar cambios en la concentración de Ca2+que pueden desencadenar alteraciones funcionales y estructurales en el circuitoauditivo. Sin embargo, existe poca información de la correlación de la patología del sistema nervioso central (SNC) en ratones circulantes, especialmente del circuito de la víaauditiva y los cambios de Ca2+. Este estudio nvestiga la distribución de proteínas de unión a Ca2+ (CaBP), calbindina D-28k (CB), parvalbúmina (PV) y calretinina (CR) mediante el uso de un método inmunohistoquímico de flotaciónlibre en el CN del ratón de tiposalvaje (+/+), el ratón heterocigoto (+/cir) y el ratón homocigoto (cir/cir). Se sabe que los CaBP son un factor importante que regula las concentraciones de Ca2+. En comparación con los núcleos cocleares dorsal y ventral de los ratones +/+ y +/ cir, se observaron disminuciones prominentes de la inmunorreactividad (IR) de CaBPs en los ratonescir/cir en los somas, asícomo en el neuropilo. El presente estudio informa sobre la distribución general y los cambios en la inmunorreactividad de CaBP en el CN de ratones cir/cir debido a un defecto auditivo. Estos datos podrían ser útiles para dilucidar morfológicamente los trastornos del SNC y su relación con la inmunorreactividad de CaBP relacionada con los defectosauditivos.


Assuntos
Animais , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Núcleo Coclear/metabolismo , Parvalbuminas/metabolismo , Imuno-Histoquímica , Calbindinas/metabolismo , Camundongos Endogâmicos C57BL
4.
Neurosci Lett ; 751: 135803, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33705930

RESUMO

Sensorineural hearing loss (SNHL) is a common causes of disability. Neural stem cells (NSCs) from the cochlear nuclei have been considered to be a potential direction for the treatment of SNHL. Neuregulin 1 (NRG1)/ErbB2 signaling displays an essential role in nervous system development. In this study, we aimed to explore the roles of NRG1/ErbB2 in differentiation and apoptosis of cochlear nuclei NSCs. The data showed that the expression of NGR1 and ErbB2 in cochlear nuclei NSCs isolated from rats were increased with the age of rats. NRG1 treatment reduced the nestin-positive cells number, increased the MAP2-positive and GFAP-positive cells number, decreased the expression of cleaved-caspase-3, and increased the activation of PI3K/AKT. ErbB2 knockdown by lentiviral-mediated ErbB2 shRNA infection reversed the effect of NRG1 on cochlear nuclei NSCs. LY294002 administration further enhanced the effect of ErbB2 silencing on the expression of nestin, MAP2, GFAP and cleaved-caspase-3. Taken together, NRG1/ErbB2 regulates differentiation and apoptosis of cochlear nucleus NSCs through PI3K/Akt pathway.


Assuntos
Apoptose , Núcleo Coclear/metabolismo , Células-Tronco Neurais/metabolismo , Neuregulina-1/metabolismo , Neurogênese , Receptor ErbB-2/metabolismo , Animais , Células Cultivadas , Núcleo Coclear/citologia , Núcleo Coclear/crescimento & desenvolvimento , Células-Tronco Neurais/citologia , Neuregulina-1/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor ErbB-2/genética , Transdução de Sinais
5.
Eur J Pharmacol ; 882: 173163, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32485244

RESUMO

Oxidative stress-induced Ca2+ permeable transient receptor potential melastatin 2 (TRPM2) channels are expressed at high levels in the brain, appear to link neuronal excitability to cellular metabolism, and are involved in the pathogenesis of neurodegenerative disorders. We aimed to study the electrophysiological properties of TRPM2 channels in stellate cells of the mouse ventral cochlear nucleus (VCN) using molecular, immunohistochemical and electrophysiological approaches. In the present study, the real time PCR analysis revealed the presence of the TRPM2 mRNA in the mouse VCN tissue. Cell bodies of stellate cells were moderately labeled with TRPM2 antibodies using immunohistochemical staining. Stellate cells were sensitive to intracellular ADP-ribose (ADPR), a TRPM2 agonist. Upon the application of ADPR, the resting membrane potential of the stellate cells was significantly depolarized, shifting from -61.2 ± 0.9 mV to -57.0 ± 0.8 mV (P < 0.001; n = 21), and the firing rate significantly increased (P < 0.001, n = 6). When the pipette solution contained ADPR (300 µM) and the TRPM2 antagonists flufenamic acid (FFA) (100 µM), N-(p-amylcinnamoyl) anthranilic acid (ACA) (50 µM) and 8-bromo-cADP-Ribose (8-Br-cADPR) (50 µM), the membrane potential shifted in a hyperpolarizing direction. ADPR did not significantly change the resting membrane potential and action potential firing rate of stellate cells from TRPM2-/- mice. In conclusion, the results obtained using these molecular, immunohistochemical and electrophysiological approaches reveal the expression of functional TRPM2 channels in stellate neurons of the mouse VCN. TRPM2 might exert a significant modulatory effect on setting the level of resting excitability.


Assuntos
Núcleo Coclear/fisiologia , Neurônios/fisiologia , Canais de Cátion TRPM/fisiologia , Adenosina Difosfato Ribose/farmacologia , Animais , Núcleo Coclear/metabolismo , Feminino , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neurônios/metabolismo , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
6.
Neurochem Int ; 124: 31-40, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578839

RESUMO

Presbycusis has become a common sensory deficit in humans. Oxidative damage to mitochondrial DNA and mitochondrial dysfunction is strongly associated with the aging of the auditory system. A previous study established a mimetic rat model of aging using D-galactose (D-gal) and first reported that NADPH oxidase-dependent mitochondrial oxidative damage and apoptosis in the ventral cochlear nucleus (VCN) might contribute to D-gal-induced central presbycusis. In this study, we investigated the effects of apocynin, an NADPH oxidase inhibitor, on mitochondrial dysfunction and mitochondria-dependent apoptosis in the VCN of D-gal-induced aging model in rats. Our data showed that apocynin decreased NADPH oxidase activity, H2O2 levels, mitochondrial DNA common deletion, and 8-hydroxy-2-deoxyguanosine (8-OHdG) expression and increased total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activity in the VCN of D-gal-induced aging model in rats. Moreover, apocynin also decreased the protein levels of phospho-p47phox (p-p47phox), tumor necrosis factor alpha (TNFα), and uncoupling protein 2 (UCP2) in the VCN of D-gal-induced aging model in rats. Meanwhile, apocynin alleviated mitochondrial ultrastructure damage and enhanced ATP production and mitochondrial membrane potential (MMP) levels in the VCN of D-gal-induced aging model in rats. Furthermore, apocynin inhibited cytochrome c (Cyt c) translocation from mitochondria to the cytoplasm and suppressed caspase 3-dependent apoptosis in the VCN of D-gal-induced aging model in rats. Consequently, our findings suggest that neuronal survival promoted by an NADPH oxidase inhibitor is a potentially effective method to enhance the resistance of neurons to central presbycusis.


Assuntos
Acetofenonas/farmacologia , Envelhecimento/efeitos dos fármacos , Núcleo Coclear/efeitos dos fármacos , Galactose/toxicidade , Mitocôndrias/efeitos dos fármacos , NADPH Oxidases/antagonistas & inibidores , Envelhecimento/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Núcleo Coclear/metabolismo , Inibidores Enzimáticos/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Ratos , Ratos Sprague-Dawley
7.
J Membr Biol ; 251(5-6): 711-722, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30206647

RESUMO

ERG (ether-a-go-go-related gene) channels are the members of the voltage-dependent potassium channel family, which have three subtypes, as ERG1 (Kv 11.1), ERG2 (Kv 11.2), and ERG3 (Kv11.3). There is no information on ERG channels in the cochlear nucleus (CN) neurons, which is the first relay station of the auditory pathway. As occur in some of congenital long QT Syndromes (LQTS), mutation of the KCNQ11 genes for ERG channel has been reported to be accompanied by hearing loss. For that reason, we aimed to study biophysical properties and physiological importance, and contribution of ERG K+ currents to the formation of action potentials in the stellate and bushy neurons of the ventral cochlear nucleus (VCN). A total of 70 mice at 14-17 days old were used for this study. Electrophysiological characterization of ERG channels was performed using patch-clamp technique in the CN slices. In current clamp, ERG channel blockers, terfenadine (10 µM) and E-4031 (10 µM), were applied in both cell types. The activation, inactivation, and deactivation kinetics of the ERG channels were determined by voltage clamp. In conclusion, the findings obtained in the present study suggest that stellate and bushy neurons express ERG channels and ERG channels appear to contribute to setting action potential (AP) frequency, threshold for AP induction, and, possibly, resting membrane potentials in this cells.


Assuntos
Núcleo Coclear/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Vias Auditivas/efeitos dos fármacos , Vias Auditivas/fisiologia , Núcleo Coclear/efeitos dos fármacos , Eletrofisiologia , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Piperidinas/farmacologia , Piridinas/farmacologia , Gânglio Estrelado/efeitos dos fármacos , Gânglio Estrelado/metabolismo , Terfenadina/farmacologia
8.
J Membr Biol ; 251(1): 163-178, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29379989

RESUMO

Major voltage-activated ionic channels of stellate cells in the ventral part of cochlear nucleus (CN) were largely characterized previously. However, it is not known if these cells are equipped with other ion channels apart from the voltage-sensitive ones. In the current study, it was aimed to study subunit composition and function of ATP-sensitive potassium channels (KATP) in stellate cells of the ventral cochlear nucleus. Subunits of KATP channels, Kir6.1, Kir6.2, SUR1, and SUR2, were expressed at the mRNA level and at the protein level in the mouse VCN tissue. The specific and clearly visible bands for all subunits but that for Kir6.1 were seen in Western blot. Using immunohistochemical staining technique, stellate cells were strongly labeled with SUR1 and Kir6.2 antibodies and moderately labeled with SUR2 antibody, whereas the labeling signals for Kir6.1 were too weak. In patch clamp recordings, KATP agonists including cromakalim (50 µM), diazoxide (0.2 mM), 3-Amino-1,2,4-triazole (ATZ) (1 mM), 2,2-Dithiobis (5-nitro pyridine) (DTNP) (330 µM), 6-Chloro-3-isopropylamino- 4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide (NNC 55-0118) (1 µM), 6-chloro-3-(methylcyclopropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide (NN414) (1 µM), and H2O2 (0.88 mM) induced marked responses in stellate cells, characterized by membrane hyperpolarization which were blocked by KATP antagonists. Blockers of KATP channels, glibenclamide (0.2 mM), tolbutamide (0.1 mM) as well as 5-hydroxydecanoic acid (1 mM), and catalase (500 IU/ml) caused depolarization of stellate cells, increasing spontaneous action potential firing. In conclusion, KATP channels seemed to be composed dominantly of Kir 6.2 subunit and SUR1 and SUR2 and activation or inhibition of KATP channels regulates firing properties of stellate cells by means of influencing resting membrane potential and input resistance.


Assuntos
Núcleo Coclear/efeitos dos fármacos , Núcleo Coclear/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Óxidos S-Cíclicos/farmacologia , Diazóxido/análogos & derivados , Diazóxido/farmacologia , Peróxido de Hidrogênio , Canais KATP/agonistas , Canais KATP/antagonistas & inibidores , Canais KATP/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Tolbutamida/farmacologia
9.
Clin Interv Aging ; 12: 593-602, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28408808

RESUMO

BACKGROUND: Recently, the d-galactose (d-gal)-induced mimetic aging rat model has been widely used in studies of age-associated diseases, which have shown that chronic d-gal exposure induces premature aging similar to natural aging in rats. With the increasing rate of sepsis in the geriatric population, an easy-access animal model for preclinical studies of elderly sepsis is urgently needed. This study investigates whether a sepsis model that is established in d-gal-induced aging rats can serve as a suitable model for preclinical studies of elderly patients with sepsis. OBJECTIVE: To investigate the acute kidney injury (AKI) and inflammatory response of sepsis following cecal ligation and puncture (CLP) in d-gal-induced aging rats. METHODS: Twelve-week-old male Sprague Dawley rats were divided into low-dose d-gal (L d-gal, 125 mg/kg/d), high-dose d-gal (H d-gal, 500 mg/kg/d), and control groups. After daily subcutaneous injection of d-gal for 6 weeks, the CLP method was used to establish a sepsis model. RESULTS: The mortality was 73.3%, 40%, and 33.3% in the H d-gal, L d-gal, and control groups, respectively. Blood urea nitrogen, creatinine, plasma neutrophil gelatinase-associated lipocalin, interleukin-6, interleukin-10, and tumor necrosis factor-α were markedly increased in the H d-gal group after establishment of the sepsis model (H d-gal vs control, P<0.05 at 12 h and 24 h post-CLP). The rate of severe AKI (RIFLE-F) at 24 h post-CLP was 43% for both the control and L d-gal groups and 80% for the H d-gal group. CONCLUSION: High-dose- d-gal-induced aging rats are more likely to die from sepsis than are young rats, and probably this is associated with increased severity of septic AKI and an increased inflammatory response. Therefore, use of the high-dose- d-gal-induced aging rat model of sepsis for preclinical studies can provide more useful information for the treatment of sepsis in elderly patients.


Assuntos
Envelhecimento/efeitos dos fármacos , Ceco/metabolismo , Núcleo Coclear/metabolismo , Galactose/metabolismo , NADPH Oxidases/metabolismo , Sepse/metabolismo , Injúria Renal Aguda , Animais , Encéfalo/efeitos dos fármacos , Ceco/patologia , Creatinina/sangue , Modelos Animais de Doenças , Ligadura , Masculino , Ratos , Ratos Sprague-Dawley
10.
J Physiol ; 595(4): 1315-1337, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28030754

RESUMO

KEY POINTS: Following the genetically controlled formation of neuronal circuits, early firing activity guides the development of sensory maps in the auditory, visual and somatosensory system. However, it is not clear whether the activity of central auditory neurons is specifically regulated depending on the position within the sensory map. In the ventral cochlear nucleus, the first central station along the auditory pathway, we describe a mechanism through which paracrine ATP signalling enhances firing in a cell-specific and tonotopically-determined manner. Developmental down-regulation of P2X2/3R currents along the tonotopic axis occurs simultaneously with an increase in AMPA receptor currents, suggesting a high-to-low frequency maturation pattern. Facilitated action potential (AP) generation, measured as higher firing rate, shorter EPSP-AP delay in vivo and shorter AP latency in slice experiments, is consistent with increased synaptic efficacy caused by ATP. The long lasting change in intrinsic neuronal excitability is mediated by the heteromeric P2X2/3 receptors. ABSTRACT: Synaptic refinement and strengthening are activity-dependent processes that establish orderly arranged cochleotopic maps throughout the central auditory system. The maturation of auditory brainstem circuits is guided by action potentials (APs) arising from the inner hair cells in the developing cochlea. The AP firing of developing central auditory neurons can be modulated by paracrine ATP signalling, as shown for the cochlear nucleus bushy cells and principal neurons in the medial nucleus of the trapezoid body. However, it is not clear whether neuronal activity may be specifically regulated with respect to the nuclear tonotopic position (i.e. sound frequency selectivity). Using slice recordings before hearing onset and in vivo recordings with iontophoretic drug applications after hearing onset, we show that cell-specific purinergic modulation follows a precise tonotopic pattern in the ventral cochlear nucleus of developing gerbils. In high-frequency regions, ATP responsiveness diminished before hearing onset. In low-to-mid frequency regions, ATP modulation persisted after hearing onset in a subset of low-frequency bushy cells (characteristic frequency< 10 kHz). Down-regulation of P2X2/3R currents along the tonotopic axis occurs simultaneously with an increase in AMPA receptor currents, thus suggesting a high-to-low frequency maturation pattern. Facilitated AP generation, measured as higher firing frequency, shorter EPSP-AP delay in vivo, and shorter AP latency in slice experiments, is consistent with increased synaptic efficacy caused by ATP. Finally, by combining recordings and pharmacology in vivo, in slices, and in human embryonic kidney 293 cells, it was shown that the long lasting change in intrinsic neuronal excitability is mediated by the P2X2/3R.


Assuntos
Potenciais de Ação , Trifosfato de Adenosina/metabolismo , Núcleo Coclear/metabolismo , Potenciais Pós-Sinápticos Excitadores , Receptores Purinérgicos/metabolismo , Animais , Nervo Coclear/metabolismo , Nervo Coclear/fisiologia , Núcleo Coclear/citologia , Núcleo Coclear/crescimento & desenvolvimento , Núcleo Coclear/fisiologia , Feminino , Gerbillinae , Células HEK293 , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/fisiologia , Humanos , Masculino , Tempo de Reação , Receptores de AMPA/metabolismo
11.
Mol Cell Neurosci ; 75: 101-12, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27473923

RESUMO

Severe noise-induced damage to the inner ear leads to auditory nerve fiber degeneration thereby reducing the neural input to the cochlear nucleus (CN). Paradoxically, this leads to a significant increase in spontaneous activity in the CN which has been linked to tinnitus, hyperacusis and ear pain. The biological mechanisms that lead to an increased spontaneous activity are largely unknown, but could arise from changes in glutamatergic or GABAergic neurotransmission or neuroinflammation. To test this hypothesis, we unilaterally exposed rats for 2h to a 126dB SPL narrow band noise centered at 12kHz. Hearing loss measured by auditory brainstem responses exceeded 55dB from 6 to 32kHz. The mRNA from the exposed CN was harvested at 14 or 28days post-exposure and qRT-PCR analysis was performed on 168 genes involved in neural inflammation, neuropathic pain and glutamatergic or GABAergic neurotransmission. Expression levels of mRNA of Slc17a6 and Gabrg3, involved in excitation and inhibition respectively, were significantly increased at 28days post-exposure, suggesting a possible role in the CN spontaneous hyperactivity associated with tinnitus and hyperacusis. In the pain and inflammatory array, noise exposure upregulated mRNA expression levels of four pain/inflammatory genes, Tlr2, Oprd1, Kcnq3 and Ntrk1 and decreased mRNA expression levels of two more genes, Ccl12 and Il1ß. Pain/inflammatory gene expression changes via Ntrk1 signaling may induce sterile inflammation, neuropathic pain, microglial activation and migration of nerve fibers from the trigeminal, cuneate and vestibular nuclei into the CN. These changes could contribute to somatic tinnitus, hyperacusis and otalgia.


Assuntos
Núcleo Coclear/metabolismo , Perda Auditiva Provocada por Ruído/metabolismo , Neuralgia/metabolismo , Receptor trkA/genética , Transdução de Sinais , Animais , Núcleo Coclear/fisiopatologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Proteínas Quimioatraentes de Monócitos/genética , Proteínas Quimioatraentes de Monócitos/metabolismo , Neuralgia/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkA/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
12.
Eur Arch Otorhinolaryngol ; 273(2): 325-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25636249

RESUMO

Spontaneous neuronal activity in dorsal cochlear nucleus (DCN) may be involved in the physiological processes underlying salicylate-induced tinnitus. As a neuronal activity marker, immediate-early gene (IEG) expression, especially activity-dependent cytoskeletal protein (Arc/Arg3.1) and the early growth response gene-1 (Egr-1), appears to be highly correlated with sensory-evoked neuronal activity. However, their relationships with tinnitus induced by salicylate have rarely been reported in the DCN. In this study, we assessed the effect of acute and chronic salicylate treatment on the expression of N-methyl D-aspartate receptor subunit 2B (NR2B), Arg3.1, and Egr-1. We also observed ultrastructural alterations in the DCN synapses in an animal model of tinnitus. Levels of mRNA and protein expression of NR2B and Arg3.1 were increased in rats that were chronically administered salicylate (200 mg/kg, twice daily for 3, 7, or 14 days). These levels returned to baseline 14 days after cessation of treatment. However, no significant changes were observed in Egr-1 gene expression in any groups. Furthermore, rats subjected to long-term salicylate administration showed more presynaptic vesicles, thicker and longer postsynaptic densities, and increased synaptic interface curvature. Alterations of Arg3.1 and NR2B may be responsible for the changes in the synaptic ultrastructure. These changes confirm that salicylate can cause neural plasticity changes at the DCN level.


Assuntos
Núcleo Coclear/metabolismo , Regulação da Expressão Gênica , Genes Precoces/genética , RNA Mensageiro/genética , Zumbido/genética , Animais , Núcleo Coclear/ultraestrutura , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Microscopia Eletrônica de Transmissão , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Salicilato de Sódio/toxicidade , Sinapses/genética , Sinapses/metabolismo , Zumbido/induzido quimicamente , Zumbido/metabolismo
13.
Eur J Pharmacol ; 761: 206-10, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25977231

RESUMO

In preliminary studies we have observed a massive microglial activation in the cochlear nucleus following acoustic trauma-induced tinnitus in rats, which suggests that inflammatory responses within the central auditory system may be involved in the development and maintenance of tinnitus. Recently, the anti-inflammatory properties of melanocortins (MCs), have gained increasing interest in pharmacology due to their promising therapeutic potential in the treatment of inflammatory-mediated diseases. Among the five subtypes of the MC receptor, MC3 and MC4 receptors are the predominant brain receptors and are thought to play an important role in brain inflammation and neuroprotection. Importantly, MC4 receptors have been found in the mouse and rat central auditory systems. In this study we investigated whether the MC4 receptor agonist, RO27-3225, injected s.c at a dose of 90 or 180µg/kg, 30min before acoustic trauma and then every 12h for 10 days, could prevent the development of acoustic trauma-induced tinnitus in rats, using a conditioned behavioural suppression model. Although evidence of tinnitus developed in the exposed-vehicle group compared to the sham-vehicle group (P≤0.03), in response to a 32kHz tone, there were no significant drug effects from treatment with RO27-3225, indicating that it did not confer any protection against the development of tinnitus in this animal model. This result suggests that the anti-inflammatory effects of MC4 receptor agonists may not be sufficient to prevent tinnitus.


Assuntos
Anti-Inflamatórios/farmacologia , Núcleo Coclear/efeitos dos fármacos , Ruído/efeitos adversos , Peptídeos/farmacologia , Receptor Tipo 4 de Melanocortina/agonistas , Zumbido/prevenção & controle , Animais , Percepção Auditiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Núcleo Coclear/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Ratos Wistar , Receptor Tipo 4 de Melanocortina/metabolismo , Zumbido/etiologia , Zumbido/metabolismo , Zumbido/psicologia
14.
Neuroscience ; 297: 137-59, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-25839146

RESUMO

Inner ear damage can lead to hearing disorders, including tinnitus, hyperacusis, and hearing loss. We measured the effects of severe inner ear damage, produced by cochlear ablation, on the levels and distributions of amino acids in the first brain center of the auditory system, the cochlear nucleus. Measurements were also made for its projection pathways and the superior olivary nuclei. Cochlear ablation produces complete degeneration of the auditory nerve, which provides a baseline for interpreting the effects of partial damage to the inner ear, such as that from ototoxic drugs or intense sound. Amino acids play a critical role in neural function, including neurotransmission, neuromodulation, cellular metabolism, and protein construction. They include major neurotransmitters of the brain - glutamate, glycine, and γ-aminobutyrate (GABA) - as well as others closely related to their metabolism and/or functions - aspartate, glutamine, and taurine. Since the effects of inner ear damage develop over time, we measured the changes in amino acid levels at various survival times after cochlear ablation. Glutamate and aspartate levels decreased by 2weeks in the ipsilateral ventral cochlear nucleus and deep layer of the dorsal cochlear nucleus, with the largest decreases in the posteroventral cochlear nucleus (PVCN): 66% for glutamate and 63% for aspartate. Aspartate levels also decreased in the lateral part of the ipsilateral trapezoid body, by as much as 50%, suggesting a transneuronal effect. GABA and glycine levels showed some bilateral decreases, especially in the PVCN. These results may represent the state of amino acid metabolism in the cochlear nucleus of humans after removal of eighth nerve tumors, which may adversely result in destruction of the auditory nerve. Measurement of chemical changes following inner ear damage may increase understanding of the pathogenesis of hearing impairments and enable improvements in their diagnosis and treatment.


Assuntos
Técnicas de Ablação/efeitos adversos , Aminoácidos/metabolismo , Cóclea/lesões , Núcleo Coclear/metabolismo , Animais , Chinchila , Núcleo Coclear/patologia , Lateralidade Funcional , Masculino , Neurônios/metabolismo , Neurônios/patologia , Neurotransmissores/metabolismo , Tamanho do Órgão , Fatores de Tempo
15.
Exp Neurol ; 266: 55-67, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25708983

RESUMO

The immediate-early-gene c-fos with its protein product Fos has been used as a powerful tool to investigate neuronal activity and plasticity following sensory stimulation. Fos combines with Jun, another IEG product, to form the dimeric transcription factor activator protein 1 (AP-1) which has been implied in a variety of cellular functions like neuronal plasticity, apoptosis, and regeneration. The intracellular emergence of Fos indicates a functional state of nerve cells directed towards molecular and morphological changes. The central auditory system is construed to detect stimulus intensity, spectral composition, and binaural balance through neurons organized in a complex network of ascending, descending and commissural pathways. Here we compare monaural and binaural electrical intracochlear stimulation (EIS) in normal hearing and early postnatally deafened rats. Binaural stimulation was done either synchronously or asynchronously. The auditory brainstem of hearing and deaf rats responds differently, with a dramatically increasing Fos expression in the deaf group so as if the network had no pre-orientation for how to organize sensory activity. Binaural EIS does not result in a trivial sum of 2 independent monaural EIS, as asynchronous stimulation invokes stronger Fos activation compared to synchronous stimulation almost everywhere in the auditory brainstem. The differential response to synchronicity of the stimulation puts emphasis on the importance of the temporal structure of EIS with respect to its potential for changing brain structure and brain function in stimulus-specific ways.


Assuntos
Vias Auditivas/metabolismo , Cóclea/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes fos/efeitos dos fármacos , Animais , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/metabolismo , Vias Auditivas/efeitos dos fármacos , Tronco Encefálico/metabolismo , Núcleo Coclear/efeitos dos fármacos , Núcleo Coclear/metabolismo , Surdez/fisiopatologia , Estimulação Elétrica , Colículos Inferiores/efeitos dos fármacos , Colículos Inferiores/metabolismo , Martelo/fisiopatologia , Núcleo Olivar/efeitos dos fármacos , Núcleo Olivar/metabolismo , Ratos , Ratos Wistar
16.
Hear Res ; 322: 235-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25598479

RESUMO

Contemporary auditory brainstem implant (ABI) performance is limited by reliance on electrical neurostimulation with its accompanying channel cross talk and current spread to non-auditory neurons. A new generation ABI based on optogenetic technology may ameliorate limitations fundamental to electrical stimulation. The most widely studied opsin is channelrhodopsin-2 (ChR2); however, its relatively slow kinetic properties may prevent the encoding of auditory information at high stimulation rates. In the present study, we compare the temporal resolution of light-evoked responses of ChR2 to a recently developed fast opsin, Chronos, to ChR2 in a murine ABI model. Viral mediated gene transfer via a posterolateral craniotomy was used to express Chronos or ChR2 in the cochlear nucleus (CN). Following a four to eight week incubation period, blue light (473 nm) was delivered via an optical fiber placed directly on the surface of the infected CN, and neural activity was recorded in the contralateral inferior colliculus (IC). Both ChR2 and Chronos evoked sustained responses to all stimuli, even at high pulse rates. In addition, optical stimulation evoked excitatory responses throughout the tonotopic axis of the IC. Synchrony of the light-evoked response to stimulus rates of 14-448 pulses/s was higher in Chronos compared to ChR2 mice (p < 0.05 at 56, 168, and 224 pulses/s). Our results demonstrate that Chronos has the ability to drive the auditory system at higher stimulation rates than ChR2 and may be a more ideal opsin for manipulation of auditory pathways in future optogenetic-based neuroprostheses. This article is part of a Special Issue entitled "Lasker Award".


Assuntos
Implantes Auditivos de Tronco Encefálico , Vias Auditivas/fisiologia , Núcleo Coclear/fisiologia , Técnicas de Transferência de Genes , Opsinas/biossíntese , Optogenética , Rodopsina/biossíntese , Animais , Vias Auditivas/metabolismo , Núcleo Coclear/metabolismo , Dependovirus/genética , Potenciais Evocados , Vetores Genéticos , Cinética , Luz , Camundongos Endogâmicos CBA , Microinjeções , Opsinas/genética , Estimulação Luminosa , Desenho de Prótese , Rodopsina/genética
17.
Neuroscience ; 287: 43-54, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25514049

RESUMO

Hearing function lost by degeneration of inner ear spiral ganglion neurons (SGNs) in the auditory nervous system could potentially be compensated by cellular replacement using suitable donor cells. Donor cell-derived neuronal development with functional synaptic formation with auditory neurons of the cochlear nucleus (CN) in the brainstem is a prerequisite for a successful transplantation. Here a rat auditory brainstem explant culture system was used as a screening platform for donor cells. The explants were co-cultured with human neural precursor cells (HNPCs) to determine HNPCs developmental potential in the presence of environmental cues characteristic for the auditory brainstem region in vitro. We explored effects of pharmacological inhibition of GTPase Rho with its effector Rho-associated kinase (ROCK) and epidermal growth factor receptor (EGFR) signaling on the co-cultures. Pharmacological agents ROCK inhibitor Y27632 and EGFR blocker PD168393 were tested. Effect of the treatment on explant penetration by green fluorescent protein (GFP)-labeled HNPCs was evaluated based on the following criteria: number of GFP-HNPCs located within the explant; distance migrated by the GFP-HNPCs deep into the explant; length of the GFP+/neuronal class III ß-tubulin (TUJ1)+ processes developed and phenotypes displayed. In a short 2-week co-culture both inhibitors had growth-promoting effects on HNPCs, prominent in neurite extension elongation. Significant enhancement of migration and in-growth of HNPCs into the brain slice tissue was only observed in Y27632-treated co-cultures. Difference between Y27632- and PD168393-treated HNPCs acquiring neuronal fate was significant, though not different from the fates acquired in control co-culture. Our data suggest the presence of inhibitory mechanisms in the graft-host environment of the auditory brainstem slice co-culture system with neurite growth arresting properties which can be modulated by administration of signaling pathways antagonists. Therefore the co-culture system can be utilized for screens of donor cells and compounds regulating neuronal fate determination.


Assuntos
Núcleo Coclear/citologia , Núcleo Coclear/metabolismo , Receptores ErbB/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Amidas/farmacologia , Animais , Tronco Encefálico/citologia , Tronco Encefálico/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Inibidores Enzimáticos/farmacologia , Receptores ErbB/antagonistas & inibidores , Humanos , Neuroglia/citologia , Neuroglia/metabolismo , Piridinas/farmacologia , Quinazolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos , Quinases Associadas a rho/antagonistas & inibidores
18.
J Neurosci ; 34(15): 5261-72, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24719104

RESUMO

Acetylcholine is a neuromodulatory transmitter that controls synaptic plasticity and sensory processing in many brain regions. The dorsal cochlear nucleus (DCN) is an auditory brainstem nucleus that integrates auditory signals from the cochlea with multisensory inputs from several brainstem nuclei and receives prominent cholinergic projections. In the auditory periphery, cholinergic modulation serves a neuroprotective function, reducing cochlear output under high sound levels. However, the role of cholinergic signaling in the DCN is less understood. Here we examine postsynaptic mechanisms of cholinergic modulation at glutamatergic synapses formed by parallel fiber axons onto cartwheel cells (CWCs) in the apical DCN circuit from mouse brainstem slice using calcium (Ca) imaging combined with two-photon laser glutamate uncaging onto CWC spines. Activation of muscarinic acetylcholine receptors (mAChRs) significantly increased the amplitude of both uncaging-evoked EPSPs (uEPSPs) and spine Ca transients. Our results demonstrate that mAChRs in CWC spines act by suppressing large-conductance calcium-activated potassium (BK) channels, and this effect is mediated through the cAMP/protein kinase A signaling pathway. Blocking BK channels relieves voltage-dependent magnesium block of NMDA receptors, thereby enhancing uEPSPs and spine Ca transients. Finally, we demonstrate that mAChR activation inhibits L-type Ca channels and thus may contribute to the suppression of BK channels by mAChRs. In summary, we demonstrate a novel role for BK channels in regulating glutamatergic transmission and show that this mechanism is under modulatory control of mAChRs.


Assuntos
Cálcio/metabolismo , Neurônios Colinérgicos/metabolismo , Núcleo Coclear/fisiologia , Espinhas Dendríticas/metabolismo , Potenciais Pós-Sinápticos Excitadores , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Animais , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Neurônios Colinérgicos/fisiologia , Núcleo Coclear/citologia , Núcleo Coclear/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espinhas Dendríticas/fisiologia , Ácido Glutâmico/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos CBA , Bloqueadores dos Canais de Potássio/farmacologia , Receptores Muscarínicos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
19.
PLoS One ; 9(1): e86679, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475166

RESUMO

Aldolase C (Aldoc, also known as "zebrin II"), a brain type isozyme of a glycolysis enzyme, is expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) that are arranged longitudinally in a complex striped pattern in the cerebellar cortex, a pattern which is closely related to the topography of input and output axonal projections. Here, we generated knock-in Aldoc-Venus mice in which Aldoc expression is visualized by expression of a fluorescent protein, Venus. Since there was no obvious phenotypes in general brain morphology and in the striped pattern of the cerebellum in mutants, we made detailed observation of Aldoc expression pattern in the nervous system by using Venus expression in Aldoc-Venus heterozygotes. High levels of Venus expression were observed in cerebellar PCs, cartwheel cells in the dorsal cochlear nucleus, sensory epithelium of the inner ear and in all major types of retinal cells, while moderate levels of Venus expression were observed in astrocytes and satellite cells in the dorsal root ganglion. The striped arrangement of PCs that express Venus to different degrees was carefully traced with serial section alignment analysis and mapped on the unfolded scheme of the entire cerebellar cortex to re-identify all individual Aldoc stripes. A longitudinally striped boundary of Aldoc expression was first identified in the mouse flocculus, and was correlated with the climbing fiber projection pattern and expression of another compartmental marker molecule, heat shock protein 25 (HSP25). As in the rat, the cerebellar nuclei were divided into the rostrodorsal negative and the caudoventral positive portions by distinct projections of Aldoc-positive and negative PC axons in the mouse. Identification of the cerebellar Aldoc stripes in this study, as indicated in sample coronal and horizontal sections as well as in sample surface photos of whole-mount preparations, can be referred to in future experiments.


Assuntos
Frutose-Bifosfato Aldolase/metabolismo , Células de Purkinje/metabolismo , Retina/metabolismo , Animais , Proteínas de Bactérias , Southern Blotting , Western Blotting , Núcleo Coclear/metabolismo , Primers do DNA/genética , Células Epiteliais/metabolismo , Frutose-Bifosfato Aldolase/genética , Gânglios Espinais/metabolismo , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Heterozigoto , Imuno-Histoquímica , Proteínas Luminescentes , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase
20.
Neurosci Lett ; 558: 180-5, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24269984

RESUMO

The aim of this study was to elucidate the mechanism of isolated vascular vertigo by determining selective and relative ischemic vulnerability of the vestibular structures using a global hypoperfusion model in rats. Sprague-Dawley male rats weighing 330-350 g were subjected to transient global ischemia of the brain using a 4-vessel-occlusion (4VO) model. After permanent occlusion of both vertebral arteries (VA) using electrocauterization, both common carotid arteries (CCAs) were occluded for 5-20 min with ligation. One hour after reperfusion of the CCAs, the animals were sacrificed and subjected to c-Fos staining of the entire cerebellum, brainstem, and vestibular ganglion. The rats in the sham group received the same surgical procedures except the vessel ligation. With 4VO for 5-15 min, both the sham and experimental groups showed a weak and scarce c-Fos expression in the medial vestibular nucleus (MVN), neuron Y, and cochlear nucleus. After 4VO for 20 min, only the MVN began to show a significant difference in the number of c-Fos positive neurons between the experimental and sham groups (33.7±17.7 vs.7.1±5.1, Wilcoxon rank test, p=0.005). With 4VO for up to 20 min, c-Fos positive neurons were not found in other areas of the brainstem and cerebellum, including the superior, lateral, and spinal vestibular nuclei, the vestibular ganglion, the cerebellar cortex, and the deep cerebellar nuclei. The vestibular structures appear to be vulnerable to ischemia more than any other structures in the brainstem and cerebellum. Of the vestibular structures, the MVN is most vulnerable to ischemic insults in rats. These findings are consistent with the common findings of vertigo as an initial and isolated symptom of posterior circulation ischemia in human.


Assuntos
Tronco Encefálico/patologia , Ataque Isquêmico Transitório/patologia , Vertigem/patologia , Vestíbulo do Labirinto/patologia , Animais , Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Cerebelo/patologia , Núcleo Coclear/metabolismo , Núcleo Coclear/patologia , Gânglios Sensitivos/metabolismo , Gânglios Sensitivos/patologia , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/metabolismo , Masculino , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Vertigem/etiologia , Vertigem/metabolismo , Núcleos Vestibulares/metabolismo , Núcleos Vestibulares/patologia , Vestíbulo do Labirinto/inervação , Vestíbulo do Labirinto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA