Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.252
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114051, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38564334

RESUMO

Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infection (UTI). UPEC invades bladder epithelial cells (BECs) via fusiform vesicles, escapes into the cytosol, and establishes biofilm-like intracellular bacterial communities (IBCs). Nucleoside-diphosphate kinase (NDK) is secreted by pathogenic bacteria to enhance virulence. However, whether NDK is involved in UPEC pathogenesis remains unclear. Here, we find that the lack of ndk impairs the colonization of UPEC CFT073 in mouse bladders and kidneys owing to the impaired ability of UPEC to form IBCs. Furthermore, we demonstrate that NDK inhibits caspase-1-dependent pyroptosis by consuming extracellular ATP, preventing superficial BEC exfoliation, and promoting IBC formation. UPEC utilizes the reactive oxygen species (ROS) sensor OxyR to indirectly activate the regulator integration host factor, which then directly activates ndk expression in response to intracellular ROS. Here, we reveal a signaling transduction pathway that UPEC employs to inhibit superficial BEC exfoliation, thus facilitating acute UTI.


Assuntos
Caspase 1 , Infecções por Escherichia coli , Núcleosídeo-Difosfato Quinase , Piroptose , Infecções Urinárias , Escherichia coli Uropatogênica , Escherichia coli Uropatogênica/patogenicidade , Animais , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia , Camundongos , Caspase 1/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/patologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Feminino , Bexiga Urinária/microbiologia , Bexiga Urinária/patologia , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transdução de Sinais
2.
Cancer Metastasis Rev ; 43(2): 755-775, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38180572

RESUMO

We describe here the molecular basis of the complex formation of PRUNE1 with the tumor metastasis suppressors NME1 and NME2, two isoforms appertaining to the nucleoside diphosphate kinase (NDPK) enzyme family, and how this complex regulates signaling the immune system and energy metabolism, thereby shaping the tumor microenvironment (TME). Disrupting the interaction between NME1/2 and PRUNE1, as suggested, holds the potential to be an excellent therapeutic target for the treatment of cancer and the inhibition of metastasis dissemination. Furthermore, we postulate an interaction and regulation of the other Class I NME proteins, NME3 and NME4 proteins, with PRUNE1 and discuss potential functions. Class I NME1-4 proteins are NTP/NDP transphosphorylases required for balancing the intracellular pools of nucleotide diphosphates and triphosphates. They regulate different cellular functions by interacting with a large variety of other proteins, and in cancer and metastasis processes, they can exert pro- and anti-oncogenic properties depending on the cellular context. In this review, we therefore additionally discuss general aspects of class1 NME and PRUNE1 molecular structures as well as their posttranslational modifications and subcellular localization. The current knowledge on the contributions of PRUNE1 as well as NME proteins to signaling cascades is summarized with a special regard to cancer and metastasis.


Assuntos
Metabolismo Energético , Nucleosídeo NM23 Difosfato Quinases , Metástase Neoplásica , Neoplasias , Transdução de Sinais , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Animais , Núcleosídeo-Difosfato Quinase/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Microambiente Tumoral , Monoéster Fosfórico Hidrolases
3.
Sci Adv ; 9(36): eadh0140, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37672589

RESUMO

The synthesis of fatty acids from acetyl-coenzyme A (AcCoA) is deregulated in diverse pathologies, including cancer. Here, we report that fatty acid accumulation is negatively regulated by nucleoside diphosphate kinases 1 and 2 (NME1/2), housekeeping enzymes involved in nucleotide homeostasis that were recently found to bind CoA. We show that NME1 additionally binds AcCoA and that ligand recognition involves a unique binding mode dependent on the CoA/AcCoA 3' phosphate. We report that Nme2 knockout mice fed a high-fat diet (HFD) exhibit excessive triglyceride synthesis and liver steatosis. In liver cells, NME2 mediates a gene transcriptional response to HFD leading to the repression of fatty acid accumulation and activation of a protective gene expression program via targeted histone acetylation. Our findings implicate NME1/2 in the epigenetic regulation of a protective liver response to HFD and suggest a potential role in controlling AcCoA usage between the competing paths of histone acetylation and fatty acid synthesis.


Assuntos
Núcleosídeo-Difosfato Quinase , Animais , Camundongos , Núcleosídeo-Difosfato Quinase/genética , Dieta Hiperlipídica/efeitos adversos , Epigênese Genética , Histonas , Fígado , Ácidos Graxos , Camundongos Knockout
4.
PLoS One ; 18(7): e0288162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418424

RESUMO

A history of infection has been linked with increased risk of acute myeloid leukaemia (AML) and related myelodysplastic syndromes (MDS). Furthermore, AML and MDS patients suffer frequent infections because of disease-related impaired immunity. However, the role of infections in the development and progression of AML and MDS remains poorly understood. We and others previously demonstrated that the human nucleoside diphosphate kinase (NDPK) NM23-H1 protein promotes AML blast cell survival by inducing secretion of IL-1ß from accessory cells. NDPKs are an evolutionary highly conserved protein family and pathogenic bacteria secrete NDPKs that regulate virulence and host-pathogen interactions. Here, we demonstrate the presence of IgM antibodies against a broad range of pathogen NDPKs and more selective IgG antibody activity against pathogen NDPKs in the blood of AML patients and normal donors, demonstrating that in vivo exposure to NDPKs likely occurs. We also show that pathogen derived NDPK-proteins faithfully mimic the catalytically independent pro-survival activity of NM23-H1 against primary AML cells. Flow cytometry identified that pathogen and human NDPKs selectively bind to monocytes in peripheral blood. We therefore used vitamin D3 differentiated monocytes from wild type and genetically modified THP1 cells as a model to demonstrate that NDPK-mediated IL-1ß secretion by monocytes is NLRP3-inflammasome and caspase 1 dependent, but independent of TLR4 signaling. Monocyte stimulation by NDPKs also resulted in activation of NF-κB and IRF pathways but did not include the formation of pyroptosomes or result in pyroptotic cell death which are pivotal features of canonical NLRP3 inflammasome activation. In the context of the growing importance of the NLRP3 inflammasome and IL-1ß in AML and MDS, our findings now implicate pathogen NDPKs in the pathogenesis of these diseases.


Assuntos
Monócitos , Núcleosídeo-Difosfato Quinase , Humanos , Monócitos/metabolismo , Inflamassomos/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sobrevivência Celular , Interleucina-1beta/metabolismo
5.
Pharm Biol ; 61(1): 372-390, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36799406

RESUMO

CONTEXT: The toxicity of atractyloside/carboxyatractyloside is generally well recognized and commonly ascribed to the inhibition of mitochondrial ADP/ATP carriers, which are pivotal for oxidative phosphorylation. However, these glycosides may 'paralyze' additional target proteins. OBJECTIVE: This review presents many facts about atractyloside/carboxyatractyloside and their plant producers, such as Xanthium spp. (Asteraceae), named cockleburs. METHODS: Published studies and other information were obtained from databases, such as 'CABI - Invasive Species Compendium', 'PubMed', and 'The World Checklist of Vascular Plants', from 1957 to December 2022. The following major keywords were used: 'carboxyatractyloside', 'cockleburs', 'hepatotoxicity', 'mitochondria', 'nephrotoxicity', and 'Xanthium'. RESULTS: In the third decade of the twenty first century, public awareness of the severe toxicity of cockleburs is still limited. Such toxicity is often only perceived by specialists in Europe and other continents. Interestingly, cocklebur is among the most widely distributed invasive plants worldwide, and the recognition of new European stands of Xanthium spp. is provided here. The findings arising from field and laboratory research conducted by the author revealed that (i) some livestock populations may instinctively avoid eating cocklebur while grazing, (ii) carboxyatractyloside inhibits ADP/GDP metabolism, and (iii) the direct/indirect target proteins of carboxyatractyloside are ambiguous. CONCLUSIONS: Many aspects of the Xanthium genus still require substantial investigation/revision in the future, such as the unification of the Latin nomenclature of currently distinguished species, bur morphology status, true fruit (achene) description and biogeography of cockleburs, and a detailed description of the physiological roles of atractyloside/carboxyatractyloside and the toxicity of these glycosides, mainly toward mammals. Therefore, a more careful interpretation of atractyloside/carboxyatractyloside data, including laboratory tests using Xanthium-derived extracts and purified toxins, is needed.


Assuntos
Núcleosídeo-Difosfato Quinase , Animais , Atractilosídeo/toxicidade , Glicosídeos/toxicidade , Difosfato de Adenosina , Mamíferos
6.
J Cell Biochem ; 124(4): 545-556, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36815439

RESUMO

The Nucleoside diphosphate kinase (NDK) protein of Porphyromonas gingivalis (P. gingivalis) plays a crucial role in immune evasion and inhibition of apoptosis in host cells and has the potential to cause cancer. However, its structure has not yet been characterized. We used an in-silico approach to determine the 3D structure of the P. gingivalis NDK. Furthermore, structural characterization and functional annotation were performed using computational approaches. The 3D structure of NDK was predicted through homology modeling. The structural domains predicted for the model protein belong to the NDK family. Structural alignment of prokaryotic and eukaryotic NDKs with the model protein revealed the conservation of the domain region. Structure-based phylogenetic analysis depicted a significant evolutionary relationship between the model protein and the prokaryotic NDK. Functional annotation of the model confirmed structural homology, exhibiting similar enzymatic functions as NDK, including ATP binding and nucleoside diphosphate kinase activity. Furthermore, molecular dynamic (MD) simulation technique stabilized the model structure and provides a thermo-stable protein structure that can be used as a therapeutic target for further studies.


Assuntos
Núcleosídeo-Difosfato Quinase , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/química , Núcleosídeo-Difosfato Quinase/metabolismo , Proteínas Reguladoras de Apoptose , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Filogenia , Apoptose
7.
J Biomol Struct Dyn ; 41(22): 12610-12619, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36651083

RESUMO

Pseudomonas aeruginosa is one of the leading opportunistic pathogens that causes nosocomial pneumonia and mostly in people with cystic fibrosis. In the present study, an in-silicoapproach was adopted to identify the novel drug target against Pseudomonas aeruginosa by employing subtractive genomics and molecular docking studies. Each step in the subtractive genomics scrutinized the bacterial proteome and determined a potential drug target against Pseudomonas aeruginosa. 71 essential proteins were obtained from the subcellular localization method that resides in the extracellular region. Metabolic pathways were studied to elucidate the unique pathways where the involvement of proteins present in the pathogen was predicted and a total of 6 unique pathways were determined. By, Genome mining of the source organism Paenibacillusehimensis, 9 ligands were obtained. The molecular docking analysis between the binding site of target protein NDK and ligands was carried out by employing the AutoDock Vina tool. Based on the highest binding affinity, Paenibactin, AnabaenopeptinNZ857 and Nostamide A complex with NDK protein with a lower binding energy of -7.5 kcal/mol, -7.4and -7.2 kcal/molrespectively were considered for the simulation studies. Molecular dynamics simulation studies showed the ligand in complex with protein was highly stable and rigid for a duration of 150 ns. For Paenibactin, AnabaenopeptinNZ857 and Nostamide Acomplex with protein, RMSD plot showed a deviation of ∼0.2-0.3 nm till ∼30ns/50 ns-110ns and further stabilized. The radius of the gyration plot clearly showed that the values stayed at ∼1.45 nm- 1.55 nm showing compactness and stability. The SASA stayed at the range ∼80nm2 and at least one total number of hydrogen bonds was shown throughout the 150 ns simulation for all three possible ligand-protein complexes. In the RMSF plot, the maximum fluctuation was ranged from ∼0.4-0.42 nm at the range between ∼57ns-60ns.The Paenibactin, AnabaenopeptinNZ857 and Nostamide A complex with NDK protein showed a stable, rigid and compact interaction throughout the simulation of duration 150 ns.Communicated by Ramaswamy H. Sarma.


Assuntos
Núcleosídeo-Difosfato Quinase , Pseudomonas aeruginosa , Humanos , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Ligantes , Sítios de Ligação , Simulação de Dinâmica Molecular
8.
J Plant Physiol ; 280: 153901, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549033

RESUMO

Free magnesium (Mg2+) represents a powerful signal arising from interconversions of adenylates (ATP, ADP and AMP). This is a consequence of the involvement of adenylate kinase (AK) which equilibrates adenylates and uses defined species of Mg-complexed and Mg-free adenylates in both directions of its reaction. However, cells contain also other reversible Mg2+-dependent enzymes that equilibrate non-adenylate nucleotides (uridylates, cytidylates and guanylates), i.e. nucleoside monophosphate kinases (NMPKs) and nucleoside diphosphate kinase (NDPK). Here, we propose that AK activity is tightly coupled to activities of NMPK and NDPK, linking adenylate equilibrium to equilibria of other nucleotides, and with [Mg2+] controlling the ratios of Mg-chelated and Mg-free nucleotides. This coupling establishes main hubs for adenylate-driven equilibration of non-adenylate nucleotides, with [Mg2+] acting as signal arising from all nucleotides rather than adenylates only. Further consequences involve an overall adenylate control of UTP-, GTP- and CTP-dependent pathways and the availability of substrates for RNA and DNA synthesis.


Assuntos
Núcleosídeo-Difosfato Quinase , Nucleotídeos , Nucleotídeos/metabolismo , Magnésio/metabolismo , Monofosfato de Adenosina/metabolismo , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Difosfato de Adenosina/metabolismo
9.
Medicina (Kaunas) ; 58(9)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36143845

RESUMO

Background and Objective: Helicobacter pylori is a human-stomach-dwelling organism that causes many gastric illnesses, including gastritis, ulcer, and gastric cancer. The purpose of the study was to perform differential proteomic analysis on H. pylori isolates from gastritis, ulcer, and gastric cancer patients. Materials and Methods: H. pylori was isolated from antrum and fundus biopsies obtained from patients who visited the Department of Gastroenterology. Using nano-LC-QTOF MS/MS analysis, differentially regulated proteins were identified through proteome profiling of pooled samples of H. pylori isolated from gastritis, ulcer, and gastric cancer patients. Antigenic scores and cellular localization of proteins were determined using additional prediction tools. Results: A total of 14 significantly regulated proteins were identified in H. pylori isolated from patients with either gastritis, ulcer, or gastric cancer. Comparative analysis of groups revealed that in the case of cancer vs. gastritis, six proteins were overexpressed, out of which two proteins, including hydrogenase maturation factor (hypA) and nucleoside diphosphate kinase (ndk) involved in bacterial colonization, were only upregulated in isolates from cancer patients. Similarly, in cancer vs. ulcer, a total of nine proteins were expressed. Sec-independent protein translocase protein (tatB), involved in protein translocation, and pseudaminic acid synthase I (pseI), involved in the synthesis of functional flagella, were upregulated in cancer, while hypA and ndk were downregulated. In ulcer vs. gastritis, eight proteins were expressed. In this group, tatB was overexpressed. A reduction in thioredoxin peroxidase (bacterioferritin co-migratory protein (bcp)) was observed in ulcer vs. gastritis and cancer vs. ulcer. Conclusion: Our study suggested three discrete protein signatures, hypA, tatB, and bcp, with differential expression in gastritis, ulcer, and cancer. Protein expression profiles of H. pylori isolated from patients with these gastric diseases will help to understand the virulence and pathogenesis of H. pylori.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Hidrogenase , Núcleosídeo-Difosfato Quinase , Neoplasias Gástricas , Gastrite/microbiologia , Glicogênio Sintase/metabolismo , Infecções por Helicobacter/microbiologia , Humanos , Hidrogenase/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo , Paquistão , Peroxirredoxinas/metabolismo , Proteoma/metabolismo , Proteômica , Neoplasias Gástricas/patologia , Espectrometria de Massas em Tandem , Úlcera
10.
Protein Pept Lett ; 29(10): 839-850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35975859

RESUMO

BACKGROUND: The ESKAPE group of pathogens which comprise of multidrug resistant bacteria, namely Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species are the cause of deadly nosocomial infections all over the world. While these pathogens have developed robust strategies to resist most antibiotics, their ability to form biofilms is one of their most combative properties. Hence there is an urgent need to discover new antibacterial agents which could prevent or destroy the biofilms made by these bacteria. Though it has been established that lactoferrin (LF), a potent iron binding antibacterial, antifungal, and antiviral protein displays anti-biofilm properties, its mechanisms of action, in addition to its iron chelation property, still remains unclear. OBJECTIVE: The binding and inhibition studies of LF with the enzyme Nucleoside diphosphate Kinase (NDK) and its elastase cleaved truncated 12 kDa fragment (12-NDK). METHODS: The characterization studies of NDK and 12-NDK using florescence spectroscopy, dynamic light scattering, size exclusion chromatography and ADP-glo Kinase Assay. Inhibition studies of LF-NDK using ADP-glo kinase assay, Surface Plasmon Resonance and Biofilm inhibition studies. RESULTS: NDK and 12-NDK were cloned, expressed and purified from Acinetobacter baumannii and Pseudomonas aeruginosa. The characterization studies revealed NDK and 12-NDK from both species are stable and functional. The inhibition studies of LF-NDK revealed stable binding and inhibition of kinase activity by LF. CONCLUSION: The binding and inhibition studies have shown that while LF binds with both the NDK and their truncated forms, it tends to have a higher binding affinity with the truncated 12 kDa fragments, resulting in their decreased kinase activity. This study essentially gives a new direction to the field of inhibition of biofilm formation, as it proves that LF has a novel mechanism of action in other than iron sequestration.


Assuntos
Acinetobacter baumannii , Núcleosídeo-Difosfato Quinase , Núcleosídeo-Difosfato Quinase/química , Núcleosídeo-Difosfato Quinase/metabolismo , Lactoferrina/farmacologia , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Ferro , Difosfato de Adenosina
11.
Microb Pathog ; 166: 105457, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35219843

RESUMO

Leishmania donovani pathogenicity is closely linked to its ability to live and replicate in the hostile environment of macrophages. All protozoan parasites, including Leishmania, are unable to synthesize purines de novo, and nucleoside diphosphate kinases (NDKs) are enzymes required to preserve the intracellular nucleoside phosphate equilibrium. For some pathogens, secretion of ATP-utilizing enzymes into the extracellular environment aids in pathogen survival via P2Z receptor mediated, ATP-induced death of infected macrophages. Here, Leishmanaia donovani nucleoside diphosphate kinase (LdNDKb) was cloned, expressed and purified by Ni2+-NTA affinity chromatography to elucidate its biological significance. The presence of secreted form of LdNDKb in the medium was confirmed by Western blot analysis. Interestingly, cellular localization by confocal microscopy showed that this protein was localized in the nucleus, inner leaflet of membrane and on the flagella of this parasite which indicates its multiple role in the life cycle of Leishmania donovani. Its possibility to bind with DNA was confirmed by gel retardation assay and electrophoretic mobility shift assay (EMSA) which show the binding with linear and supercoiled is not sequence specific. Further, treatment of J774 macrophages with recombinant LdNdKb and periodate oxidized ATP - a P2X7 receptor antagonist, inhibited ATP-induced cytolysis in vitro, as determined by lactate dehydrogenise release from J774 macrophages. Thus, LdNDKb prevents ATP-mediated host-cell plasma membrane permeabilization by hydrolyzing extracellular ATP, thereby, preserving the integrity of the host cells for the benefit of the parasite. This study indicates that LdNDKb could be explored for its potentiality as a drug/vaccine target against visceral leishmaniasis.


Assuntos
Leishmania donovani , Núcleosídeo-Difosfato Quinase , Trifosfato de Adenosina/metabolismo , Morte Celular , Macrófagos/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/metabolismo
12.
Curr Genet ; 68(1): 15-25, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34480234

RESUMO

No effective vaccine is available for any parasitic disease. The treatment to those is solely dependent on chemotherapy, which is always threatened due to development of drug resistance in bugs. This warrants identification of new drug targets. Here, we discuss Nucleoside diphosphate kinases (NDKs) of pathogens that alter host's intra and extracellular environment, as novel drug targets to simultaneously tackle multiple pathogens. NDKs having diverse functions, are highly conserved among prokaryotes and eukaryotes (the mammal NDKs are called NMEs [non-metastatic enzymes]). However, NDKs and NMEs have been separately analysed in the past for their structure and functions. The role of NDKs of pathogen in modulation of inflammation, phagocytosis, apoptosis, and ROS generation in host is known. Conversely, its combined contribution in host-pathogen interaction has not been studied yet. Through the sequence and domain analysis, we found that NDKs can be classified in two groups. One group comprised NMEs 1-4 and few NDKs of select essential protozoan parasites and the bacterium Mycobacterium tuberculosis. The other group included NME7 and the other NDKs of those parasites, posing challenges in the development of drugs specifically targeting pathogen NDKs, without affecting NME7. However, common drugs targeting group 2 NDKs of pathogens can be designed, as NME7 of group 2 is expressed only in ciliated host cells. This review thus analyses comparatively for the first time the structures and functions of human NMEs and pathogen NDKs and predicts the possibilities of NDKs as drug targets. In addition, pathogen NDKs have been now provided a nomenclature in alignment with the NMEs of humans.


Assuntos
Mycobacterium tuberculosis , Núcleosídeo-Difosfato Quinase , Animais , Apoptose , Interações Hospedeiro-Patógeno/genética , Humanos , Mycobacterium tuberculosis/genética , Núcleosídeo-Difosfato Quinase/genética
13.
Cancer Res ; 82(1): 60-74, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34764205

RESUMO

Metabolic reprogramming by oncogenic signaling is a hallmark of cancer. Hyperactivation of Wnt/ß-catenin signaling has been reported in hepatocellular carcinoma (HCC). However, the mechanisms inducing hyperactivation of Wnt/ß-catenin signaling and strategies for targeting this pathway are incompletely understood. In this study, we find nucleoside diphosphate kinase 7 (NME7) to be a positive regulator of Wnt/ß-catenin signaling. Upregulation of NME7 positively correlated with the clinical features of HCC. Knockdown of NME7 inhibited HCC growth in vitro and in vivo, whereas overexpression of NME7 cooperated with c-Myc to drive tumorigenesis in a mouse model and to promote the growth of tumor-derived organoids. Mechanistically, NME7 bound and phosphorylated serine 9 of GSK3ß to promote ß-catenin activation. Furthermore, MTHFD2, the key enzyme in one-carbon metabolism, was a target gene of ß-catenin and mediated the effects of NME7. Tumor-derived organoids with NME7 overexpression exhibited increased sensitivity to MTHFD2 inhibition. In addition, expression levels of NME7, ß-catenin, and MTHFD2 correlated with each other and with poor prognosis in patients with HCC. Collectively, this study emphasizes the crucial roles of NME7 protein kinase activity in promoting Wnt/ß-catenin signaling and one-carbon metabolism, suggesting NME7 and MTHFD2 as potential therapeutic targets for HCC. SIGNIFICANCE: The identification of NME7 as an activator of Wnt/ß-catenin signaling and MTHFD2 expression in HCC reveals a mechanism regulating one-carbon metabolism and potential therapeutic strategies for treating this disease.


Assuntos
Carbono/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Núcleosídeo-Difosfato Quinase/metabolismo , Proteínas Quinases/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Hepáticas/patologia
14.
BMC Biol ; 19(1): 228, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34674701

RESUMO

BACKGROUND: Mitochondrial nucleoside diphosphate kinase (NDPK-D, NME4, NM23-H4) is a multifunctional enzyme mainly localized in the intermembrane space, bound to the inner membrane. RESULTS: We constructed loss-of-function mutants of NDPK-D, lacking either NDP kinase activity or membrane interaction and expressed mutants or wild-type protein in cancer cells. In a complementary approach, we performed depletion of NDPK-D by RNA interference. Both loss-of-function mutations and NDPK-D depletion promoted epithelial-mesenchymal transition and increased migratory and invasive potential. Immunocompromised mice developed more metastases when injected with cells expressing mutant NDPK-D as compared to wild-type. This metastatic reprogramming is a consequence of mitochondrial alterations, including fragmentation and loss of mitochondria, a metabolic switch from respiration to glycolysis, increased ROS generation, and further metabolic changes in mitochondria, all of which can trigger pro-metastatic protein expression and signaling cascades. In human cancer, NME4 expression is negatively associated with markers of epithelial-mesenchymal transition and tumor aggressiveness and a good prognosis factor for beneficial clinical outcome. CONCLUSIONS: These data demonstrate NME4 as a novel metastasis suppressor gene, the first localizing to mitochondria, pointing to a role of mitochondria in metastatic dissemination.


Assuntos
Neoplasias , Núcleosídeo-Difosfato Quinase , Animais , Membranas Intracelulares , Camundongos , Mitocôndrias , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Nucleosídeo Difosfato Quinase D/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/metabolismo
15.
Genes (Basel) ; 12(7)2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-34356103

RESUMO

Complex metabolic conditions such as type 2 diabetes and obesity result from the interaction of numerous genetic and environmental factors. While the family of Nme proteins has been connected so far mostly to development, proliferation, or ciliary functions, several lines of evidence from human and experimental studies point to the potential involvement of one of its members, NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) in carbohydrate and lipid metabolism. As a complete lack of Nme7 is semilethal in rats, we compared morphometric, metabolic, and transcriptomic profiles of standard diet-fed heterozygous Nme7+/- on male rats vs. their wild-type Nme7+/+ controls. Nme7+/- animals showed increased body weight, adiposity, higher insulin levels together with decreased glucose tolerance. Moreover, they displayed pancreatic islet fibrosis and kidney tubular damage. Despite no signs of overt liver steatosis or dyslipidemia, we found significant changes in the hepatic transcriptome of Nme7+/- male rats with a concerted increase of expression of lipogenic enzymes including Scd1, Fads1, Dhcr7 and a decrease of Cyp7b1 and Nme7. Network analyses suggested possible links between Nme7 and the activation of Srebf1 and Srebf2 upstream regulators. These results further support the implication of NME7 in the pathogenesis of glucose intolerance and adiposity.


Assuntos
Intolerância à Glucose/genética , Núcleosídeo-Difosfato Quinase/genética , Adiposidade/genética , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/genética , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipogênese/genética , Fígado/metabolismo , Masculino , Núcleosídeo-Difosfato Quinase/metabolismo , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley , Transcriptoma
16.
Biochimie ; 190: 57-69, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34242727

RESUMO

Nucleoside diphosphate kinases (NDK) are ubiquitous enzymes that catalyse the transfer of the γ phosphate from nucleoside triphosphates (NTPs) to nucleoside diphosphate (NDPs), to maintain appropriate NTP levels in cells. NDKs are associated with signal transduction, cell development, proliferation, differentiation, tumor metastasis, apoptosis and motility. The critical role of NDK in bacterial virulence renders it a potential drug target. The present manuscript reports crystal structure and functional characterization of Vibrio cholerae NDK (VNDK). The 16 kDa VNDK was crystallized in a solution containing 30% PEG 4000, 100 mM Tris-HCl pH 8.5 and 200 mM sodium acetate in orthorhombic space group P212121 with unit cell parameters a = 48.37, b = 71.21, c = 89.14 Å, α = ß = Î³ = 90° with 2 molecules in asymmetric unit. The crystal structure was solved by molecular replacement and refined to crystallographic Rfactor and Rfree values of 22.8% and 25.8% respectively. VNDK exists as both dimer and tetramer in solution as confirmed by size exclusion chromatography, glutaraldehyde crosslinking and small angle X-ray scattering while the crystal structure appears to be a dimer. The biophysical characterization states that VNDK has kinase and DNase activity with maximum stability at pH 8-9 and temperature up to 40 °C. VNDK shows elevated thermolability as compared to other NDK and shows preferential binding with GTP rationalized using computational studies.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Núcleosídeo-Difosfato Quinase/química , Núcleosídeo-Difosfato Quinase/metabolismo , Vibrio cholerae/enzimologia , Proteínas de Bactérias/isolamento & purificação , Cristalografia por Raios X , Desoxirribonucleases/metabolismo , Estabilidade Enzimática , Guanosina Trifosfato/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Núcleosídeo-Difosfato Quinase/isolamento & purificação , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Análise de Sequência de Proteína , Espectrometria de Fluorescência , Temperatura , Vibrio cholerae/genética
17.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916973

RESUMO

NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) is a member of a gene family with a profound effect on health/disease status. NME7 is an established member of the ciliome and contributes to the regulation of the microtubule-organizing center. We aimed to create a rat model to further investigate the phenotypic consequences of Nme7 gene deletion. The CRISPR/Cas9 nuclease system was used for the generation of Sprague Dawley Nme7 knock-out rats targeting the exon 4 of the Nme7 gene. We found the homozygous Nme7 gene deletion to be semi-lethal, as the majority of SDNme7-/- pups died prior to weaning. The most prominent phenotypes in surviving SDNme7-/- animals were hydrocephalus, situs inversus totalis, postnatal growth retardation, and sterility of both sexes. Thinning of the neocortex was histologically evident at 13.5 day of gestation, dilation of all ventricles was detected at birth, and an external sign of hydrocephalus, i.e., doming of the skull, was usually apparent at 2 weeks of age. Heterozygous SDNme7+/- rats developed normally; we did not detect any symptoms of primary ciliary dyskinesia. The transcriptomic profile of liver and lungs corroborated the histological findings, revealing defects in cell function and viability. In summary, the knock-out of the rat Nme7 gene resulted in a range of conditions consistent with the presentation of primary ciliary dyskinesia, supporting the previously implicated role of the centrosomally located Nme7 gene in ciliogenesis and control of ciliary transport.


Assuntos
Transtornos da Motilidade Ciliar/genética , Genes Letais , Predisposição Genética para Doença , Núcleosídeo-Difosfato Quinase/deficiência , Animais , Cílios/metabolismo , Cílios/ultraestrutura , Transtornos da Motilidade Ciliar/diagnóstico , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Estudos de Associação Genética , Genótipo , Imuno-Histoquímica , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/metabolismo , Fenótipo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Transcriptoma , Microtomografia por Raio-X
18.
In Vivo ; 35(1): 169-174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33402463

RESUMO

BACKGROUND: The aim of the present work was to evaluate the prognostic significance in patients with T1 breast cancer of tissue expression of the two oncosuppressors phosphatase and tensin homolog (PTEN) and non-metastatic clone 23 (NM23) as detected by immunohistochemistry. MATERIALS AND METHODS: We prospectively analyzed 62 patients who underwent surgery for a T1 stage breast cancer. Expression of PTEN and NM23 was tested for correlation with clinical characteristics and clinical outcome. RESULTS: Of the 62 patients considered for our study, 16 underwent mastectomy and 46 underwent conservative surgical treatment. The surgery was considered radical (R0) in all cases described. PTEN and NM23 expression was higher in patients with no lymph node metastases and no recurrent cancer at a mean follow-up of 36 months (range=6-48 months). This correlation was more evident when both PTNE and NM23 expression were highly expressed (p<0.0001). CONCLUSION: Low or lack of PTEN and NM23 immunohistochemical expression in cancer tissue is a risk factor for lymph node involvement and recurrent disease. It may represent a valid prognostic factor in planning therapy in patients who had surgery for T1 breast cancer.


Assuntos
Neoplasias da Mama , Núcleosídeo-Difosfato Quinase , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/cirurgia , Feminino , Humanos , Mastectomia , Nucleosídeo NM23 Difosfato Quinases/genética , Recidiva Local de Neoplasia/cirurgia , PTEN Fosfo-Hidrolase/genética , Prognóstico
19.
Front Immunol ; 11: 569988, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072110

RESUMO

Schistosomiasis, caused by Schistosoma mansoni trematode worm, affects more than 1.5 million people in Brazil. The current treatment consists in the administration of Praziquantel, the only medicine used for treatment for more than 40 years. Some of the limitations of this drug consist in its inactivity against schistosomula and parasite eggs, the appearance of resistant strains and non-prevention against reinfection. Thus, the objective of this study was to evaluate the effect of immunization with recombinant functional enzymes of the purine salvage pathway of S. mansoni, Nucleoside Diphosphate Kinase (NDPK) and Adenylosuccinate Lyase (ADSL), to evaluate the host immune response, as well as the parasite load after vaccination. For this, Balb/c mice were divided into 5 groups: control (uninfected and untreated), non-immunized/infected, NDPK infected, ADSL infected, and NDPK + ADSL infected. Immunized groups received three enzyme dosages, with a 15-day interval between each dose, and after 15 days of the last application the animals were infected with 80 cercariae of S. mansoni. On the 47th day after the infection, fecal eggs were counted and, on the 48th day after the infection, the evaluation of leukocyte response, parasite load, antibody production, cytokines quantification, and histopathological analysis were performed. The results showed that immunizations with NDPK, ADSL or NDPK + ADSL promoted a discreet reduction in eosinophil counts in lavage of peritoneal cavity. All immunized animals showed increased production and secretion of IgG1, IgG2a, and IgE antibodies. Increased production of IL-4 was observed in the group immunized with the combination of both enzymes (NDPK + ADSL). In addition, in all immunized groups there were reductions in egg counts in the liver and intestine, such as reductions in liver granulomas. Thus, we suggest that immunizations with these enzymes could contribute to the reduction of schistosomiasis transmission, besides being important in immunopathogenesis control of the disease.


Assuntos
Adenilossuccinato Liase/imunologia , Antígenos de Helmintos/imunologia , Núcleosídeo-Difosfato Quinase/imunologia , Schistosoma mansoni/enzimologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologia , Animais , Antígenos de Helmintos/administração & dosagem , Biomarcadores , Citocinas/sangue , Eosinófilos , Feminino , Imunização , Esquemas de Imunização , Contagem de Leucócitos , Fígado/metabolismo , Fígado/parasitologia , Fígado/patologia , Camundongos , Carga Parasitária , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Esquistossomose mansoni/patologia , Esquistossomose mansoni/prevenção & controle
20.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019537

RESUMO

Awd, the Drosophila homologue of NME1/2 metastasis suppressors, plays key roles in many signaling pathways. Mosaic analysis of the null awdJ2A4 allele showed that loss of awd gene function blocks Notch signaling and the expression of its target genes including the Wingless (Wg/Wnt1) morphogen. We also showed that RNA interference (RNAi)-mediated awd silencing (awdi) in larval wing disc leads to chromosomal instability (CIN) and to Jun amino-terminal kinases (JNK)-mediated cell death. Here we show that this cell death is independent of p53 activity. Based on our previous finding showing that forced survival of awdi-CIN cells leads to aneuploidy without the hyperproliferative effect, we investigated the Wg expression in awdi wing disc cells. Interestingly, the Wg protein is expressed in its correct dorso-ventral domain but shows an altered cellular distribution which impairs its signaling. Further, we show that RNAi-mediated knock down of awd in wing discs does not affect Notch signaling. Thus, our analysis of the hypomorphic phenotype arising from awd downregulation uncovers a dose-dependent effect of Awd in Notch and Wg signaling.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Nucleosídeo NM23 Difosfato Quinases/genética , Núcleosídeo-Difosfato Quinase/genética , Asas de Animais/metabolismo , Via de Sinalização Wnt/genética , Proteína Wnt1/genética , Animais , Morte Celular , Instabilidade Cromossômica , Cromossomos de Insetos/química , Cromossomos de Insetos/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Larva/citologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Masculino , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Núcleosídeo-Difosfato Quinase/antagonistas & inibidores , Núcleosídeo-Difosfato Quinase/metabolismo , Fenótipo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Asas de Animais/citologia , Asas de Animais/crescimento & desenvolvimento , Proteína Wnt1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA