Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Headache Pain ; 21(1): 72, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522232

RESUMO

BACKGROUND: Vestibular migraine has recently been recognized as a novel subtype of migraine. However, the mechanism that relate vestibular symptoms to migraine had not been well elucidated. Thus, the present study investigated vestibular dysfunction in a rat model of chronic migraine (CM), and to dissect potential mechanisms between migraine and vertigo. METHODS: Rats subjected to recurrent intermittent administration of nitroglycerin (NTG) were used as the CM model. Migraine- and vestibular-related behaviors were analyzed. Immunofluorescent analyses and quantitative real-time polymerase chain reaction were employed to detect expressions of c-fos and calcitonin gene-related peptide (CGRP) in the trigeminal nucleus caudalis (TNC) and vestibular nucleus (VN). Morphological changes of vestibular afferent terminals was determined under transmission electron microscopy. FluoroGold (FG) and CTB-555 were selected as retrograde tracers and injected into the VN and TNC, respectively. Lentiviral vectors comprising CGRP short hairpin RNA (LV-CGRP) was injected into the trigeminal ganglion. RESULTS: CM led to persistent thermal hyperalgesia, spontaneous facial pain, and prominent vestibular dysfunction, accompanied by the upregulation of c-fos labeling neurons and CGRP immunoreactivity in the TNC (c-fos: vehicle vs. CM = 2.9 ± 0.6 vs. 45.5 ± 3.4; CGRP OD: vehicle vs. CM = 0.1 ± 0.0 vs. 0.2 ± 0.0) and VN (c-fos: vehicle vs. CM = 2.3 ± 0.8 vs. 54.0 ± 2.1; CGRP mRNA: vehicle vs. CM = 1.0 ± 0.1 vs. 2.4 ± 0.1). Furthermore, FG-positive neurons was accumulated in the superficial layer of the TNC, and the number of c-fos+/FG+ neurons were significantly increased in rats with CM compared to the vehicle group (vehicle vs. CM = 25.3 ± 2.2 vs. 83.9 ± 3.0). Meanwhile, CTB-555+ neurons dispersed throughout the VN. The structure of vestibular afferent terminals was less pronounced after CM compared with the peripheral vestibular dysfunction model. In vivo knockdown of CGRP in the trigeminal ganglion significantly reduced the number of c-fos labeling neurons (LV-CGRP vs. LV-NC = 9.9 ± 3.0 vs. 60.0 ± 4.5) and CGRP mRNA (LV-CGRP vs. LV-NC = 1.0 ± 0.1 vs. 2.1 ± 0.2) in the VN, further attenuating vestibular dysfunction after CM. CONCLUSIONS: These data demonstrates the possibility of sensitization of vestibular nucleus neurons to impair vestibular function after CM, and anti-CGRP treatment to restore vestibular dysfunction in patients with CM.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Transtornos de Enxaqueca/fisiopatologia , Núcleos Vestibulares/metabolismo , Animais , Hiperalgesia/metabolismo , Masculino , Nitroglicerina/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Gânglio Trigeminal/metabolismo
2.
Neuroscience ; 424: 146-154, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31704349

RESUMO

Near threshold stochastic vestibular stimulation (SVS) enhances postural control and improves other symptoms in neurodegenerative disorders like Parkinson's disease (PD). Improvement of postural control can tentatively be explained by increased responsivity of the vestibular system, but the mechanism behind other effects of near threshold SVS, like improved motor symptoms and cognitive responsiveness in PD, are not known. To better understand the effect of vestibular stimulation on brain activity in PD, c-Fos expression was used as a marker of change in functional activity following SVS in 6-hydroxydopamine (6-OHDA) hemi-lesioned and in sham-lesioned rats. The results were compared with the effect of a single levodopa injection in 6-OHDA hemi-lesioned or saline in sham-lesioned rats. SVS was found to increase c-Fos expression more than levodopa as well as saline in the parvocellular medial vestibular nucleus (MVePC) and more in 6-OHDA hemi-lesioned than in sham-lesioned animals. Furthermore, c-Fos expression increased more in the habenula nucleus (LHb) after SVS than it did after levodopa in 6-OHDA hemilesioned animals and after saline in the sham-lesioned animals. SVS and levodopa induced similar c-Fos expression in several regions, e.g. the caudate putamen (CPu), where saline had no effect. In conclusion there was overlap between SVS-activated areas and levodopa-activated areas, but activation was more pronounced following SVS in the MVePC of 6-OHDA lesioned and in the LHb in both lesioned and sham-lesioned rats.


Assuntos
Levodopa/farmacologia , Oxidopamina/toxicidade , Proteínas Proto-Oncogênicas c-fos/biossíntese , Núcleos Vestibulares/metabolismo , Vestíbulo do Labirinto/metabolismo , Animais , Dopaminérgicos/farmacologia , Expressão Gênica , Masculino , Proteínas Proto-Oncogênicas c-fos/genética , Ratos , Ratos Sprague-Dawley , Processos Estocásticos , Núcleos Vestibulares/efeitos dos fármacos , Núcleos Vestibulares/patologia , Vestíbulo do Labirinto/efeitos dos fármacos , Vestíbulo do Labirinto/patologia
3.
PLoS One ; 14(1): e0211297, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30682203

RESUMO

Weather changes accompanied by decreases in barometric pressure are suggested to trigger meteoropathy, i.e., weather-related pain. We previously reported that neuropathic pain-related behavior in rats is aggravated by lowering barometric pressure, and that this effect is abolished by inner ear lesions. These results suggest that mechanisms that increase vestibular neuronal activity may parallel those that contribute to meteoropathy generation. However, it remains unknown whether changes in barometric pressure activate vestibular neuronal activity. To address this issue, we used expression of c-Fos protein as a marker for neural activation. Male and female mice were placed in a climatic chamber, and the barometric pressure was lowered by 40 hPa, from 1013 hPa, for 50 min (LP stimulation). The total number of c-Fos-positive cells in the vestibular nuclei was counted bilaterally after LP stimulation. We also video-recorded mouse behaviors and calculated the total activity score during the LP stimulation. LP stimulation resulted in significant c-Fos expression in the superior vestibular nucleus (SuVe) of male and female mice. There was no effect of LP stimulation on the total activity score. These data show that distinct neurons in the SuVe respond to LP stimulation. Similar mechanisms may contribute to the generation of meteoropathy in humans.


Assuntos
Câmaras de Exposição Atmosférica/efeitos adversos , Neuralgia/etiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos Vestibulares/metabolismo , Animais , Pressão Atmosférica , Modelos Animais de Doenças , Feminino , Humanos , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Neuralgia/metabolismo , Regulação para Cima , Núcleos Vestibulares/efeitos dos fármacos , Gravação em Vídeo
4.
Neuropharmacology ; 123: 242-248, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28483393

RESUMO

The medial vestibular nucleus (MVN) is a major output station for neurons that project to the vestibulo-spinal pathway. MVN neurons show capacity for long-term depression (LTD) during the juvenile period. We investigated LTD of MVN neurons using whole-cell patch-clamp recordings. High frequency stimulation (HFS) robustly induced LTD in 90% of type B neurons in the MVN, while only 10% of type A neurons were responsive, indicating that type B neurons are the major contributors to LTD in the MVN. The neuromodulator serotonin (5-HT) is known to modulate LTD in neural circuits of the cerebral cortex and the hippocampus. We therefore aim to determine the action of 5-HT on the LTD of type B MVN neurons and elucidate the relevant 5-HT receptor subtypes responsible for its action. Using specific agonists and antagonists of 5-HT receptors, we found that selective activation of 5-HT7 receptor in type B neurons in the MVN of juvenile (P13-16) rats completely abolished NMDA-receptor-mediated LTD in a protein kinase A (PKA)-dependent manner. Our finding that 5-HT restricts plasticity of type B MVN neurons via 5-HT7 receptors offers a mechanism whereby vestibular tuning contributes to the maturation of the vestibulo-spinal circuit and highlights the role of 5-HT in postural control.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Serotonina/metabolismo , Núcleos Vestibulares/metabolismo , Animais , Feminino , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores 5-HT1 de Serotonina/metabolismo , Receptores 5-HT2 de Serotonina/metabolismo , Técnicas de Cultura de Tecidos , Núcleos Vestibulares/efeitos dos fármacos
5.
J Physiol Sci ; 67(4): 531-537, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28185235

RESUMO

The Japan Aerospace Exploration Agency recently performed a mouse experiment in the International Space Station in which mice were raised for 35 days, retrieved using the Dragon spacecraft, and then harvested for analysis 2 days after splashdown. However, the impact of the retrieval procedure, which exposed mice to 5-10 g for 2 min during atmospheric reentry and splashdown, was unknown. Therefore, the purpose of this study was to examine the impact of a 10 g load for 2 min (using a gondola-type centrifuge with a 1.5-m arm installed at Gifu University) on conscious mice. Plasma corticosterone increased at 30 min after load application and recovered at 90 min. Significant Fos expression was observed in the vestibular nuclei (VeN), paraventricular hypothalamic nucleus (PVN), and central nucleus of the amygdala (CeA). Rearing behavior and food intake were suppressed. Mice with vestibular lesions demonstrated increased corticosterone and Fos expression in the PVN, but neither suppression of food intake and rearing behavior nor increased Fos expression in the VeN and CeA. These results suggest that the simulated gravity load induced a transient stress response, hypoactivity, and a vestibular-mediated suppression of food intake.


Assuntos
Centrifugação/efeitos adversos , Estado de Consciência , Gravidade Alterada/efeitos adversos , Voo Espacial , Estresse Fisiológico , Animais , Biomarcadores/sangue , Núcleo Central da Amígdala/metabolismo , Núcleo Central da Amígdala/fisiopatologia , Centrifugação/métodos , Corticosterona/sangue , Ingestão de Alimentos , Comportamento Alimentar , Camundongos Endogâmicos C57BL , Enjoo devido ao Movimento/etiologia , Enjoo devido ao Movimento/metabolismo , Enjoo devido ao Movimento/fisiopatologia , Atividade Motora , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Tempo , Núcleos Vestibulares/metabolismo , Núcleos Vestibulares/fisiopatologia
6.
Cerebellum ; 16(2): 398-410, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27435250

RESUMO

The electrical stimulation of specific brain targets has been shown to induce striking antidepressant effects. Despite that recent data have indicated that cerebellum is involved in emotional regulation, the mechanisms by which stimulation improved mood-related behaviors in the cerebellum remained largely obscure. Here, we investigated the stimulation effects of the ventromedial prefrontal cortex (vmPFC), nucleus accumbens (NAc), and lateral habenular nucleus on the c-Fos neuronal activity in various deep cerebellar and vestibular nuclei using the unpredictable chronic mild stress (CMS) animal model of depression. Our results showed that stressed animals had increased number of c-Fos cells in the cerebellar dentate and fastigial nuclei, as well as in the spinal vestibular nucleus. To examine the stimulation effects, we found that vmPFC stimulation significantly decreased the c-Fos activity within the cerebellar fastigial nucleus as compared to the CMS sham. Similarly, there was also a reduction of c-Fos expression in the magnocellular part of the medial vestibular nucleus in vmPFC- and NAc core-stimulated animals when compared to the CMS sham. Correlational analyses showed that the anxiety measure of home-cage emergence escape latency was positively correlated with the c-Fos neuronal activity of the cerebellar fastigial and magnocellular and parvicellular parts of the interposed nuclei in CMS vmPFC-stimulated animals. Interestingly, there was a strong correlation among activation in these cerebellar nuclei, indicating that the antidepressant-like behaviors were possibly mediated by the vmPFC stimulation-induced remodeling within the forebrain-cerebellar neurocircuitry.


Assuntos
Núcleos Cerebelares/metabolismo , Transtorno Depressivo/metabolismo , Transtorno Depressivo/terapia , Terapia por Estimulação Elétrica , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Núcleos Cerebelares/patologia , Transtorno Depressivo/patologia , Modelos Animais de Doenças , Habenula/metabolismo , Habenula/patologia , Imuno-Histoquímica , Neuroestimuladores Implantáveis , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Ratos Sprague-Dawley , Estresse Psicológico , Incerteza , Núcleos Vestibulares/metabolismo , Núcleos Vestibulares/patologia
7.
Acta Biol Hung ; 67(2): 215-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27165532

RESUMO

Medial vestibular nucleus neurons show spontaneous repetitive spiking. This spiking activity was reproduced by a Hodgkin-Huxley-type mathematical model, which was developed in a previous study. The present study performed computer simulations of this model to evaluate the contribution of the excitatory ionic conductance to repetitive spiking. The present results revealed the difference in the influence of the transient sodium, persistent sodium, and calcium conductance on spiking activity. The differences between the present and previous results obtained from other neuronal mathematical models were discussed.


Assuntos
Modelos Biológicos , Núcleos Vestibulares/metabolismo , Potenciais de Ação , Neurônios/metabolismo
8.
Neural Plast ; 2016: 7287180, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881130

RESUMO

Dizziness and vertigo frequently occur after cochlear implantation (CI) surgery, particularly during the early stages. It could recover over time but some of the patients suffered from delayed or sustained vestibular symptoms after CI. This study used rat animal models to investigate the effect of unilateral cochleostomy on the vestibular organs over time. Twenty-seven Sprague Dawley rats underwent cochleostomy to evaluate the postoperative changes in hearing threshold, gain and symmetry of the vestibular ocular response, overall balance function, number of hair cells in the crista, and the c-Fos activity in the brainstem vestibular nucleus. Loss of vestibular function was observed during the early stages, but function recovered partially over time. Histopathological findings demonstrated a mild decrease in vestibular hair cells numbers. Increased c-Fos immunoreactivity in the vestibular nucleus, observed in the early stages after cochleostomy, decreased over time. Cochleostomy is a risk factor for peripheral vestibular organ damage that can cause functional impairment in the peripheral vestibular organs. Altered vestibular nucleus activity may be associated with vestibular compensation and plasticity after unilateral cochleostomy.


Assuntos
Cóclea/cirurgia , Plasticidade Neuronal , Núcleos Vestibulares/fisiopatologia , Estimulação Acústica , Animais , Limiar Auditivo/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Células Ciliadas Vestibulares/patologia , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod , Núcleos Vestibulares/metabolismo
9.
Brain Struct Funct ; 221(1): 217-38, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25304399

RESUMO

The recognition of head orientation in the adult involves multi-level integration of inputs within the central vestibular circuitry. How the different inputs are recruited during postnatal development remains unclear. We hypothesize that glutamatergic transmission at the vestibular nucleus contributes to developmental registration of head orientations along the vestibulo-olivary pathway. To investigate the maturation profile by which head rotational signals are registered in the brainstem, we used sinusoidal rotations on the orthogonal planes of the three pairs of semicircular canals. Fos expression was used as readout of neurons responsive to the rotational stimulus. Neurons in the vestibular nucleus and prepositus hypoglossal nucleus responded to all rotations as early as P4 and reached adult numbers by P21. In the reticular formation and inferior olive, neurons also responded to horizontal rotations as early as P4 but to vertical rotations not until P21 and P25, respectively. Neuronal subpopulations that distinguish between rotations activating the orthogonally oriented vertical canals were identifiable in the medial and spinal vestibular nuclei by P14 and in the inferior olivary subnuclei IOß and IOK by P25. Neonatal perturbation of glutamate transmission in the vestibular nucleus was sufficient to derange formation of this distribution in the inferior olive. This is the first demonstration that developmental refinement of glutamatergic synapses in the central vestibular circuitry is essential for developmental registration of head rotational signals in the brainstem.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/fisiologia , Neurônios/fisiologia , Núcleo Olivar/fisiologia , Rotação , Canais Semicirculares/fisiologia , Núcleos Vestibulares/fisiologia , Animais , Maleato de Dizocilpina/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Masculino , Vias Neurais/fisiologia , Neurônios/metabolismo , Núcleo Olivar/crescimento & desenvolvimento , Núcleo Olivar/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Formação Reticular/metabolismo , Formação Reticular/fisiologia , Canais Semicirculares/crescimento & desenvolvimento , Núcleos Vestibulares/crescimento & desenvolvimento , Núcleos Vestibulares/metabolismo , Vestíbulo do Labirinto/lesões
10.
Analyst ; 140(11): 3846-51, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25943376

RESUMO

Unilateral single semicircular canal occlusion (USSCO) is an effective treatment for some cases of intractable vertigo. All patients suffer behavioural imbalance caused by surgery, and then recover with a resumption of vestibular function. However, the compensation mechanism has not been fully evaluated. Findings suggest that serotonin (5-HT) is released from nerve terminals, and plays a vital role in the plasticity of the central nervous system. In this study, we performed surgery of unilateral single semicircular canal occlusion (USSCO) on guinea pigs, and investigated the change of 5-HT by in vivo microdialysis of the medial vestibular nucleus (MVN) coupled with high-performance liquid chromatography and electrochemical detection (HPLC-ECD). A total of 12 guinea pigs were divided randomly into two groups, namely the USSCO group and the control group. Animals in the USSCO group underwent surgery of lateral horizontal semicircular canal occlusion, and those in the control group experienced the same operation but just to expose the horizontal semicircular canal without occlusion. Vestibular disturbance symptoms were observed in the case of the USSCO group, e.g. head tilting, and forced circular movements and spontaneous nystagmus at postoperative days 1 and 3. The basal level of 5-HT was determined to be 316.78 ± 16.62 nM. It elevated to 448.85 ± 24.56 nM at one day following occlusion (P = 0.001). The increase was completely abolished with the vestibular dysfunction recovery. The results showed that unilateral horizontal semicircular canal occlusion could increase the 5-HT level in MVN. 5-HT may play a significant role in the process of central vestibular compensation with residual vestibular function.


Assuntos
Microdiálise/métodos , Canais Semicirculares/cirurgia , Serotonina/metabolismo , Vertigem/metabolismo , Vertigem/terapia , Núcleos Vestibulares/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Eletroquímica , Eletronistagmografia , Cobaias , Masculino , Vertigem/fisiopatologia , Núcleos Vestibulares/fisiopatologia
11.
PLoS One ; 10(4): e0124203, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25910039

RESUMO

OBJECTIVE: To identify differentially expressed genes associated with motion sickness (MS) susceptibility in the rat caudal vestibular nucleus. METHODS: We identified MS susceptible (MSS) and insusceptible (inMSS) rats by quantifying rotation-induced MS symptoms: defecation and spontaneous locomotion activity. Microarray analysis was used to screen differentially expressed genes in the caudal vestibular nucleus (CVN) after rotation. Plasma stress hormones were identified by radioimmunoassay. Candidate genes were selected by bioinformatics analysis and the microarray results were verified by real-time quantitative-PCR (RT-qPCR) methods. By using Elvax implantation, receptor antagonists or recombinant adenovirus targeting the candidate genes were applied to the CVN to evaluate their contribution to MS susceptibility variability. Validity of gene expression manipulation was verified by RT-qPCR and western blot analysis. RESULTS: A total of 304 transcripts were differentially expressed in the MSS group compared with the inMSS group. RT-qPCR analysis verified the expression pattern of candidate genes, including nicotinic cholinergic receptor (nAchR) α3 subunit, 5-hydroxytryptamine receptor 4 (5-HT4R), tachykinin neurokinin-1 (NK1R), γ-aminobutyric acid A receptor (GABAAR) α6 subunit, olfactory receptor 81 (Olr81) and homology 2 domain-containing transforming protein 1 (Shc1). In MSS animals, the nAchR antagonist mecamylamine significantly alleviated rotation-induced MS symptoms and the plasma ß-endorphin response. The NK1R antagonist CP99994 and Olr81 knock-down were effective for the defecation response, while the 5-HT4R antagonist RS39604 and Shc1 over-expression showed no therapeutic effect. In inMSS animals, rotation-induced changes in spontaneous locomotion activity and the plasma ß-endorphin level occurred in the presence of the GABAAR antagonist gabazine. CONCLUSION: Our findings suggested that the variability of the CVN gene expression profile after motion stimulation might be a putative molecular basis for individual differences in MS susceptibility and provide information for the development of new therapeutic strategies for MSS individuals.


Assuntos
Predisposição Genética para Doença , Enjoo devido ao Movimento/genética , Transcriptoma , Núcleos Vestibulares/metabolismo , Animais , Comportamento Animal , Análise por Conglomerados , Modelos Animais de Doenças , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Hormônios/sangue , Locomoção , Masculino , Enjoo devido ao Movimento/diagnóstico , Enjoo devido ao Movimento/metabolismo , Ratos , Reprodutibilidade dos Testes
12.
Eur Arch Otorhinolaryngol ; 272(10): 2703-11, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25173490

RESUMO

Vertebrobasilar insufficiency (VBI) presents complex varied clinical symptoms, including vertigo and hearing loss. Little is known, however, about how Ca(2+)-activated K(+) channel attributes to the medial vestibular nucleus (MVN) neural activity in VBI. To address this issue, we performed whole-cell patch clamp and quantitative polymerase chain reaction (qPCR) to examine the effects of hypoxia on neural activity and the changes of the large conductance Ca(2+) activated K(+) channels (BKCa channels) in the MVN neurons in brain slices of male C57BL/6 mice. Brief hypoxic stimuli of the brain slices containing MVN were administrated by switching the normoxic artificial cerebrospinal fluid (ACSF) equilibrated with 21% O2/5% CO2 to hypoxic ACSF equilibrated with 5% O2/5% CO2 (balance N2). 3-min hypoxia caused a depolarization in the resting membrane potential (RM) in 8/11 non-spontaneous firing MVN neurons. 60/72 spontaneous firing MVN neurons showed a dramatic increase in firing frequency and a depolarization in the RM following brief hypoxia. The amplitude of the afterhyperpolarization (AHPA) was significantly decreased in both type A and type B spontaneous firing MVN neurons. Hypoxia-induced firing response was alleviated by pretreatment with NS1619, a selective BKCa activator. Furthermore, brief hypoxia caused a decrease in the amplitude of iberiotoxin-sensitive outward currents and mRNA level of BKCa in MVN neurons. These results suggest that BKCa channels protect against abnormal MVN neuronal activity induced by hypoxia, and might be a key target for treatment of vertigo and hearing loss in VBI.


Assuntos
Hipóxia/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Doenças Vestibulares/fisiopatologia , Núcleos Vestibulares/fisiopatologia , Animais , Modelos Animais de Doenças , Hipóxia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Vestibulares/metabolismo , Núcleos Vestibulares/metabolismo
13.
Neurosci Lett ; 558: 180-5, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24269984

RESUMO

The aim of this study was to elucidate the mechanism of isolated vascular vertigo by determining selective and relative ischemic vulnerability of the vestibular structures using a global hypoperfusion model in rats. Sprague-Dawley male rats weighing 330-350 g were subjected to transient global ischemia of the brain using a 4-vessel-occlusion (4VO) model. After permanent occlusion of both vertebral arteries (VA) using electrocauterization, both common carotid arteries (CCAs) were occluded for 5-20 min with ligation. One hour after reperfusion of the CCAs, the animals were sacrificed and subjected to c-Fos staining of the entire cerebellum, brainstem, and vestibular ganglion. The rats in the sham group received the same surgical procedures except the vessel ligation. With 4VO for 5-15 min, both the sham and experimental groups showed a weak and scarce c-Fos expression in the medial vestibular nucleus (MVN), neuron Y, and cochlear nucleus. After 4VO for 20 min, only the MVN began to show a significant difference in the number of c-Fos positive neurons between the experimental and sham groups (33.7±17.7 vs.7.1±5.1, Wilcoxon rank test, p=0.005). With 4VO for up to 20 min, c-Fos positive neurons were not found in other areas of the brainstem and cerebellum, including the superior, lateral, and spinal vestibular nuclei, the vestibular ganglion, the cerebellar cortex, and the deep cerebellar nuclei. The vestibular structures appear to be vulnerable to ischemia more than any other structures in the brainstem and cerebellum. Of the vestibular structures, the MVN is most vulnerable to ischemic insults in rats. These findings are consistent with the common findings of vertigo as an initial and isolated symptom of posterior circulation ischemia in human.


Assuntos
Tronco Encefálico/patologia , Ataque Isquêmico Transitório/patologia , Vertigem/patologia , Vestíbulo do Labirinto/patologia , Animais , Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Cerebelo/patologia , Núcleo Coclear/metabolismo , Núcleo Coclear/patologia , Gânglios Sensitivos/metabolismo , Gânglios Sensitivos/patologia , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/metabolismo , Masculino , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Vertigem/etiologia , Vertigem/metabolismo , Núcleos Vestibulares/metabolismo , Núcleos Vestibulares/patologia , Vestíbulo do Labirinto/inervação , Vestíbulo do Labirinto/metabolismo
14.
Artigo em Chinês | MEDLINE | ID: mdl-25623873

RESUMO

OBJECTIVE: To observe the influence of betahistine on the expression of histamine H3 receptor in the medial vestibular nucleus (MVN) following unilateral labyrinthectomy (UL). METHODS: Fifty-six healthy guinea pigs were randomly divided into three groups:the sham-operated group (group I), the UL group[group II, and UL+betahistine (BET) group (group III)], BET was intraperitoneally injection at 2.17 mg×kg(-1)×d(-1) for 7 days. The expression of histamine H3 receptor was analyzed by immunohistochemistry at 1 day, 3 days and 7 days after UL. RESULTS: H3 receptors were presented in the MVN and the expression of histamine H3 receptor were increased significantly in the ipsilateral MVN at 1 and 3 days after UL(P < 0.05), the change turned into the normal value at 7 days(P > 0.05). In the UL+BET group, the intensity of histamine H3 receptor was lower than that in the UL at 1 day and 3 days(4.25 ± 0.71, 3.50 ± 0.92 vs 5.75 ± 0.71, 5.50 ± 0.93, P < 0.05). However, the changes turned into the normal values at 3 and 7 days (P > 0.05). CONCLUSIONS: The early stage of the vestibular compensation process may be associated with the change of H3 receptor expression in MVN. In the UL+BET group the histamine H3 receptor recovered quickly.


Assuntos
beta-Histina/metabolismo , Receptores Histamínicos H3/metabolismo , Núcleos Vestibulares/metabolismo , Vestíbulo do Labirinto/cirurgia , Animais , Orelha Interna , Cobaias , Procedimentos Cirúrgicos Otológicos
15.
Brain Res Bull ; 97: 1-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23701910

RESUMO

In brainstem slices of male rats, we examined in single neurons of the medial vestibular nucleus (MVN) the effect of exogenous administration of estrogenic (17ß-estradiol, E2) and androgenic (5α-dihydrotestosterone, DHT) steroids on the synaptic response to vestibular afferent stimulation. By whole cell patch clamp recordings we showed that E2 induced synaptic long-term potentiation (LTP) that was cancelled by the subsequent administration of DHT. Conversely, DHT induced synaptic long-term depression (LTD) that was partially reversed by E2. The electrophysiological findings were supported by immunohistochemical analysis showing the presence of estrogen (ER: α and ß) and androgen receptors (AR) in the MVN neurons. We found that a large number of neurons were immunoreactive for ERα, ERß, and AR and most of them co-localized ERß and AR. We also showed the presence of P450-aromatase (ARO) in the MVN neurons, clearly proving that E2 can be locally synthesized in the MVN. On the whole, these results demonstrate a role of estrogenic and androgenic signals in modulating vestibular synaptic plasticity and suggest that the enhancement or depression of vestibular synaptic response may depend on the local conversion of T into E2 or DHT.


Assuntos
Di-Hidrotestosterona/farmacologia , Estradiol/farmacologia , Plasticidade Neuronal/fisiologia , Receptores Androgênicos/metabolismo , Receptores de Estradiol/metabolismo , Núcleos Vestibulares/fisiologia , Animais , Estradiol/fisiologia , Técnicas In Vitro , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Wistar , Núcleos Vestibulares/metabolismo
16.
Am J Physiol Regul Integr Comp Physiol ; 305(7): R793-803, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23720133

RESUMO

High-strength static magnetic fields (>7 tesla) perturb the vestibular system causing dizziness, nystagmus, and nausea in humans; and head motion, locomotor circling, conditioned taste aversion, and c-Fos induction in brain stem vestibular nuclei in rodents. To determine the role of head orientation, mice were exposed for 15 min within a 14.1-tesla magnet at six different angles (mice oriented parallel to the field with the head toward B+ at 0°; or pitched rostrally down at 45°, 90°, 90° sideways, 135°, and 180°), followed by a 2-min swimming test. Additional mice were exposed at 0°, 90°, and 180° and processed for c-Fos immunohistochemistry. Magnetic field exposure induced circular swimming that was maximal at 0° and 180° but attenuated at 45° and 135°. Mice exposed at 0° and 45° swam counterclockwise, whereas mice exposed at 135° and 180° swam clockwise. Mice exposed at 90° (with their rostral-caudal axis perpendicular to the magnetic field) did not swim differently than controls. In parallel, exposure at 0° and 180° induced c-Fos in vestibular nuclei with left-right asymmetries that were reversed at 0° vs. 180°. No significant c-Fos was induced after 90° exposure. Thus, the optimal orientation for magnetic field effects is the rostral-caudal axis parallel to the field, such that the horizontal canal and utricle are also parallel to the field. These results have mechanistic implications for modeling magnetic field interactions with the vestibular apparatus of the inner ear (e.g., the model of Roberts et al. of an induced Lorenz force causing horizontal canal cupula deflection).


Assuntos
Comportamento Animal , Campos Magnéticos , Orientação , Proteínas Proto-Oncogênicas c-fos/metabolismo , Natação , Núcleos Vestibulares/metabolismo , Vestíbulo do Labirinto/fisiologia , Animais , Lateralidade Funcional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo , Regulação para Cima
17.
J Comp Neurol ; 521(3): 612-25, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22806574

RESUMO

We examined the maturation expression profile of tyrosine kinase B (TrkB) receptor in rat vestibular nuclear neurons that were activated by sinusoidal linear acceleration along the horizontal or vertical axis. The otolithic origin of Fos expression in these neurons was confirmed with labyrinthectomized controls and normal controls, which showed only sporadically scattered Fos-labeled neurons in the vestibular nucleus. In P4-6 test rats, no Fos-labeled neurons were found in the vestibular nucleus, but the medial and spinal vestibular neurons showed weak immunoreactivity for TrkB. The intensity of TrkB immunoreactivity in vestibular nuclear neurons progressively increased in the second postnatal week but remained low in adults. From P7 onward, TrkB-expressing neurons responded to horizontal or vertical otolithic stimulation with Fos expression. The number of Fos-labeled vestibular nuclear neurons expressing TrkB increased with age, from 13-43% in P7 rats to 85-90% in adult rats. Our results therefore suggest that TrkB/neurotrophin signaling plays a dominant role in modulating vestibular nuclear neurons for the coding of gravity-related horizontal head movements and for the regulation of vestibular-related behavior during postnatal development.


Assuntos
Sensação Gravitacional/fisiologia , Movimentos da Cabeça/fisiologia , Neurônios/metabolismo , Membrana dos Otólitos/inervação , Receptor trkB/metabolismo , Núcleos Vestibulares/metabolismo , Aceleração , Fatores Etários , Animais , Animais Recém-Nascidos , Feminino , Masculino , Membrana dos Otólitos/crescimento & desenvolvimento , Membrana dos Otólitos/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleos Vestibulares/citologia , Núcleos Vestibulares/crescimento & desenvolvimento , Vestíbulo do Labirinto/inervação , Vestíbulo do Labirinto/fisiologia , Vestíbulo do Labirinto/cirurgia
18.
Aviakosm Ekolog Med ; 46(2): 47-9, 2012.
Artigo em Russo | MEDLINE | ID: mdl-22953541

RESUMO

Microelectrode techniques and microionophoresis of physiologically active substances were used in experiments with cats to show the ability of classic neuromediators (L-glutamate, L-aspartate, acetylcholine, noradrenaline, gamma-aminobutyric acid (GABA), glycine and others) and regulatory peptides (enkephalines, TRH, substance P, vasoactive interstitial peptide (VIP), somatostatin (SS) and others) to influence directly the majority (60 to 100%) of neurons in the inferior vestibular nucleus (IVN). The inhibitory effect of enkephalines, VIP and SS on the neurons impulse activity was virtually uncompromised on the background of L-glutamate activity. In addition, it was stated that enkephalines, VIP and SS are potent to augment the inhibitory effect of GABA and glycine. Consequently, these substances have the capability to act as IVN neuromediators and/or neuromodulators.


Assuntos
Neurotransmissores/metabolismo , Peptídeos/metabolismo , Núcleos Vestibulares/metabolismo , Animais , Gatos , Ácido Glutâmico/metabolismo , Iontoforese , Masculino , Microeletrodos , Neurônios/metabolismo
19.
Neurosci Lett ; 528(2): 126-30, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22975136

RESUMO

To determine whether the vestibular nuclei are affected by inflammation of temporomandibular joint (TMJ) region, we studied vestibular nucleus neural activity using two experimental groups: (1) normal saline 0.1cm(3) injection at right TMJ region, (2) 10% formalin 0.1cm(3) injection at right TMJ region. Neural activity after 24 hours was assessed by immunohistochemical staining with free-floating section at the level of interaural -1.30 mm to -2.00 mm for c-Fos. In inflammation group, formalin injection produced a bilateral increase in c-Fos at vestibular nucleus with ipsilesional side higher activity. In control group, expression of c-Fos protein was also observed in the vestibular nucleus (VN), especially MVN. But stain intensity of Fos-positive neurons was much weaker and mean number of c-Fos positive cells was fewer than inflammation group. This result suggests that there is a close neural connection between TMJ and vestibular nucleus, especially in case of inflammation.


Assuntos
Transtornos da Articulação Temporomandibular/metabolismo , Articulação Temporomandibular/imunologia , Núcleos Vestibulares/metabolismo , Animais , Formaldeído , Imuno-Histoquímica , Inflamação/induzido quimicamente , Inflamação/imunologia , Masculino , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Transtornos da Articulação Temporomandibular/induzido quimicamente , Transtornos da Articulação Temporomandibular/imunologia
20.
J Clin Invest ; 122(7): 2359-68, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22653057

RESUMO

Leigh syndrome (LS) is a subacute necrotizing encephalomyelopathy with gliosis in several brain regions that usually results in infantile death. Loss of murine Ndufs4, which encodes NADH dehydrogenase (ubiquinone) iron-sulfur protein 4, results in compromised activity of mitochondrial complex I as well as progressive neurodegenerative and behavioral changes that resemble LS. Here, we report the development of breathing abnormalities in a murine model of LS. Magnetic resonance imaging revealed hyperintense bilateral lesions in the dorsal brain stem vestibular nucleus (VN) and cerebellum of severely affected mice. The mutant mice manifested a progressive increase in apnea and had aberrant responses to hypoxia. Electrophysiological recordings within the ventral brain stem pre-Bötzinger respiratory complex were also abnormal. Selective inactivation of Ndufs4 in the VN, one of the principle sites of gliosis, also led to breathing abnormalities and premature death. Conversely, Ndufs4 restoration in the VN corrected breathing deficits and prolonged the life span of knockout mice. These data demonstrate that mitochondrial dysfunction within the VN results in aberrant regulation of respiration and contributes to the lethality of Ndufs4-knockout mice.


Assuntos
Complexo I de Transporte de Elétrons/genética , Doença de Leigh/genética , Insuficiência Respiratória/genética , Potenciais de Ação , Análise de Variância , Animais , Apneia/genética , Tronco Encefálico/patologia , Tronco Encefálico/fisiopatologia , Dependovirus/genética , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Terapia Genética , Vetores Genéticos , Gliose/genética , Gliose/patologia , Frequência Cardíaca , Humanos , Técnicas In Vitro , Doença de Leigh/fisiopatologia , Doença de Leigh/terapia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/sangue , Oxigênio/metabolismo , Insuficiência Respiratória/fisiopatologia , Insuficiência Respiratória/terapia , Taxa Respiratória , Núcleos Vestibulares/metabolismo , Núcleos Vestibulares/patologia , Núcleos Vestibulares/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA