RESUMO
BACKGROUND: Elevated inflammatory cytokines in the periphery have been identified as active contributors to neuroinflammation and sympathetic overactivity in heart failure (HF). Yet, the exact mechanisms by which these cytokines breach the blood-brain barrier (BBB) to exert their effects on the brain remain elusive. Interleukin 17A has been linked to BBB disruption in various neurologic disorders, and its levels were significantly augmented in circulation and the brain in HF. The present study aimed to determine whether the BBB integrity was compromised within the hypothalamic paraventricular nucleus (PVN), and if so, whether interleukin 17A contributes to BBB disruption in myocardial infarction-induced HF. METHODS AND RESULTS: Male Sprague-Dawley rats underwent coronary artery ligation to induce HF or sham surgery. Some HF rats received bilateral PVN microinjections of an interleukin 17 receptor A small interfering RNA or a scrambled small interfering RNA adeno-associated virus. Four weeks after coronary artery ligation, the permeability of the BBB was evaluated by intracarotid injection of fluorescent dyes (fluorescein isothiocyanate-dextran 10 kDa+rhodamine-dextran 70 kDa). Compared with sham-operated rats, HF rats exhibited an elevated extravasation of fluorescein isothiocyanate-dextran 10 kDa within the PVN but not in the brain cortex. The plasma interleukin 17A levels were positively correlated with fluorescein isothiocyanate 10 kDa extravasation in the PVN. The expression of caveolin-1, a transcytosis marker, was augmented, whereas the expression of tight junction proteins was diminished in HF rats. Interleukin 17 receptor A was identified within the endothelium of PVN microvessels. Treatment with interleukin 17 receptor A small interfering RNA led to a significant attenuation of fluorescein isothiocyanate 10 kDa extravasation in the PVN and reversed expression of caveolin-1 and tight junction-associated proteins in the PVN. CONCLUSIONS: Collectively, these data indicate that BBB permeability within the PVN is enhanced in HF and is likely attributable to increased interleukin 17A/interleukin 17 receptor A signaling in the BBB endothelium, by promoting caveolar transcytosis and degradation of tight junction complexes.
Assuntos
Barreira Hematoencefálica , Fluoresceína-5-Isotiocianato , Interleucina-17 , Infarto do Miocárdio , Núcleo Hipotalâmico Paraventricular , Transdução de Sinais , Animais , Masculino , Ratos , Barreira Hematoencefálica/metabolismo , Caveolina 1/metabolismo , Citocinas/metabolismo , Dextranos/metabolismo , Dextranos/farmacologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceínas/metabolismo , Fluoresceínas/farmacologia , Insuficiência Cardíaca , Interleucina-17/metabolismo , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Ratos Sprague-Dawley , Receptores de Interleucina-17/metabolismo , RNA Interferente Pequeno/metabolismoRESUMO
Sex differences in the sensitivity to hypertension and inflammatory processes are well characterized but insufficiently understood. In male mice, tumor necrosis factor alpha (TNFα) in the hypothalamic paraventricular nucleus (PVN) contributes to hypertension following slow-pressor angiotensin II (AngII) infusion. However, the role of PVN TNFα in the response to AngII in female mice is unknown. Using a combination of in situ hybridization, high-resolution electron microscopic immunohistochemistry, spatial-temporal gene silencing, and dihydroethidium microfluorography we investigated the influence of AngII on both blood pressure and PVN TNFα signaling in female mice. We found that chronic (14-day) infusion of AngII in female mice did not impact blood pressure, TNFα levels, the expression of the TNFα type 1 receptor (TNFR1), or the subcellular distribution of TNFR1 in the PVN. However, it was shown that blockade of estrogen receptor ß (ERß), a major hypothalamic estrogen receptor, was accompanied by both elevated PVN TNFα and hypertension following AngII. Further, AngII hypertension following ERß blockade was attenuated by inhibiting PVN TNFα signaling by local TNFR1 silencing. It was also shown that ERß blockade in isolated PVN-spinal cord projection neurons (i.e. sympathoexcitatory) heightened TNFα-induced production of NADPH oxidase (NOX2)-mediated reactive oxygen species, molecules that may play a key role in mediating the effect of TNFα in hypertension. These results indicate that ERß contributes to the reduced sensitivity of female mice to hypothalamic inflammatory cytokine signaling and hypertension in response to AngII.
Assuntos
Hipertensão , Núcleo Hipotalâmico Paraventricular , Camundongos , Feminino , Masculino , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Hipotalâmico Paraventricular/ultraestrutura , Angiotensina II/efeitos adversos , Angiotensina II/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/efeitos adversos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Neurônios/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Pressão SanguíneaRESUMO
Bisphenol A (BPA), an organic synthetic compound found in some plastics and epoxy resins, is classified as an endocrine disrupting chemical. Exposure to BPA is especially dangerous if it occurs during specific "critical periods" of life, when organisms are more sensitive to hormonal changes (i.e., intrauterine, perinatal, juvenile or puberty periods). In this study, we focused on the effects of chronic exposure to BPA in adult female mice starting during pregnancy. Three months old C57BL/6J females were orally exposed to BPA or to vehicle (corn oil). The treatment (4 µg/kg body weight/day) started the day 0 of pregnancy and continued throughout pregnancy, lactation, and lasted for a total of 20 weeks. BPA-treated dams did not show differences in body weight or food intake, but they showed an altered estrous cycle compared to the controls. In order to evidence alterations in social and sociosexual behaviors, we performed the Three-Chamber test for sociability, and analyzed two hypothalamic circuits (well-known targets of endocrine disruption) particularly involved in the control of social behavior: the vasopressin and the oxytocin systems. The test revealed some alterations in the displaying of social behavior: BPA-treated dams have higher locomotor activity compared to the control dams, probably a signal of high level of anxiety. In addition, BPA-treated dams spent more time interacting with no-tester females than with no-tester males. In brain sections, we observed a decrease of vasopressin immunoreactivity (only in the paraventricular and suprachiasmatic nuclei) of BPA-treated females, while we did not find any alteration of the oxytocin system. In parallel, we have also observed, in the same hypothalamic nuclei, a significant reduction of the membrane estrogen receptor GPER1 expression.
Assuntos
Comportamento Animal/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vasopressinas/metabolismo , Animais , Ciclo Estral/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/patologia , Gravidez , Comportamento Social , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/patologiaRESUMO
The arcuate nucleus (ARC) of the hypothalamus comprises two antagonistic neuron populations critical for energy balance, namely, the anorexigenic pro-opiomelanocortin (POMC) and the orexigenic agouti-related peptide (AgRP) neurons that act as agonists and antagonists, respectively, for neurons expressing the type IV melanocortin receptor (MC4R) (Andermann ML and Lowell BB. Neuron 95: 757-778, 2017). MC4R activation increases energy expenditure and decreases food intake during positive energy balance states to prevent diet-induced obesity (DIO). Work from our group identified aberrant neuronal cell cycle events both as a novel biomarker and druggable target in the ARC for the treatment of DIO, demonstrating pharmacological restoration of retinoblastoma protein function in the ARC using cyclin-dependent kinase 4/6 (CDK4/6) inhibitors could treat DIO in mice by increasing lipid oxidation to selectively decrease fat mass. However, the role of CDK4/6 inhibitors on food intake was not examined. Four-week-old Mc4r-loxTB mice were continuously administered high-fat diet (60% kcal fat). At 8 wk of age, animals were administered 60 mg/kg abemaciclib orally or a saline control and monitored every 2 wk for fat mass changes by MRI. At 11 wk of age, all animals were injected bilaterally in the paraventricular hypothalamus with AAV8 serotype virus expressing a Cre-mCherry and monitored for another 5 wk. Restoration of Mc4r expression in the paraventricular hypothalamic nucleus (PVN/PVH) reduced food intake in hyperphagic obese mice when given CDK4/6 inhibitor therapy. The reduced food intake was responsible for reduced fat mass in mice treated with abemaciclib. These results indicate that targeting POMC neurons could be an effective strategy in treating diet-related obesity.NEW & NOTEWORTHY We have defined some of the necessary components to prevent high-fat diet-induced obesity at the molecular and cellular level. Within POMC neurons, the retinoblastoma protein must remain active and prevented from phosphoinactivation by cyclin-dependent kinases. The downstream neurons within the PVH must also properly express MC4R for the circuit to appropriately regulate feeding behavior.
Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Melanocortinas/metabolismo , Rede Nervosa/efeitos dos fármacos , Obesidade/tratamento farmacológico , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/patologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 4 de Melanocortina/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
Exercise (Ex) has long been recognized to produce beneficial effects on hypertension (HTN). This coupled with evidence of gut dysbiosis and an impaired gut-brain axis led us to hypothesize that reshaping of gut microbiota and improvement in impaired gut-brain axis would, in part, be associated with beneficial influence of exercise. Male spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats were randomized into sedentary, trained, and detrained groups. Trained rats underwent moderate-intensity exercise for 12 weeks, whereas, detrained groups underwent 8 weeks of moderate-intensity exercise followed by 4 weeks of detraining. Fecal microbiota, gut pathology, intestinal inflammation, and permeability, brain microglia and neuroinflammation were analyzed. We observed that exercise training resulted in a persistent decrease in systolic blood pressure in the SHR. This was associated with increase in microbial α diversity, altered ß diversity, and enrichment of beneficial bacterial genera. Furthermore, decrease in the number of activated microglia, neuroinflammation in the hypothalamic paraventricular nucleus, improved gut pathology, inflammation, and permeability were also observed in the SHR following exercise. Interestingly, short-term detraining did not abolish these exercise-mediated improvements. Finally, fecal microbiota transplantation from exercised SHR into sedentary SHR resulted in attenuated SBP and an improved gut-brain axis. These observations support our concept that an impaired gut-brain axis is linked to HTN and exercise ameliorates this impairment to induce antihypertensive effects.
Assuntos
Eixo Encéfalo-Intestino/fisiologia , Microbioma Gastrointestinal/fisiologia , Hipertensão/terapia , Condicionamento Físico Animal/fisiologia , Animais , Pressão Sanguínea , Cardiomegalia/prevenção & controle , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Hipertensão/patologia , Inflamação/prevenção & controle , Masculino , Microglia/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Permeabilidade , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sistema Nervoso Simpático/patologiaRESUMO
Thyroid hormone (T3) inhibits thyrotropin-releasing hormone (TRH) synthesis in the hypothalamic paraventricular nucleus (PVN). Although the T3 receptor (TR) ß2 is known to mediate the negative regulation of the prepro-TRH gene, its molecular mechanism remains unknown. Our previous studies on the T3-dependent negative regulation of the thyrotropin ß subunit (TSHß) gene suggest that there is a tethering mechanism, whereby liganded TRß2 interferes with the function of the transcription factor, GATA2, a critical activator of the TSHß gene. Interestingly, the transcription factors Sim1 and Arnt2, the determinants of PVN differentiation in the hypothalamus, are reported to induce expression of TRß2 and GATA2 in cultured neuronal cells. Here, we confirmed the expression of the GATA2 protein in the TRH neuron of the rat PVN using immunohistochemistry with an anti-GATA2 antibody. According to an experimental study from transgenic mice, a region of the rat prepro-TRH promoter from nt. -547 to nt. +84 was able to mediate its expression in the PVN. We constructed a chloramphenicol acetyltransferase (CAT) reporter gene containing this promoter sequence (rTRH(547)-CAT) and showed that GATA2 activated the promoter in monkey kidney-derived CV1 cells. Deletion and mutation analyses identified a functional GATA-responsive element (GATA-RE) between nt. -357 and nt. -352. When TRß2 was co-expressed, T3 reduced GATA2-dependent promoter activity to approximately 30%. Unexpectedly, T3-dependent negative regulation was maintained after mutation of the reported negative T3-responsive element, site 4. T3 also inhibited the GATA2-dependent transcription enhanced by cAMP agonist, 8-bromo-cAMP. A rat thyroid medullary carcinoma cell line, CA77, is known to express the preproTRH mRNA. Using a chromatin immunoprecipitation assay with this cell line where GATA2 expression plasmid was transfected, we observed the recognition of the GATA-RE by GATA2. We also confirmed GATA2 binding using gel shift assay with the probe for the GATA-RE. In CA77 cells, the activity of rTRH(547)-CAT was potentiated by overexpression of GATA2, and it was inhibited in a T3-dependent manner. These results suggest that GATA2 transactivates the rat prepro-TRH gene and that liganded TRß2 interferes with this activation via a tethering mechanism as in the case of the TSHß gene.
Assuntos
Fator de Transcrição GATA2/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Animais , Linhagem Celular , Fator de Transcrição GATA2/fisiologia , Regulação da Expressão Gênica/genética , Genes Reporter/genética , Ligantes , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Regiões Promotoras Genéticas/genética , Precursores de Proteínas , Ratos , Ratos Wistar , Receptores dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Hormônios Tireóideos , Tireotropina Subunidade beta/metabolismo , Hormônio Liberador de Tireotropina/genética , Fatores de Transcrição , Ativação Transcricional , Tri-Iodotironina/metabolismoRESUMO
BACKGROUND: We previously found that high-dose methylprednisolone increased the incidence of critical illness-related corticosteroid insufficiency (CIRCI) and mortality in rats with traumatic brain injury (TBI), whereas low-dose hydrocortisone but not methylprednisolone exerted protective effects. However, the receptor-mediated mechanism remains unclear. This study investigated the receptor-mediated mechanism of the opposite effects of different glucocorticoids on the survival of paraventricular nucleus (PVN) cells and the incidence of CIRCI after TBI. METHODS: Based on controlled cortical impact (CCI) and treatments, male SD rats (n = 300) were randomly divided into the sham, CCI, CCI + GCs (methylprednisolone 1 or 30 mg/kg/day; corticosterone 1 mg/kg/day), CCI + methylprednisolone+RU486 (RU486 50 mg/kg/day), and CCI + corticosterone+spironolactone (spironolactone 50 mg/kg/day) groups. Blood samples were collected 7 days before and after CCI. Brain tissues were collected on postinjury day 7 and processed for histology and western blot analysis. RESULTS: We examined the incidence of CIRCI, mortality, apoptosis in the PVN, the receptor-mediated mechanism, and downstream signaling pathways on postinjury day 7. We found that methylprednisolone and corticosterone exerted opposite effects on the survival of PVN cells and the incidence of CIRCI by activating different receptors. High-dose methylprednisolone increased the nuclear glucocorticoid receptor (GR) level and subsequently increased cell loss in the PVN and the incidence of CIRCI. In contrast, low-dose corticosterone but not methylprednisolone played a protective role by upregulating mineralocorticoid receptor (MR) activation. The possible downstream receptor signaling mechanism involved the differential effects of GR and MR on the activity of the Akt/CREB/BDNF pathway. CONCLUSION: The excessive activation of GR by high-dose methylprednisolone exacerbated apoptosis in the PVN and increased CIRCI. In contrast, refilling of MR by corticosterone protects PVN neurons and reduces the incidence of CIRCI by promoting GR/MR rebalancing after TBI.
Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Esteroides/metabolismo , Corticosteroides/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Sobrevivência Celular/fisiologia , Estado Terminal/terapia , Glucocorticoides/farmacologia , Masculino , Metilprednisolona/farmacologia , Núcleo Hipotalâmico Paraventricular/patologia , Ratos , Ratos Sprague-DawleyRESUMO
Obstructive sleep apnea is characterized by interrupted breathing that leads to cardiovascular sequelae including chronic hypertension that can persist into the waking hours. Chronic intermittent hypoxia (CIH), which models the hypoxemia associated with sleep apnea, is sufficient to cause a sustained increase in blood pressure that involves the central nervous system. The median preoptic nucleus (MnPO) is an integrative forebrain region that contributes to blood pressure regulation and neurogenic hypertension. The MnPO projects to the paraventricular nucleus (PVN), a preautonomic region. We hypothesized that pathway-specific lesions of the projection from the MnPO to the PVN would attenuate the sustained component of chronic intermittent hypoxia-induced hypertension. Adult male Sprague-Dawley rats (250-300 g) were anesthetized with isoflurane and stereotaxically injected bilaterally in the PVN with a retrograde Cre-containing adeno-associated virus (AAV; AAV9.CMV.HI.eGFP-Cre.WPRE.SV40) and injected in the MnPO with caspase-3 (AAV5-flex-taCasp3-TEVp) or control virus (AAV5-hSyn-DIO-mCherry). Three weeks after the injections the rats were exposed to a 7-day intermittent hypoxia protocol. During chronic intermittent hypoxia, controls developed a diurnal hypertension that was blunted in rats with caspase lesions. Brain tissue processed for FosB immunohistochemistry showed decreased staining with caspase-induced lesions of MnPO and downstream autonomic-regulating nuclei. Chronic intermittent hypoxia significantly increased plasma levels of advanced oxidative protein products in controls, but this increase was blocked in caspase-lesioned rats. The results indicate that PVN-projecting MnPO neurons play a significant role in blood pressure regulation in the development of persistent chronic intermittent hypoxia hypertension.NEW & NOTEWORTHY Chronic intermittent hypoxia associated with obstructive sleep apnea increases oxidative stress and leads to chronic hypertension. Sustained hypertension may be mediated by angiotensin II-induced neural plasticity of excitatory median preoptic neurons in the forebrain that project to the paraventricular nucleus of the hypothalamus. Selective caspase lesions of these neurons interrupt the drive for sustained hypertension and cause a reduction in circulating oxidative protein products. This indicates that a functional connection between the forebrain and hypothalamus is necessary to drive diurnal hypertension associated with intermittent hypoxia. These results provide new information about central mechanisms that may contribute to neurogenic hypertension.
Assuntos
Apoptose , Pressão Arterial , Caspase 3/metabolismo , Hipertensão/prevenção & controle , Hipóxia/complicações , Núcleo Hipotalâmico Paraventricular/enzimologia , Área Pré-Óptica/enzimologia , Animais , Caspase 3/genética , Ritmo Circadiano , Modelos Animais de Doenças , Frequência Cardíaca , Hipertensão/enzimologia , Hipertensão/patologia , Hipertensão/fisiopatologia , Hipóxia/enzimologia , Hipóxia/patologia , Hipóxia/fisiopatologia , Masculino , Estresse Oxidativo , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Área Pré-Óptica/patologia , Área Pré-Óptica/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Transdução de SinaisRESUMO
Brain renin angiotensin system within the paraventricular nucleus plays a critical role in balancing excitatory and inhibitory inputs to modulate sympathetic output and blood pressure regulation. We previously identified ACE2 and ADAM17 as a compensatory enzyme and a sheddase, respectively, involved in brain renin angiotensin system regulation. Here, we investigated the opposing contribution of ACE2 and ADAM17 to hypothalamic presympathetic activity and ultimately neurogenic hypertension. New mouse models were generated where ACE2 and ADAM17 were selectively knocked down from all neurons (AC-N) or Sim1 neurons (SAT), respectively. Neuronal ACE2 deletion revealed a reduction of inhibitory inputs to AC-N presympathetic neurons relevant to blood pressure regulation. Primary neuron cultures confirmed ACE2 expression on GABAergic neurons synapsing onto excitatory neurons within the hypothalamus but not on glutamatergic neurons. ADAM17 expression was shown to colocalize with angiotensin-II type 1 receptors on Sim1 neurons, and the pressor relevance of this neuronal population was demonstrated by photoactivation. Selective knockdown of ADAM17 was associated with a reduction of FosB gene expression, increased vagal tone, and prevented the acute pressor response to centrally administered angiotensin-II. Chronically, SAT mice exhibited a blunted blood pressure elevation and preserved ACE2 activity during development of salt-sensitive hypertension. Bicuculline injection in those models confirmed the supporting role of ACE2 on GABAergic tone to the paraventricular nucleus. Together, our study demonstrates the contrasting impact of ACE2 and ADAM17 on neuronal excitability of presympathetic neurons within the paraventricular nucleus and the consequences of this mutual regulation in the context of neurogenic hypertension.
Assuntos
Proteína ADAM17/metabolismo , Angiotensina II/farmacologia , Hipertensão/fisiopatologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Peptidil Dipeptidase A/metabolismo , Sistema Renina-Angiotensina/genética , Enzima de Conversão de Angiotensina 2 , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/fisiopatologia , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Hipertensão/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Optogenética/métodos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/patologia , Distribuição Aleatória , Sistema Renina-Angiotensina/efeitos dos fármacosRESUMO
OBJECTIVE: Prolonged treatment with neuroleptics has been shown to induce FosB/ΔFosB expression in several brain regions including the medial prefrontal cortex, dorsomedial and dorsolateral striatum, ventrolateral and dorsolateral septum, nucleus accumbens shell and core, and the hypothalamic paraventricular nucleus (PVN). Some of these regions are known to be also stress responsive. This study was designed to determine whether repeated clozapine (CLZ) administration for 7 consecutive days to Wistar rats may modify FosB/ΔFosB expression in the above-mentioned brain areas induced by acute stress or novel stressor that followed 13-day chronic mild stress preconditioning. METHODS: Following experimental groups were used: unstressed animals treated with vehicle/ CLZ for 7 days; 7-day vehicle/CLZ-treated animals on the last day exposed to acute stress - forced swimming (FSW); and animals preconditioned with stress for 13 days treated from the 8th day with vehicle/CLZ and on the 14th day exposed to novel stress - FSW. RESULTS: In the unstressed animals CLZ markedly increased FosB/ΔFosB immunoreactivity in the ventrolateral septum and PVN. FSW elevated FosB/ΔFosB expression in the medial prefrontal cortex, striatum, and septum. CLZ markedly potentiated the effect of the FSW on FosB/ΔFosB expression in the PVN, but suppressed it in the dorsomedial striatum. Novel stress with stress preconditioning increased FosB/ΔFosB immunoreactivity in the prefrontal cortex, striatum, ventrolateral septum, and the PVN. In the nucleus accumbens the effect of the novel stressor was potentiated by CLZ. CONCLUSION: Our data indicate that CLZ may modulate the acute as well as novel stress effects on FosB/ΔFosB expression but its effect differs within the individual brain regions.
Assuntos
Clozapina/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estresse Psicológico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Neurônios/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Ratos , Ratos Wistar , Estresse Psicológico/complicações , Estresse Psicológico/patologia , Natação/psicologiaRESUMO
OBJECTIVE: Sustained hypertension is a major cause of heart failure in aging hypertensive patients. Salusin ß, a novel bioactive peptide of 20 amino acids, has been reported to participate in various cardiovascular diseases, including hypertension. We therefore hypothesized that central knockdown of salusin ß might be effective for hypertension-induced heart failure treatment. METHODS AND RESULTS: Eighteen-month-old male aged spontaneously hypertensive rats (SHR) with heart failure and WKY rats were microinjected with either a specific adenoviral vector encoding salusin ß shRNA (Ad-Sal-shRNA) or a scramble shRNA (Ad-Scr-shRNA) in the hypothalamic paraventricular nucleus (PVN) for 4â¯weeks. Radiotelemetry and echocardiography were used for measuring blood pressure and cardiac function, respectively. Blood samples and heart were harvested for evaluating plasma norepinephrine, tyrosine hydroxylase, and cardiac morphology, respectively. The mesenteric arteries were separated for measurement of vascular responses. The PVN was analyzed for salusin ß, proinflammatory cytokines (PICs), mitogen-activated protein kinase (MAPK), NF-κB, and reactive oxygen species (ROS) levels. Compared with normotensive rats, aging SHR with heart failure had dramatically increased salusin ß expression. Silencing salusin ß with Ad-Sal-shRNA attenuated arterial pressure and improved autonomic function, cardiac and vascular dysfunction in aging SHR with heart failure, but not in aging WKY rats. Knockdown of salusin ß significantly reduced paraventricular nucleus PICs levels, MAPK and NF-κB activity, and ROS levels in aging SHR with heart failure. CONCLUSION: These data demonstrate that in aging SHR, the heart failure that was developed during the end stage of hypertension could be ameliorated by silencing salusin ß.
Assuntos
Envelhecimento/metabolismo , Insuficiência Cardíaca/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Animais , Técnicas de Silenciamento de Genes/métodos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/prevenção & controle , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Núcleo Hipotalâmico Paraventricular/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKYRESUMO
Pulmonary hypertension (PH) is a devastating disease and its successful treatment remains to be accomplished despite recent advances in pharmacotherapy. It has been proposed that PH be considered as a systemic disease, rather than primarily a disease of the pulmonary vasculature. Consequently, an investigation of the intricate interplay between multiple organs such as brain, vasculature, and lung in PH could lead to the identification of new targets for its therapy. However, little is known about this interplay. This study was undertaken to examine the concept that altered autonomic-pulmonary communication is important in PH pathophysiology. Therefore, we hypothesize that activation of microglial cells in the paraventricular nucleus of hypothalamus and neuroinflammation is associated with increased sympathetic drive and pulmonary pathophysiology contributing to PH. We utilized the monocrotaline rat model for PH and intracerebroventricular administration of minocycline for inhibition of microglial cells activation to investigate this hypothesis. Hemodynamic, echocardiographic, histological, immunohistochemical, and confocal microscopic techniques assessed cardiac and pulmonary function and microglial cells. Monocrotaline treatment caused cardiac and pulmonary pathophysiology associated with PH. There were also increased activated microglial cells and mRNA for proinflammatory cytokines (IL [interleukin]-1ß, IL-6, and TNF [tumor necrosis factor]-α) in the paraventricular nucleus. Furthermore, increased sympathetic drive and plasma norepinephrine were observed in rats with PH. Intracerebroventricular infusion of minocycline inhibited all these parameters and significantly attenuated PH. These observations implicate a dysfunctional autonomic-lung communication in the development and progression of PH providing new therapeutic targets, such as neuroinflammation, for PH therapy.
Assuntos
Citocinas/metabolismo , Hipertensão Pulmonar/fisiopatologia , Microglia/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Pressão Propulsora Pulmonar/fisiologia , Animais , Modelos Animais de Doenças , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/diagnóstico , Masculino , Microglia/patologia , Monocrotalina/toxicidade , Núcleo Hipotalâmico Paraventricular/patologia , Ratos , Ratos Sprague-DawleyRESUMO
Microglia, resident immune cells of the CNS are sensitive to various perturbations of the environment, such as stress exposure, and may be involved in translating these changes to behavior. Among the pathways mediating stress-related neuronal cues to microglia, the fractalkine-fractalkine receptor (CX3CR1) signaling plays a crucial role. Using mice, in which the CX3CR1 gene was deleted, we explored hormonal and behavioral responses to acute and chronic stress along with changes in hypothalamic microglia. CX3CR1-/- animals display active escape in forced swim- and tail suspension tests, exaggerated neuronal activation in the hypothalamic paraventricular nucleus and increased corticosterone release in response to restraint. Analysis of Iba1 immunostaining of hypothalamic sections revealed stress-related reduction of microglia in CX3CR1-/- mice. Because microglia also contribute to energy balance regulation, we characterized metabolic phenotype of CX3CR1-/- mice. Comparison of respiratory exchange ratio did not show genotype effect on fuel preference, however, the energy expenditure was increased in CX3CR1-/- mice, which may be related to their active coping behavior. Microglia and fractalkine signaling has been repeatedly shown to be involved chronic stress-induced depressive state. CX3CR1-/- mice did not become anhedonic in the "two hit" chronic stress paradigm, confirming resistance of these animals to chronic stress-induced mood alterations. However, there was no difference in stress hormone levels, open field performance and hypothalamic microglia distribution between the genotypes. These results highlight differential involvement of microglia fractalkine signaling in controlling/integrating hormonal-, metabolic and behavioral responses to acute and chronic stress challenges.
Assuntos
Adaptação Psicológica/fisiologia , Receptor 1 de Quimiocina CX3C/deficiência , Quimiocina CX3CL1/metabolismo , Microglia/metabolismo , Estresse Psicológico/metabolismo , Hormônio Adrenocorticotrópico/sangue , Anedonia/fisiologia , Animais , Receptor 1 de Quimiocina CX3C/genética , Proteínas de Ligação ao Cálcio/metabolismo , Corticosterona/sangue , Reação de Fuga/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Microglia/patologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais , Estresse Psicológico/patologiaRESUMO
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are environmental pollutants that produce neurotoxicity and neuroendocrine disruption. They affect the vasopressinergic system but their disruptive mechanisms are not well understood. Our group reported that rats perinatally exposed to Aroclor-1254 (A1254) and DE-71 (commercial mixtures of PCBs and PBDEs) decrease somatodendritic vasopressin (AVP) release while increasing plasma AVP responses to osmotic activation, potentially emptying AVP reserves required for body-water balance. The aim of this research was to evaluate the effects of perinatal exposure to A1254 or DE-71 (30mgkg/day) on AVP transcription and protein content in the paraventricular and supraoptic hypothalamic nuclei, of male and female rats, by in situ hybridization and immunohistochemistry. cFOS mRNA expression was evaluated in order to determine neuroendocrine cells activation due to osmotic stimulation. Animal groups were: vehicle (control); exposed to either A1254 or DE-71; both, control and exposed, subjected to osmotic challenge. The results confirmed a physiological increase in AVP-immunoreactivity (AVP-IR) and gene expression in response to osmotic challenge as reported elsewhere. In contrast, the exposed groups did not show this response to osmotic activation, they showed significant reduction in AVP-IR neurons, and AVP mRNA expression as compared to the hyperosmotic controls. cFOS mRNA expression increased in A1254 dehydrated groups, suggesting that the AVP-IR decrease was not due to a lack of the response to the osmotic activation. Therefore, A1254 may interfere with the activation of AVP mRNA transcript levels and protein, causing a central dysfunction of vasopressinergic system.
Assuntos
Arginina Vasopressina/metabolismo , Poluentes Ambientais/toxicidade , Éteres Difenil Halogenados/toxicidade , Células Neuroendócrinas/efeitos dos fármacos , Pressão Osmótica , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/metabolismo , Núcleo Supraóptico/efeitos dos fármacos , Animais , Arginina Vasopressina/genética , Regulação para Baixo , Feminino , Masculino , Exposição Materna/efeitos adversos , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/patologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Gravidez , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , Ratos Sprague-Dawley , Ratos Wistar , Cloreto de Sódio/administração & dosagem , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/patologia , Transcrição GênicaRESUMO
Aberrant glucocorticoid secretion is implicated in the pathophysiology of stress-related disorders (i.e., depression, anxiety). Glucocorticoids exert biological effects via mineralocorticoid (MR) and glucocorticoid (GR) receptors. Previous data from our laboratory indicate that GR antagonism/modulation (i.e., mifepristone, CORT 108297) regulate endocrine, behavioral, and central stress responses. Because of the dynamic interplay between MR and GR on HPA axis regulation and emotionality, compounds targeting both receptors are of interest for stress-related pathology. We investigated the effects of CORT 118335 (a dual selective GR modulator/MR antagonist) on endocrine, behavioral, and central (c-Fos) stress responses in male rats. Rats were treated for five days with CORT 118335, imipramine (positive control), or vehicle and exposed to restraint or forced swim stress (FST). CORT 118335 dampened corticosterone responses to both stressors, without a concomitant antidepressant-like effect in the FST. Imipramine decreased corticosterone responses to restraint stress; however, the antidepressant-like effect of imipramine in the FST was independent of circulating glucocorticoids. These findings indicate dissociation between endocrine and behavioral stress responses in the FST. CORT 118335 decreased c-Fos expression only in the CA1 division of the hippocampus. Imipramine decreased c-Fos expression in the basolateral amygdala and CA1 and CA3 divisions of the hippocampus. Overall, the data indicate differential effects of CORT 118335 and imipramine on stress-induced neuronal activity in various brain regions. The data also highlight a complex relationship between neuronal activation in stress and mood regulatory brain regions and the ensuing impact on endocrine and behavioral stress responses.
Assuntos
Corticosterona/metabolismo , Hipocampo/efeitos dos fármacos , Hormônios/farmacologia , Psicotrópicos/farmacologia , Estresse Psicológico/tratamento farmacológico , Timina/análogos & derivados , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Imipramina/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Timina/farmacologiaRESUMO
Hypertension in male and aging female rodents is associated with glutamate-dependent plasticity in the hypothalamus, but existing models have failed to capture distinct transitional menopausal phases that could have a significant impact on the synaptic plasticity and emergent hypertension. In rodents, accelerated ovarian failure (AOF) induced by systemic injection of 4-vinylcyclohexane diepoxide mimics the estrogen fluctuations seen in human menopause including the perimenopause transition (peri-AOF) and postmenopause (post-AOF). Thus, we used the mouse AOF model to determine the impact of slow-pressor angiotensin II (AngII) administration on blood pressure and on the subcellular distribution of obligatory N-methyl-D-aspartate (NMDA) receptor GluN1 subunits in the paraventricular hypothalamic nucleus (PVN), a key estrogen-responsive cardiovascular regulatory area. Estrogen-sensitive neuronal profiles were identified in mice expressing enhanced green fluorescent protein under the promoter for estrogen receptor (ER) ß, a major ER in the PVN. Slow-pressor AngII increased arterial blood pressure in mice at peri- and post-AOF time points. In control oil-injected (nonhypertensive) mice, AngII decreased the total number of GluN1 in ERß-containing PVN dendrites. In contrast, AngII resulted in a reapportionment of GluN1 from the cytoplasm to the plasma membrane of ERß-containing PVN dendrites in peri-AOF mice. Moreover, in post-AOF mice, AngII increased total GluN1, dendritic size and radical production in ERß-containing neurons. These results indicate that unique patterns of hypothalamic glutamate receptor plasticity and dendritic structure accompany the elevated blood pressure in peri- and post-AOF time points. Our findings suggest the possibility that distinct neurobiological processes are associated with the increased blood pressure during perimenopausal and postmenopausal periods.
Assuntos
Hipertensão , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Doenças Ovarianas/etiologia , Núcleo Hipotalâmico Paraventricular/patologia , Receptores de Estrogênio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Angiotensina II/toxicidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Cicloexenos/toxicidade , Modelos Animais de Doenças , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/genética , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/complicações , Hipertensão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Imunoeletrônica , Neurônios/ultraestrutura , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/genética , Compostos de Vinila/toxicidadeRESUMO
The vasopressin- and oxytocin-degrading enzyme insulin-regulated aminopeptidase (IRAP) is expressed in various organs including the brain. However, knowledge about its presence in human hypothalamus is fragmentary. Functionally, for a number of reasons (genetic linkage, hydrolysis of oxytocin and vasopressin, its role as angiotensin IV receptor in learning and memory and others) IRAP might play a role in schizophrenia. We studied the regional and cellular localization of IRAP in normal human brain with special emphasis on the hypothalamus and determined numerical densities of IRAP-expressing cells in the paraventricular, supraoptic and suprachiasmatic nuclei in schizophrenia patients and controls. By using immunohistochemistry and Western blot analysis, IRAP was immunolocalized in postmortem human brains. Cell countings were performed to estimate numbers and numerical densities of IRAP immunoreactive hypothalamic neurons in schizophrenia patients and control cases. Shape, size and regional distribution of IRAP-expressing cells, as well the lack of co-localization with the glia marker glutamine synthetase, show that IRAP is expressed in neurons. IRAP immunoreactive cells were observed in the hippocampal formation, cerebral cortex, thalamus, amygdala and, abundantly, hypothalamus. Double labeling experiments (IRAP and oxytocin/neurophysin 1, IRAP with vasopressin/neurophysin 2) revealed that IRAP is present in oxytocinergic and in vasopressinergic neurons. In schizophrenia patients, the numerical density of IRAP-expressing neurons in the paraventricular and the suprachiasmatic nuclei is significantly reduced, which might be associated with the reduction in neurophysin-containing neurons in these nuclei in schizophrenia. The pathophysiological role of lowered hypothalamic IRAP expression in schizophrenia remains to be established.
Assuntos
Cistinil Aminopeptidase/metabolismo , Hipotálamo/enzimologia , Hipotálamo/patologia , Neurônios/enzimologia , Neuro-Hipófise/metabolismo , Esquizofrenia/patologia , Idoso , Autopsia , Doença Crônica , Feminino , Glutamato-Amônia Ligase/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neurofisinas/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Supraquiasmático/patologia , Vasopressinas/metabolismoRESUMO
Exercise training (ExT) has been reported to benefit hypertension; however, the exact mechanisms involved are unclear. We hypothesized that ExT attenuates hypertension, in part, through the renin-angiotensin system (RAS), reactive oxygen species (ROS), and glutamate in the paraventricular nucleus (PVN). Two-kidney, one-clip (2K1C) renovascular hypertensive rats were assigned to sedentary (Sed) or treadmill running groups for eight weeks. Dizocilpine (MK801), a glutamate receptor blocker, or losartan (Los), an angiotensin II type1 receptor (AT1-R) blocker, were microinjected into the PVN at the end of the experiment. We found that 2K1C rats had higher mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). These rats also had excessive oxidative stress and overactivated RAS in PVN. Eight weeks of ExT significantly decreased MAP and RSNA in 2K1C hypertensive rats. ExT inhibited angiotensin-converting enzyme (ACE), AT1-R, and glutamate in the PVN, and angiotensin II (ANG II) in the plasma. Moreover, ExT attenuated ROS by augmenting copper/zinc superoxide dismutase (Cu/Zn-SOD) and decreasing p47phox and gp91phox in the PVN. MK801or Los significantly decreased blood pressure in rats. Together, these findings suggest that the beneficial effects of ExT on renovascular hypertension may be, in part, through the RAS-ROS-glutamate pathway in the PVN.
Assuntos
Maleato de Dizocilpina/farmacologia , Hipertensão Renovascular/tratamento farmacológico , Losartan/farmacologia , Condicionamento Físico Animal , Espécies Reativas de Oxigênio/antagonistas & inibidores , Sistema Renina-Angiotensina/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Hipertensão Renovascular/genética , Hipertensão Renovascular/metabolismo , Hipertensão Renovascular/patologia , Masculino , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Comportamento Sedentário , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismoRESUMO
Previously, we demonstrated intrathecal administration of oxytocin strongly induced anti-hyperalgesia in male rats. By using an oxytocin-receptor antagonist (atosiban), the descending oxytocinergic pathway was found to regulate inflammatory hyperalgesia in our previous study using male rats. The activity of this neural pathway is elevated during hyperalgesia, but whether this effect differs in a sex-dependent manner remains unknown. We conducted plantar tests on adult male and female virgin rats in which paw inflammation was induced using carrageenan. Exogenous (i.t.) application of oxytocin exerted no anti-hyperalgesic effect in female rats, except at an extremely high dose. Female rats exhibited similar extent of hyperalgesia to male rats did when the animals received the same dose of carrageenan. When atosiban was administered alone, the severity of hyperalgesia was not increased in female rats. Moreover, insulin-regulated aminopeptidase (IRAP) was expressed at higher levels in the spinal cords of female rats compared with those of male rats. Oxytocin-induced anti-hyperalgesia exhibits a sex-dependent difference in rats. This difference can partially result from the higher expression of IRAP in the spinal cords of female rats, because IRAP functions as an enzyme that degrades oxytocin. Our study confirms the existence of a sex difference in oxytocin-induced anti-hyperalgesia at the spinal level in rats.
Assuntos
Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/patologia , Ocitocina/uso terapêutico , Caracteres Sexuais , Medula Espinal/patologia , Animais , Western Blotting , Carragenina , Cistinil Aminopeptidase , Edema/complicações , Edema/patologia , Feminino , Inflamação/complicações , Injeções Espinhais , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/patologia , Masculino , Ocitocina/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/patologia , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacosRESUMO
Selectively bred diet-induced obese (DIO) rats become obese on a high-fat diet and are leptin resistant before becoming obese. Compared with diet-resistant (DR) neonates, DIO neonates have impaired leptin-dependent arcuate (ARC) neuropeptide Y/agouti-related peptide (NPY/AgRP) and α-melanocyte-stimulating hormone (α-MSH; from proopiomelanocortin (POMC) neurons) axon outgrowth to the paraventricular nucleus (PVN). Using phosphorylation of STAT3 (pSTAT3) as a surrogate, we show that reduced DIO ARC leptin signaling develops by postnatal day 7 (P7) and is reduced within POMC but not NPY/AgRP neurons. Since amylin increases leptin signaling in adult rats, we treated DIO neonates with amylin during postnatal hypothalamic development and assessed leptin signaling, leptin-dependent ARC-PVN pathway development, and metabolic changes. DIO neonates treated with amylin from P0-6 and from P0-16 increased ARC leptin signaling and both AgRP and α-MSH ARC-PVN pathway development, but increased only POMC neuron number. Despite ARC-PVN pathway correction, P0-16 amylin-induced reductions in body weight did not persist beyond treatment cessation. Since amylin enhances adult DIO ARC signaling via an IL-6-dependent mechanism, we assessed ARC-PVN pathway competency in IL-6 knockout mice and found that the AgRP, but not the α-MSH, ARC-PVN pathway was reduced. These results suggest that both leptin and amylin are important neurotrophic factors for the postnatal development of the ARC-PVN pathway. Amylin might act as a direct neurotrophic factor in DIO rats to enhance both the number of POMC neurons and their α-MSH ARC-PVN pathway development. This suggests important and selective roles for amylin during ARC hypothalamic development.