RESUMO
Here, we report a magnetogenetic system, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity when exposed to magnetic fields. Adeno-associated virus (AAV)-mediated delivery of a floxed nanobody-TRPV1 into the striatum of adenosine-2a receptor-Cre drivers resulted in motor freezing when placed in a magnetic resonance imaging machine or adjacent to a transcranial magnetic stimulation device. Functional imaging and fiber photometry confirmed activation in response to magnetic fields. Expression of the same construct in the striatum of wild-type mice along with a second injection of an AAVretro expressing Cre into the globus pallidus led to similar circuit specificity and motor responses. Last, a mutation was generated to gate chloride and inhibit neuronal activity. Expression of this variant in the subthalamic nucleus in PitX2-Cre parkinsonian mice resulted in reduced c-fos expression and motor rotational behavior. These data demonstrate that magnetogenetic constructs can bidirectionally regulate activity of specific neuronal circuits noninvasively in vivo using clinically available devices.
Assuntos
Dependovirus , Terapia Genética , Animais , Camundongos , Terapia Genética/métodos , Dependovirus/genética , Doença de Parkinson/terapia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Vetores Genéticos/genética , Humanos , Núcleo Subtalâmico/metabolismo , Campos Magnéticos , Globo Pálido/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Neurônios/metabolismo , Corpo Estriado/metabolismo , Canais de Cátion TRPVRESUMO
BACKGROUND: Deep brain stimulation (DBS) is commonly used to alleviate motor symptoms in several movement disorders. However, the procedure is invasive, and the technology has remained largely stagnant since its inception decades ago. Recently, we have shown that wireless nanoelectrodes may offer an alternative approach to conventional DBS. However, this method is still in its infancy, and more research is required to characterize its potential before it can be considered as an alternative to conventional DBS. OBJECTIVES: Herein, we aimed to investigate the effect of stimulation via magnetoelectric nanoelectrodes on primary neurotransmitter systems that have implications for DBS in movement disorders. METHODS: Mice were injected with either magnetoelectric nanoparticles (MENPs) or magnetostrictive nanoparticles (MSNPs, as a control) in the subthalamic nucleus (STN). Mice then underwent magnetic stimulation, and their motor behavior was assessed in the open field test. In addition, magnetic stimulation was applied before sacrifice and post-mortem brains were processed for immunohistochemistry (IHC) to assess the co-expression of c-Fos with either tyrosine hydroxylase (TH), tryptophan hydroxylase-2 (TPH2) or choline acetyltransferase (ChAT). RESULTS: Stimulated animals covered longer distances in the open field test when compared to controls. Moreover, we found a significant increase in c-Fos expression in the motor cortex (MC) and paraventricular region of the thalamus (PV-thalamus) after magnetoelectric stimulation. Stimulated animals showed fewer TPH2/c-Fos double-labeled cells in the dorsal raphe nucleus (DRN), as well as TH/c-Fos double-labeled cells in the ventral tegmental area (VTA), but not in the substantia nigra pars compacta (SNc). There was no significant difference in the number of ChAT/ c-Fos double-labeled cells in the pedunculopontine nucleus (PPN). CONCLUSIONS: Magnetoelectric DBS in mice enables selective modulation of deep brain areas and animal behavior. The measured behavioral responses are associated with changes in relevant neurotransmitter systems. These changes are somewhat similar to those observed in conventional DBS, suggesting that magnetoelectric DBS might be a suitable alternative.
Assuntos
Estimulação Encefálica Profunda , Transtornos dos Movimentos , Núcleo Tegmental Pedunculopontino , Núcleo Subtalâmico , Camundongos , Animais , Núcleo Subtalâmico/metabolismo , Estimulação Encefálica Profunda/métodos , Núcleo Tegmental Pedunculopontino/metabolismo , Tálamo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismoRESUMO
Tremor is one of the motor symptoms of Parkinson's disease (PD), present also in neuroleptic-induced parkinsonism. Tremulous Jaw Movements (TJMs) are suggested to be a well-validated rodent model of PD resting tremor. TJMs can be induced by typical antipsychotics and are known to be reduced by different drugs, including adenosine A2A receptor antagonists. The aim of the present study was to search for brain structures involved in the tremorolytic action of SCH58261, a selective A2A receptor antagonist, in TJMs induced by subchronic pimozide. Besides TJMs, we evaluated in the same animals the expression of zif-268 mRNA (neuronal responsiveness marker), and mRNA levels for glutamic acid decarboxylase 65-kDa isoform (GAD65) and vesicular glutamate transporters 1 and 2 (vGluT1/2) in selected brain structures, as markers of GABAergic and glutamatergic neurons, respectively. We found that SCH58261 reduced the pimozide-induced TJMs. Pimozide increased the zif-268 mRNA level in the striatum, nucleus accumbens (NAc) core, and substantia nigra pars reticulata (SNr). Additionally, it increased GAD65 mRNA in the striatum and SNr, and vGluT2 mRNA levels in the subthalamic nucleus (STN). A positive correlation between zif-268, GAD65 and vGluT2 mRNAs and TJMs was found. SCH58261 reversed the pimozide-increased zif-268 mRNA in the striatum and NAc core and GAD65 mRNA in the striatum and SNr. In contrast, SCH58261 did not influence vGluT2 mRNA in STN. The present study suggests an importance of the striato-subthalamo-nigro-thalamic circuit in neuroleptic-induced TJMs. The tremorolytic effect of A2A receptor blockade seems to involve this circuit bypassing, however, STN.
Assuntos
Antagonistas de Dopamina/efeitos adversos , Arcada Osseodentária/efeitos dos fármacos , Movimento/efeitos dos fármacos , Pimozida/efeitos adversos , Pirimidinas/antagonistas & inibidores , Receptor A2A de Adenosina/efeitos dos fármacos , Triazóis/antagonistas & inibidores , Animais , Antipsicóticos/farmacologia , Encéfalo/metabolismo , Corpo Estriado/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Glutamato Descarboxilase/metabolismo , Masculino , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/fisiopatologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleo Subtalâmico/metabolismo , Tremor/induzido quimicamenteRESUMO
Standard treatment of Parkinson's disease involves the dopaminergic medications. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an important neurosurgical intervention often used as alternative treatment to drug therapy; however, it can be associated with increase of impulsive behaviors. This descriptive review focused on studies investigating the correlation between Deep brain stimulation of the subthalamic nucleus and impulsivity in Parkinson's disease patients, arguing, the action's mechanism and the specific role of the subthalamic nucleus. We searched on PubMed and Web of Science databases and screening references of included studies and review articles for additional citations. From initial 106 studies, only 15 met the search criteria. Parkinson's Disease patients with and without Deep Brain Stimulation were compared with healthy controls, through 16 different tasks that assessed some aspects of impulsivity. Both Deep brain stimulation of the subthalamic nucleus and medication were associated with impulsive behavior and influenced decision-making processes. Moreover, findings demonstrated that: Impulse Control Disorders (ICDs) occurred soon after surgery, while, in pharmacological treatment, they appeared mainly after the initiation of treatment or the increase in dosage, especially with dopamine agonists. The subthalamic nucleus plays a part in the fronto-striato-thalamic-cortical loops mediating motor, cognitive, and emotional functions: this could explain the role of the Deep Brain Stimulation in behavior modulation in Parkinson's Disease patients. Indeed, increase impulsivity has been reported also after deep brain stimulation of the subthalamic nucleus independently by dopaminergic medication status.
Assuntos
Estimulação Encefálica Profunda/métodos , Comportamento Impulsivo/fisiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Núcleo Subtalâmico/metabolismo , Estimulação Encefálica Profunda/psicologia , Dopamina/metabolismo , Dopaminérgicos/farmacologia , Dopaminérgicos/uso terapêutico , Humanos , Comportamento Impulsivo/efeitos dos fármacos , Doença de Parkinson/diagnóstico , Núcleo Subtalâmico/efeitos dos fármacosRESUMO
The neural mechanisms of fear-associated thermoregulation remain unclear. Innate fear odor 2-methyl-2-thiazoline (2MT) elicits rapid hypothermia and elevated tail temperature, indicative of vasodilation-induced heat dissipation, in wild-type mice, but not in mice lacking Trpa1-the chemosensor for 2MT. Here we report that Trpa1-/- mice show diminished 2MT-evoked c-fos expression in the posterior subthalamic nucleus (PSTh), external lateral parabrachial subnucleus (PBel) and nucleus of the solitary tract (NTS). Whereas tetanus toxin light chain-mediated inactivation of NTS-projecting PSTh neurons suppress, optogenetic activation of direct PSTh-rostral NTS pathway induces hypothermia and tail vasodilation. Furthermore, selective opto-stimulation of 2MT-activated, PSTh-projecting PBel neurons by capturing activated neuronal ensembles (CANE) causes hypothermia. Conversely, chemogenetic suppression of vGlut2+ neurons in PBel or PSTh, or PSTh-projecting PBel neurons attenuates 2MT-evoked hypothermia and tail vasodilation. These studies identify PSTh as a major thermoregulatory hub that connects PBel to NTS to mediate 2MT-evoked innate fear-associated hypothermia and tail vasodilation.
Assuntos
Medo/fisiologia , Hipotermia/metabolismo , Núcleo Solitário/metabolismo , Núcleo Subtalâmico/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Regulação da Temperatura Corporal/fisiologia , Medo/psicologia , Hipotermia/induzido quimicamente , Hipotermia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Optogenética/métodos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Canal de Cátion TRPA1/genética , Tiazóis , Vasodilatação/fisiologiaRESUMO
OBJECTIVE: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has evolved as a powerful therapeutic alternative for the treatment of Parkinson's disease (PD). Despite its clinical efficacy, the mechanisms of action have remained poorly understood. In addition to the immediate symptomatic effects, long-term neuroprotective effects have been suggested. Those may be mediated through neurotrophic factors (NFs) like vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF). Here, the impact of DBS on the expression of NFs was analysed in a rat model of PD. METHODS: Unilateral 6-hydroxydopamine (6-OHDA) lesioned rats received DBS in the STN using an implantable microstimulation system, sham DBS in the STN, or no electrode placement. Continuous unilateral STN-DBS (current intensity 50 µA, frequency 130 Hz, and pulse width 52 µs) was conducted for 14 days. Rats were then sacrificed and brains shock frozen. Striata and motor cortices were dissected with a cryostat. Levels of VEGF, BDNF, and GDNF were analysed, both by quantitative PCR and colorimetric ELISA. RESULTS: PCR revealed a significant upregulation of only BDNF mRNA in the ipsilateral striata of the DBS group, when compared to the sham-stimulated group. There was no significant increase in VEGF mRNA or GDNF mRNA. ELISA analysis showed augmentations of BDNF, VEGF, as well as GDNF protein in the ipsilateral striata after DBS compared to sham stimulation. In the motor cortex, significant increases after DBS were observed for BDNF only, not for the other 2 NFs. CONCLUSIONS: The upregulation of trophic factors induced by STN-DBS may participate in its long-term therapeutic efficacy and potentially neuroprotective effects.
Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Doença de Parkinson/terapia , Ratos , Ratos Sprague-Dawley , Núcleo Subtalâmico/metabolismo , Fator A de Crescimento do Endotélio VascularRESUMO
Dopaminergic medication for Parkinson's disease is associated with troubling dystonia and dyskinesia and, in rodents, dopaminergic agonists likewise induce a variety of orofacial motor responses, certain of which are mimicked by serotonin2C (5-HT2C) receptor agonists. However, the neural substrates underlying these communalities and their interrelationship remain unclear. In Sprague-Dawley rats, the dopaminergic agonist, apomorphine (0.03-0.3 mg/kg) and the preferential D2/3 receptor agonist quinpirole (0.2-0.5 mg/kg), induced purposeless oral movements (chewing, jaw tremor, tongue darting). The 5-HT2C receptor antagonist 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxyl]-5-pyridyl]carbamoyl]-6-trifluoromethylindone (SB 243213) (1 mg/kg) reduced the oral responses elicited by specific doses of both agonists (0.1 mg/kg apomorphine; 0.5 mg/kg quinpirole). After having confirmed that the oral bouts induced by quinpirole 0.5 mg/kg were blocked by another 5-HT2C antagonist (6-chloro-5-methyl-1-[6-(2-methylpiridin-3-yloxy)pyridine-3-yl carbamoyl] indoline (SB 242084), 1 mg/kg), we mapped the changes in neuronal activity in numerous sub-territories of the basal ganglia using c-Fos expression. We found a marked increase of c-Fos expression in the subthalamic nucleus (STN) in combining quinpirole (0.5 mg/kg) with either SB 243213 or SB 242084. In a parallel set of electrophysiological experiments, the same combination of SB 243213/quinpirole produced an irregular pattern of discharge and an increase in the firing rate of STN neurons. Finally, it was shown that upon the electrical stimulation of the anterior cingulate cortex, quinpirole (0.5 mg/kg) increased the response of substantia nigra pars reticulata neurons corresponding to activation of the "hyperdirect" (cortico-subthalamonigral) pathway. This effect of quinpirole was abolished by the two 5-HT2C antagonists. Collectively, these results suggest that induction of orofacial motor responses by D2/3 receptor stimulation involves 5-HT2C receptor-mediated activation of the STN by recruitment of the hyperdirect (cortico-subthalamonigral) pathway.
Assuntos
Agonistas de Dopamina/farmacologia , Receptor 5-HT2C de Serotonina/metabolismo , Serotonina/metabolismo , Núcleo Subtalâmico/efeitos dos fármacos , Aminopiridinas/farmacologia , Animais , Apomorfina/farmacologia , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Indóis/farmacologia , Masculino , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Piridinas/farmacologia , Quimpirol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Núcleo Subtalâmico/metabolismoRESUMO
Repetitive behaviors (e.g., stereotypic movements, compulsions, rituals) are common features of a number of neurodevelopmental disorders. Clinical and animal model studies point to the importance of cortical-basal ganglia circuitry in the mediation of repetitive behaviors. In the current study, we tested whether a drug cocktail (dopamine D2 receptor antagonist + adenosine A2A receptor agonist + glutamate mGlu5 positive allosteric modulator) designed to activate the indirect basal ganglia pathway would reduce repetitive behavior in C58 mice after both acute and sub-chronic administration. In addition, we hypothesized that sub-chronic administration (i.e. 7 days of twice-daily injections) would increase the functional activation of the subthalamic nucleus (STN), a key node of the indirect pathway. Functional activation of STN was indexed by dendritic spine density, analysis of GABA, glutamate, and synaptic plasticity genes, and cytochrome oxidase activity. The drug cocktail used significantly reduced repetitive motor behavior in C58 mice after one night as well as seven nights of twice-nightly injections. These effects did not reflect generalized motor behavior suppression as non-repetitive motor behaviors such as grooming, digging and eating were not reduced relative to vehicle. Sub-chronic drug treatment targeting striatopallidal neurons resulted in significant changes in the STN, including a four-fold increase in brain-derived neurotrophic factor (BDNF) mRNA expression as well as a significant increase in dendritic spine density. The present findings are consistent with, and extend, our prior work linking decreased functioning of the indirect basal ganglia pathway to expression of repetitive motor behavior in C58 mice and suggest novel therapeutic targets.
Assuntos
Comportamento Estereotipado/efeitos dos fármacos , Núcleo Subtalâmico/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/fisiopatologia , Gânglios da Base/fisiologia , Comportamento Animal/efeitos dos fármacos , Benzamidas/farmacologia , Comportamento Compulsivo/tratamento farmacológico , Corpo Estriado/fisiologia , Modelos Animais de Doenças , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos , Vias Neurais/fisiologia , Neurônios/metabolismo , Fenetilaminas/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Comportamento Estereotipado/fisiologia , Núcleo Subtalâmico/metabolismoRESUMO
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with impaired motor function and several non-motor symptoms, with no available disease modifying treatment. Intracellular accumulation of pathological α-synuclein inclusions is a hallmark of idiopathic PD, whereas, dominant mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with familial PD that is clinically indistinguishable from idiopathic PD. Recent evidence supports the hypothesis that an increase in LRRK2 kinase activity is associated with the development of not only familial LRRK2 PD, but also idiopathic PD. Previous reports have shown preclinical effects of LRRK2 modulation on α-synuclein-induced neuropathology. Increased subthalamic nucleus (STN) burst firing in preclinical neurotoxin models and PD patients is hypothesized to be causally involved in the development of the motor deficit in PD. To study a potential pathophysiological relationship between α-synuclein pathology and LRRK2 kinase activity in PD, we investigated the effect of chronic LRRK2 inhibition in an AAV-α-synuclein overexpression rat model. In this study, we report that chronic LRRK2 inhibition using PFE-360 only induced a marginal effect on motor function. In addition, the aberrant STN burst firing and associated neurodegenerative processes induced by α-synuclein overexpression model remained unaffected by chronic LRRK2 inhibition. Our findings do not strongly support LRRK2 inhibition for the treatment of PD. Therefore, the reported beneficial effects of LRRK2 inhibition in similar α-synuclein overexpression rodent models must be considered with prudence and additional studies are warranted in alternative α-synuclein-based models.
Assuntos
Antiparkinsonianos/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Morfolinas/farmacologia , Doença de Parkinson/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , alfa-Sinucleína/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Ratos Sprague-Dawley , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/metabolismo , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/genéticaRESUMO
Parkinson's disease (PD) affects motor function through degenerative processes and synaptic transmission impairments in the basal ganglia. None of the treatments available delays or stops the progression of the disease. While α-synuclein pathological accumulation represents a hallmark of the disease in its idiopathic form, leucine rich repeat kinase 2 (LRRK2) is genetically associated with familial and sporadic forms of PD. The genetic information suggests that LRRK2 kinase activity plays a role in the pathogenesis of the disease. To support a potential link between LRRK2 and α-synuclein in the pathophysiological mechanisms underlying PD, the effect of LRRK2 ablation or LRRK2 kinase pharmacological inhibition were studied in rats with adeno-associated virus-induced (AAV) α-synuclein overexpression in the nigrostriatal pathway. We first report that viral overexpression of α-synuclein induced increased burst firing in subthalamic neurons. Aberrant firing pattern of subthalamic neurons has also been reported in PD patients and neurotoxin-based animal models, and is hypothesized to play a key role in the appearance of motor dysfunction. We further report that genetic LRRK2 ablation, as well as pharmacological inhibition of LRRK2 kinase activity with PFE-360, reversed the aberrant firing pattern of subthalamic neurons induced by AAV-α-synuclein overexpression. This effect of LRRK2 modulation was not associated with any neuroprotective effect or motor improvement. Nonetheless, our findings may indicate a potential therapeutic benefit of LRRK2 kinase inhibition by normalizing the aberrant neuronal activity of subthalamic neurons induced by AAV-α-synuclein, a neurophysiological trait recapitulating observations in PD.
Assuntos
Potenciais de Ação/fisiologia , Dependovirus/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/deficiência , Transtornos Parkinsonianos/metabolismo , Núcleo Subtalâmico/metabolismo , alfa-Sinucleína/biossíntese , Potenciais de Ação/efeitos dos fármacos , Animais , Dependovirus/genética , Feminino , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Transtornos Parkinsonianos/genética , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos Transgênicos , Núcleo Subtalâmico/efeitos dos fármacos , alfa-Sinucleína/genéticaRESUMO
Deep brain stimulation (DBS) is widely used to treat advanced Parkinson's disease (PD). Here, we investigated how DBS applied on the subthalamic nucleus (STN) influenced the neural activity in the motor cortex. Rats, which had the midbrain dopaminergic neurons partially depleted unilaterally, called the hemi-Parkinsonian rats, were used as a study model. c-Fos expression in the neurons was used as an indicator of neural activity. Application of high-frequency stimulation (HFS) upon the STN was used to mimic the DBS treatment. The motor cortices in the two hemispheres of hemi-Parkinsonian rats were found to contain unequal densities of c-Fos-positive (Fos+) cells, and STN-HFS rectified this bilateral imbalance. In addition, STN-HFS led to the intense c-Fos expression in a group of motor cortical neurons which exhibited biochemical and anatomical characteristics resembling those of the pyramidal tract (PT) neurons sending efferent projections to the STN. The number of PT neurons expressing high levels of c-Fos was significantly reduced by local application of the antagonists of non-N-methyl-D-aspartate (non-NMDA) glutamate receptors, gammaaminobutyric acid A (GABAA) receptors and dopamine receptors in the upper layers of the motor cortex. The results indicate that the coincident activations of synapses and dopamine receptors in the motor cortex during STN-HFS trigger the intense expression of c-Fos of the PT neurons. The implications of the results on the cellular mechanism underlying the therapeutic effects of STN-DBS on the movement disorders of PD are also discussed.
Assuntos
Estimulação Encefálica Profunda/métodos , Córtex Motor/metabolismo , Transtornos Parkinsonianos/terapia , Tratos Piramidais/metabolismo , Tratos Piramidais/fisiopatologia , Receptores Dopaminérgicos/metabolismo , Receptores de GABA-A/metabolismo , Receptores de Glutamato/metabolismo , Núcleo Subtalâmico/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Córtex Motor/fisiopatologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Núcleo Subtalâmico/fisiopatologia , Transmissão SinápticaRESUMO
Imaging studies are necessary prior to subthalamic deep brain stimulation (STN-DBS). Dopamine transporter (DAT) imaging is a powerful tool for visualizing dopamine terminals in the striatum, but its usefulness in STN-DBS is unclear. Here, we retrospectively investigated the relationship between motor symptoms and the specific binding ratio (SBR) on DAT imaging in patients with Parkinson's disease (PD). We included 23 consecutive patients (9 female; 14 male) who were evaluated for DBS eligibility between October 2013 and October 2014 and subsequently received bilateral STN-DBS. Correlation and simple regression analyses were performed on SBR values and clinical parameters before and after surgery. SBR value was negatively correlated with Unified Parkinson's Disease Rating Scale (UPDRS) motor score in the "ON" state before surgery (rs=-0.637, p=0.001) and positively correlated with the reduction of the levodopa equivalent daily dose by surgery (r=0.422, p=0.045). A simple regression analysis revealed that SBR value was positively correlated with UPDRS motor score improvement after levodopa challenge before surgery (p=0.001, R2=0.423). DAT imaging may be useful in STN-DBS candidate selection and the identification of the therapeutic mechanism of STN-DBS in patients with advanced PD and motor symptom fluctuations.
Assuntos
Corpo Estriado/diagnóstico por imagem , Estimulação Encefálica Profunda/métodos , Atividade Motora/fisiologia , Doença de Parkinson , Núcleo Subtalâmico/fisiologia , Adulto , Idoso , Corpo Estriado/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora/efeitos dos fármacos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Projetos Piloto , Ligação Proteica/efeitos dos fármacos , Análise de Regressão , Estatísticas não Paramétricas , Núcleo Subtalâmico/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único , Tropanos/farmacocinéticaRESUMO
The substantia nigra (SN), the subthalamic nucleus (STN), and the red nucleus (RN) are midbrain structures of ample interest in many neuroimaging studies, which may benefit from the availability of automated segmentation methods. The high iron content of these structures awards them high contrast in quantitative susceptibility mapping (QSM) images. We present a novel segmentation method that leverages the information of these images to produce automated segmentations of the SN, STN, and RN. The algorithm builds a map of spatial priors for the structures by non-linearly registering a set of manually-traced training labels to the midbrain. The priors are used to inform a Gaussian mixture model of the image intensities, with smoothness constraints imposed to ensure anatomical plausibility. The method was validated on manual segmentations from a sample of 40 healthy younger and older subjects. Average Dice scores were 0.81 (0.05) for the SN, 0.66 (0.14) for the STN and 0.88 (0.04) for the RN in the left hemisphere, and similar values were obtained for the right hemisphere. In all structures, volumes of manual and automatically obtained segmentations were significantly correlated. The algorithm showed lower accuracy on R2* and T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images, which are also sensitive to iron content. To illustrate an application of the method, we show that the automated segmentations were comparable to the manual ones regarding detection of age-related differences to putative iron content.
Assuntos
Envelhecimento , Processamento de Imagem Assistida por Computador/métodos , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Núcleo Rubro/diagnóstico por imagem , Substância Negra/diagnóstico por imagem , Núcleo Subtalâmico/diagnóstico por imagem , Adulto , Idoso , Envelhecimento/metabolismo , Feminino , Humanos , Masculino , Núcleo Rubro/anatomia & histologia , Núcleo Rubro/metabolismo , Substância Negra/anatomia & histologia , Substância Negra/metabolismo , Núcleo Subtalâmico/anatomia & histologia , Núcleo Subtalâmico/metabolismoRESUMO
Subthalamic nucleus deep brain stimulation (STN DBS) protects dopaminergic neurons of the substantia nigra pars compacta (SNpc) against 6-OHDA and MPTP. We evaluated STN DBS in a parkinsonian model that displays α-synuclein pathology using unilateral, intranigral injections of recombinant adeno-associated virus pseudotype 2/5 to overexpress wildtype human α-synuclein (rAAV2/5 α-syn). A low titer of rAAV2/5 α-syn results in progressive forelimb asymmetry, loss of striatal dopaminergic terminal density and modest loss of SNpc dopamine neurons after eight weeks, corresponding to robust human-Snca expression and no effect on rat-Snca, Th, Bdnf or Trk2. α-syn overexpression increased phosphorylation of ribosomal protein S6 (p-rpS6) in SNpc neurons, a readout of trkB activation. Rats received intranigral injections of rAAV2/5 α-syn and three weeks later received four weeks of STN DBS or electrode implantation that remained inactive. STN DBS did not protect against α-syn-mediated deficits in forelimb akinesia, striatal denervation or loss of SNpc neuron, nor did STN DBS elevate p-rpS6 levels further. ON stimulation, forelimb asymmetry was exacerbated, indicating α-syn overexpression-mediated neurotransmission deficits. These results demonstrate that STN DBS does not protect the nigrostriatal system against α-syn overexpression-mediated toxicity. Whether STN DBS can be protective in other models of synucleinopathy is unknown.
Assuntos
Axônios/metabolismo , Axônios/patologia , Estimulação Encefálica Profunda , Expressão Gênica , Substância Negra/metabolismo , Núcleo Subtalâmico/patologia , Núcleo Subtalâmico/fisiopatologia , alfa-Sinucleína/genética , Animais , Comportamento Animal , Biomarcadores , Corpo Estriado/metabolismo , Dependovirus/genética , Vetores Genéticos/genética , Imuno-Histoquímica , Masculino , Modelos Biológicos , Neurônios/metabolismo , Fosforilação , Ratos , Núcleo Subtalâmico/metabolismo , Transdução Genética , alfa-Sinucleína/metabolismoRESUMO
OBJECTIVE: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a highly effective symptomatic therapy for motor deficits in Parkinson's disease (PD). An additional, disease-modifying effect has been suspected from studies in toxin-based PD animal models, but these models do not reflect the molecular pathology and progressive nature of PD that would be required to evaluate a disease-modifying action. Defining a disease-modifying effect could radically change the way in which DBS is used in PD. METHODS: We applied STN-DBS in an adeno-associated virus (AAV) 1/2-driven human mutated A53T α-synuclein (aSyn)-overexpressing PD rat model (AAV1/2-A53T-aSyn). Rats were injected unilaterally, in the substantia nigra (SN), with AAV1/2-A53T-aSyn or control vector. Three weeks later, after behavioral and nigrostriatal dopaminergic deficits had developed, rats underwent STN-DBS electrode implantation ipsilateral to the vector-injected SN. Stimulation lasted for 3 weeks. Control groups remained OFF stimulation. Animals were sacrificed at 6 weeks. RESULTS: Motor performance in the single pellet reaching task was impaired in the AAV1/2-A53T-aSyn-injected stim-OFF group, 6 weeks after AAV1/2-A53T-aSyn injection, compared to preoperative levels (-82%; p < 0.01). Deficits were reversed in AAV1/2-A53T-aSyn, stim-ON rats after 3 weeks of active stimulation, compared to the AAV1/2-A53T-aSyn stim-OFF rats (an increase of â¼400%; p < 0.05), demonstrating a beneficial effect of DBS. This motor improvement was maintained when the stimulation was turned off and was accompanied by a higher number of tyrosine hydroxylase+ SN neurons (increase of â¼29%), compared to AAV1/2-A53T-aSyn stim-OFF rats (p < 0.05). INTERPRETATION: Our data support the putative neuroprotective and disease-modifying effect of STN-DBS in a mechanistically relevant model of PD. Ann Neurol 2017;81:825-836.
Assuntos
Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Núcleo Subtalâmico , alfa-Sinucleína/administração & dosagem , Animais , Comportamento Animal , Dependovirus , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Masculino , Mutação , Ratos , Ratos Sprague-Dawley , Núcleo Subtalâmico/citologia , Núcleo Subtalâmico/metabolismo , Núcleo Subtalâmico/fisiopatologiaRESUMO
BACKGROUND: Adjustment of the motor circuitry has been described in the treatment of Parkinson disease (PD). OBJECTIVES: To evaluate the modulation of the motor circuitry of PD patients by subthalamic deep brain stimulation (STN DBS) using 18F-fluorodeoxyglucose (FDG) and positron emission tomography (PET). METHODS: Resting-state brain 18F-FDG PET imaging was performed for 8 PD patients before surgery and also 1 year after STN DBS treatment; changes in regional glucose metabolism were identified. The PD-related pattern (PDRP) of metabolic covariation was also evaluated. In addition, the correlations between glucose metabolism and clinical alleviation were determined. RESULTS: Pronounced elevations in parietal and occipital glucose metabolism due to STN DBS modification were found; an obvious reduction in caudate, putamen, cerebellum, and frontal cortex glucose metabolism was detected after STN DBS interventions. The alleviation of rigidity correlated with an increment in glucose metabolism in the parietal lobe. STN DBS inhibited the PDRP; the decrease in the PDRP correlated with the inhibition of the glucose metabolism of the caudate and the augmented glucose metabolism of the occipital lobe. CONCLUSION: STN DBS modulates cortical function through the cortical-striatothalamocortial motor circuitry and cerebellothalamocortical motor circuitry.
Assuntos
Estimulação Encefálica Profunda/métodos , Fluordesoxiglucose F18/metabolismo , Córtex Motor/metabolismo , Rede Nervosa/metabolismo , Doença de Parkinson/metabolismo , Núcleo Subtalâmico/metabolismo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/cirurgia , Tomografia por Emissão de Pósitrons/métodos , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/cirurgiaRESUMO
The basal ganglia (BG) form a network of subcortical nuclei. Functional magnetic resonance imaging (fMRI) in the BG could provide insight in its functioning and the underlying mechanisms of Deep Brain Stimulation (DBS). However, fMRI of the BG with high specificity is challenging, because the nuclei are small and variable in their anatomical location. High resolution fMRI at field strengths of 7 Tesla (T) could help resolve these challenges to some extent. A set of MR protocols was developed for functional imaging of the BG nuclei at 3 T and 7 T. The protocols were validated using a stop-signal reaction task (Logan et al. []: J Exp Psychol: Human Percept Perform 10:276-291). Compared with sub-millimeter 7 T fMRI protocols aimed at cortex, a reduction of echo time and spatial resolution was strictly necessary to obtain robust Blood Oxygen Level Dependent (BOLD) sensitivity in the BG. An fMRI protocol at 3 T with identical resolution to the 7 T showed no robust BOLD sensitivity in any of the BG nuclei. The results suggest that the subthalamic nucleus, as well as the substantia nigra, red nucleus, and the internal and external parts of the globus pallidus show increased activation in failed stop trials compared with successful stop and go trials. Hum Brain Mapp 38:3226-3248, 2017. © 2017 Wiley Periodicals, Inc.
Assuntos
Gânglios da Base/diagnóstico por imagem , Gânglios da Base/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/metabolismo , Estimulação Acústica , Adulto , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Inibição Psicológica , Masculino , Oxigênio/sangue , Tempo de Reação/fisiologia , Adulto JovemRESUMO
Stem cell treatments for neurodegenerative diseases are expected to reach clinical trials soon. Most of the approaches currently under development involve transplantation of immature progenitors that subsequently undergo phenotypic and functional maturation in vivo, and predicting the long-term graft outcome already at the progenitor stage remains a challenge. Here, we took an unbiased approach to identify predictive markers expressed in dopamine neuron progenitors that correlate with graft outcome in an animal model of Parkinson's disease through gene expression analysis of >30 batches of grafted human embryonic stem cell (hESC)-derived progenitors. We found that many of the commonly used markers did not accurately predict in vivo subtype-specific maturation. Instead, we identified a specific set of markers associated with the caudal midbrain that correlate with high dopaminergic yield after transplantation in vivo. Using these markers, we developed a good manufacturing practice (GMP) differentiation protocol for highly efficient and reproducible production of transplantable dopamine progenitors from hESCs.
Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/transplante , Doença de Parkinson/terapia , Transplante de Células-Tronco , Pesquisa Translacional Biomédica , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Fator 8 de Crescimento de Fibroblasto/metabolismo , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Laminina/farmacologia , Mesencéfalo/metabolismo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Núcleo Subtalâmico/citologia , Núcleo Subtalâmico/metabolismo , Fatores de Tempo , Resultado do TratamentoRESUMO
Huntington's disease (HD) symptoms are driven to a large extent by dysfunction of the basal ganglia circuitry. HD patients exhibit reduced striatal phoshodiesterase 10 (PDE10) levels. Using HD mouse models that exhibit reduced PDE10, we demonstrate the benefit of pharmacologic PDE10 inhibition to acutely correct basal ganglia circuitry deficits. PDE10 inhibition restored corticostriatal input and boosted cortically driven indirect pathway activity. Cyclic nucleotide signaling is impaired in HD models, and PDE10 loss may represent a homeostatic adaptation to maintain signaling. Elevation of both cAMP and cGMP by PDE10 inhibition was required for rescue. Phosphoproteomic profiling of striatum in response to PDE10 inhibition highlighted plausible neural substrates responsible for the improvement. Early chronic PDE10 inhibition in Q175 mice showed improvements beyond those seen with acute administration after symptom onset, including partial reversal of striatal deregulated transcripts and the prevention of the emergence of HD neurophysiological deficits. VIDEO ABSTRACT.
Assuntos
Córtex Cerebral/efeitos dos fármacos , Doença de Huntington/fisiopatologia , Neostriado/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Pirazóis/farmacologia , Quinolinas/farmacologia , Animais , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/metabolismo , Gânglios da Base/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Doença de Huntington/metabolismo , Camundongos , Neostriado/diagnóstico por imagem , Neostriado/metabolismo , Neostriado/fisiopatologia , Diester Fosfórico Hidrolases , Tomografia por Emissão de Pósitrons , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/metabolismo , Núcleo Subtalâmico/fisiopatologia , TrítioRESUMO
The subthalamic nucleus (STN) plays a central role in motor, cognitive, and affective behavior. Deep brain stimulation (DBS) of the STN is the most common surgical intervention for advanced Parkinson's disease (PD), and STN has lately gained attention as target for DBS in neuropsychiatric disorders, including obsessive compulsive disorder, eating disorders, and addiction. Animal studies using STN-DBS, lesioning, or inactivation of STN neurons have been used extensively alongside clinical studies to unravel the structural organization, circuitry, and function of the STN. Recent studies in rodent STN models have exposed different roles for STN neurons in reward-related functions. We have previously shown that the majority of STN neurons express the vesicular glutamate transporter 2 gene (Vglut2/Slc17a6) and that reduction of Vglut2 mRNA levels within the STN of mice [conditional knockout (cKO)] causes reduced postsynaptic activity and behavioral hyperlocomotion. The cKO mice showed less interest in fatty rewards, which motivated analysis of reward-response. The current results demonstrate decreased sugar consumption and strong rearing behavior, whereas biochemical analyses show altered dopaminergic and peptidergic activity in the striatum. The behavioral alterations were in fact correlated with opposite effects in the dorsal versus the ventral striatum. Significant cell loss and disorganization of the STN structure was identified, which likely accounts for the observed alterations. Rare genetic variants of the human VGLUT2 gene exist, and this study shows that reduced Vglut2/Slc17a6 gene expression levels exclusively within the STN of mice is sufficient to cause strong modifications in both the STN and the mesostriatal dopamine system.