Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 324(6): G466-G475, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37096901

RESUMO

The supraspinal brain regions controlling defecation reflex remain to be elucidated. The purpose of this study was to determine the roles of the hypothalamic A11 region and the medullary raphe nuclei in regulation of defecation. For chemogenetic manipulation of specific neurons, we used the double virus vector infection method in rats. hM3Dq or hM4Di was expressed in neurons of the A11 region and/or the raphe nuclei that send output to the lumbosacral defecation center. Immunohistological and functional experiments revealed that both the A11 region and the raphe nuclei directly connected with the lumbosacral spinal cord through descending pathways composed of stimulatory monoaminergic neurons. Stimulation of the hM3Dq-expressing neurons in the A11 region or the raphe nuclei enhanced colorectal motility only when GABAergic transmission in the lumbosacral spinal cord was blocked by bicuculline. Experiments using inhibitory hM4Di-expressing rats revealed that enhancement of colorectal motility caused by noxious stimuli in the colon is mediated by both the A11 region and the raphe nuclei. Furthermore, suppression of the A11 region and/or the raphe nuclei significantly inhibited water avoidance stress-induced defecation. These findings demonstrate that the A11 region and the raphe nuclei play an essential role in the regulation of colorectal motility. This is important because brain regions that mediate both intracolonic noxious stimuli-induced defecation and stress-induced defecation have been clarified for the first time.NEW & NOTEWORTHY The A11 region and the raphe nuclei, constituting descending pain inhibitory pathways, are related to both intracolonic noxious stimuli-induced colorectal motility and stress-induced defecation. Our findings may provide an explanation for the concurrent appearance of abdominal pain and defecation disorders in patients with irritable bowel syndrome. Furthermore, overlap of the pathway controlling colorectal motility with the pathway mediating stress responses may explain why stress exacerbates bowel symptoms.


Assuntos
Neoplasias Colorretais , Núcleos da Rafe , Animais , Ratos , Bulbo , Núcleos da Rafe/fisiologia , Medula Espinal/fisiologia
2.
Nat Commun ; 12(1): 391, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452250

RESUMO

Spinal cord injury (SCI) often causes severe and permanent disabilities due to the regenerative failure of severed axons. Here we report significant locomotor recovery of both hindlimbs after a complete spinal cord crush. This is achieved by the unilateral transduction of cortical motoneurons with an AAV expressing hyper-IL-6 (hIL-6), a potent designer cytokine stimulating JAK/STAT3 signaling and axon regeneration. We find collaterals of these AAV-transduced motoneurons projecting to serotonergic neurons in both sides of the raphe nuclei. Hence, the transduction of cortical neurons facilitates the axonal transport and release of hIL-6 at innervated neurons in the brain stem. Therefore, this transneuronal delivery of hIL-6 promotes the regeneration of corticospinal and raphespinal fibers after injury, with the latter being essential for hIL-6-induced functional recovery. Thus, transneuronal delivery enables regenerative stimulation of neurons in the deep brain stem that are otherwise challenging to access, yet highly relevant for functional recovery after SCI.


Assuntos
Terapia Genética/métodos , Interleucina-6/genética , Locomoção/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Axônios/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Janus Quinases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microinjeções , Neurônios Motores/fisiologia , PTEN Fosfo-Hidrolase/genética , Núcleos da Rafe/citologia , Núcleos da Rafe/fisiologia , Recuperação de Função Fisiológica , Fator de Transcrição STAT3/metabolismo , Neurônios Serotoninérgicos/fisiologia , Índice de Gravidade de Doença , Transdução de Sinais , Medula Espinal/citologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/fisiopatologia , Transdução Genética
3.
Sci China Life Sci ; 63(6): 875-885, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32266609

RESUMO

Brain-to-brain interfaces (BtBIs) hold exciting potentials for direct communication between individual brains. However, technical challenges often limit their performance in rapid information transfer. Here, we demonstrate an optical brain-to-brain interface that transmits information regarding locomotor speed from one mouse to another and allows precise, real-time control of locomotion across animals with high information transfer rate. We found that the activity of the genetically identified neuromedin B (NMB) neurons within the nucleus incertus (NI) precisely predicts and critically controls locomotor speed. By optically recording Ca2+ signals from the NI of a "Master" mouse and converting them to patterned optogenetic stimulations of the NI of an "Avatar" mouse, the BtBI directed the Avatar mice to closely mimic the locomotion of their Masters with information transfer rate about two orders of magnitude higher than previous BtBIs. These results thus provide proof-of-concept that optical BtBIs can rapidly transmit neural information and control dynamic behaviors across individuals.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiologia , Locomoção/fisiologia , Imagem Óptica/métodos , Animais , Controle Comportamental , Comportamento Animal/fisiologia , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Simulação por Computador , Dependovirus/metabolismo , Células HEK293 , Humanos , Cinética , Camundongos , Modelos Biológicos , Neurocinina B/análogos & derivados , Neurocinina B/fisiologia , Neurônios/fisiologia , Núcleos da Rafe/fisiologia , Máquina de Vetores de Suporte , Transfecção
4.
Brain Res ; 1698: 121-129, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30092230

RESUMO

In adult rodents, neuroblasts originating from the subventricular zone migrate tangentially through the rostral migratory stream (RMS) toward the olfactory bulb where they differentiate into interneurons. Neuroblasts in the RMS migrate in chains for a long distance along specifically arranged blood vessels which promote their migration. Although blood vessels in the neurogenic region of the forebrain are present early in development, their rearrangement into this specific pattern takes place during the first postnatal weeks. Here we examined the relevance of this rearrangement to the migration-guiding "scaffold" for the neurogenic processes in the RMS such as cell migration and proliferation. To disturb the reorganization of blood vessels, endostatin - an inhibitor of angiogenesis, was administered systemically to rat pups during the first postnatal week. Ten days or three months later, the arrangement of blood vessels, migration and proliferation of cells in the RMS were assessed. As we expected, the inhibition of angiogenesis disrupted rearrangement of blood vessels in the RMS. The rearrangement's failure resulted in a strong disruption of the mode and direction of neuroblast migration. Chain migration failed and neuroblasts migrated out of the RMS. The inhibition caused a slight increase in the number of proliferating cells in the RMS. The consequences were more obvious ten days after the inhibition of angiogenesis, although they persisted partly into adulthood. Altogether, here we show that the process of rearrangement of blood vessels in the RMS during the early postal period is crucial to ensure the regular course of postnatal neurogenesis.


Assuntos
Endostatinas/metabolismo , Neovascularização Fisiológica/fisiologia , Neurogênese/fisiologia , Inibidores da Angiogênese/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Animais Recém-Nascidos/fisiologia , Astrócitos/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Endostatinas/farmacologia , Feminino , Interneurônios/fisiologia , Ventrículos Laterais/fisiologia , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco Neurais/fisiologia , Bulbo Olfatório/fisiologia , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/fisiologia , Ratos , Ratos Wistar
5.
Neurourol Urodyn ; 37(8): 2487-2494, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29999191

RESUMO

AIMS: This study was designed to determine specific cell groups of the raphe nuclei (RN) that give rise to supraspinal serotonergic projections regulating the bladder reflex. METHODS: Anesthetized rats underwent surgery to open the abdomen and expose the bladder. A total of 6 µL transsynaptic neuronal tracer pseudorabies virus (PRV-152), encoding for green fluorescent protein (GFP), was injected into the bladder detrusor. After 72 or 96 h, animals were perfused and the brain was dissected for processing transverse and sagittal sections. Subsequently, fluorescent immunohistochemistry for GFP and Serotonin (5-hydroxytryptamine [5-HT]) was performed in the brain sections. Under the microscope, each RN subset was characterized individually from caudal to rostral according to the atlas. GFP+ or GFP/5-HT double labeled neurons in each subset were quantified for statistical analysis. RESULTS: At 72-h post-infection, very few GFP+ or GFP/5-HT double-labeled neurons appeared in the brainstem and beyond. In contrast, many labeled neurons were found at these levels after 96 h. Quantitative analysis showed that the majority of infected 5-HT+ neurons were located in the pallidus, obscurus, and magnus nuclei. Conversely, very few infected neurons were found in other raphe subsets, that is the pontis, median, dorsal, or linear nuclei. Overall, the raphe magnus had the highest number of GFP-labeled and GFP/5-HT double-labeled cells. CONCLUSIONS: The caudal subsets of RN, especially the raphe magnus, are the main sources of serotonergic input to the lower spinal cord controlling bladder activity.


Assuntos
Reflexo/fisiologia , Neurônios Serotoninérgicos/fisiologia , Medula Espinal/fisiologia , Sinapses/fisiologia , Bexiga Urinária/inervação , Bexiga Urinária/fisiologia , Anestesia , Animais , Tronco Encefálico/fisiologia , Feminino , Proteínas de Fluorescência Verde , Imuno-Histoquímica , Núcleos da Rafe/fisiologia , Ratos , Ratos Wistar , Serotonina/metabolismo
6.
Behav Brain Res ; 324: 87-95, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28212941

RESUMO

Previously, we showed that the blockade of α1-adrenoreceptors in the median raphe nucleus (MnR) increased food intake in free-feeding rats, indicating that adrenergic mechanisms in the MnR participate in the regulation of food intake. However, the impact of such a pharmacological manipulation on other neural circuits related to food intake remains unknown. In the current study, we sought to identify forebrain regions which are responsive to α1-adrenergic receptor blockade and presumably involved in the modulation of the feeding response. For this purpose, we examined the induction of c-Fos immunoreactivity in forebrain structures following injections of the α1-adrenoceptor antagonist prazosin into the MnR of free-feeding rats. To determine the chemical identity of hypothalamic c-Fos-positive cells, we then conducted double-label immunohistochemistry for Fos/orexin (OX) or Fos/melanin-concentrating hormone (MCH). Finally, we combined anterograde tracing from the MnR with immunohistochemical detection of orexin. Prazosin injections into the MnR significantly increased food intake. The ingestive response was accompanied by an increase in Fos expression in the basolateral amygdala (BLA) and lateral hypothalamic area (LHA). In the LHA, Fos expression occurred in neurons expressing OX, but not MCH. Combined anterograde tracing experiments revealed that LHA OX neurons are prominently targeted by MnR axons. These findings suggest that intra-MnR injection of prazosin, via activation of orexinergic neurons in the LHA and non-orexinergic neurons in the BLA, evoked a motivational response toward food intake.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/administração & dosagem , Ingestão de Alimentos , Neurônios/metabolismo , Prazosina/administração & dosagem , Núcleos da Rafe/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Masculino , Melaninas/metabolismo , Orexinas/metabolismo , Hormônios Hipofisários/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Ratos Wistar
7.
Physiol Behav ; 165: 35-42, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27364433

RESUMO

In neonatal rats, hunger and satiety responses occur particularly via dehydration and gastric distention, respectively. The control of food intake in newborns is yet to be fully consolidated, particularly with respect to the participation of the hypothalamic nuclei and their relationship with the serotonergic pathway. Moreover, it is unclear how the environmental stressors in early life, like undernutrition, interfere in these events. Therefore, this study examined the serotonin-system's impact on food intake in rat neonates at postnatal day (P) 10 and P18 and the manner in which protein undernutrition during pregnancy and lactation interferes in this behavior. To accomplish this, Wistar rats were used, nutritionally manipulated by a diet having two protein levels, (8% and 17%) during pregnancy and lactation, to form the Control (n=10) and Low protein groups (n=10). At 10 and 18 postnatal days pups received an acute dose of fenfluramine (3mg/kg) or saline (0.9% NaCl) and subjected to milk consumption testing and then perfused to obtain the brains for the analysis of cell activation of the immunoreactive c-Fos in the hypothalamic and raphe nuclei. At 10days a reduction in weight gain was observed in both groups. On comparison of the neuronal activation for the paraventricular nucleus, an increased activation in response to fenfluramine was observed. At 18days, the weight gain percentage differed between the groups according to the nutritional manipulation, in which the control animals had no significant change while the undernourished presented increased weight gain with the use of fenfluramine. The marking of c-Fos in response to fenfluramine in the hypothalamic and raphe nuclei revealed, an especially lower activation of the PVN, MnR and DR compared intra-group. However when evaluating the effect of undernutrition, marking activation was observed to increase in all the nuclei analyzed, in the hypothalamus and raphe. Data from this study indicate that the action of serotonin via food intake in the neonates may have been delayed by early protein undernutrition.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Ingestão de Alimentos/fisiologia , Hipotálamo/fisiologia , Desnutrição/fisiopatologia , Núcleos da Rafe/fisiologia , Serotonina/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Fenfluramina/farmacologia , Transtornos da Nutrição Fetal/metabolismo , Transtornos da Nutrição Fetal/fisiopatologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/crescimento & desenvolvimento , Lactação , Masculino , Leite , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/crescimento & desenvolvimento , Ratos Wistar , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/fisiologia
8.
Neuropharmacology ; 89: 136-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25261784

RESUMO

The present study evaluated the involvement of α-adrenoceptors of the median raphe nucleus (MRN) in satiated rats, in food and water intake and motor behaviour. Control groups were treated with saline (SAL) or adrenaline (ADR), injected into the MRN seven minutes after injection of the vehicle used to solubilize the antagonists, propylene glycol (PLG) or SAL. Experimental groups were treated with an α-adrenoceptor antagonist, prazosin (α1, 20 or 40 nmol) or yohimbine (α2, 20 or 40 nmol) or phentolamine (non-selective α, 20 or 40 nmol), followed (later) by injection of ADR or SAL. Behaviour was recorded for 30 min. The injection of ADR and the blockade of α1 receptors resulted in hyperphagia whereas blocking α2 or α1 and α2 simultaneously did not change feeding behaviour. Pre-treatment with prazosin, followed by injection of ADR was not able to cause an increase in the amount of food ingested, while the higher dose of the α1 antagonist reduced the latency to start feeding. Pre-treatment with prazosin also caused hyperactivity. However, pre-treatment with phentolamine or yohimbine was able to block ADR-induced feeding. The present study supports the hypothesis that there is a tonic activation of α1-adrenoceptors in the MRN in satiated rats, which activates an inhibitory influence in areas that control food intake. Injection of ADR seems to activate α2 receptors, resulting in a decrease in the availability of endogenous catecholamines, which reduces the release of the signal that inhibits food intake, leading to hyperphagia.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Ingestão de Alimentos/fisiologia , Atividade Motora/fisiologia , Núcleos da Rafe/fisiologia , Receptores Adrenérgicos alfa/fisiologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Wistar
9.
Physiol Behav ; 139: 112-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25446222

RESUMO

Nucleus incertus (NI) is a pontine nucleus which releases mainly GABA and relaxin-3 in rats. Its suggested functions include response to stress, arousal, and modulation of hippocampal theta rhythm. Since the role of NI in learning and memory has not been well characterized, therefore the involvement of this nucleus in spatial learning and memory and the aftermath hippocampal levels of c-fos and pCREB were evaluated. NI was targeted by implanting cannula in male rats. For reference memory, NI was inactivated by lidocaine (0.4 µl, 4%) at three stages of acquisition, consolidation and retrieval in Morris water maze paradigm. For working memory, NI was inactivated in acquisition and retrieval phases. Injection of lidocaine prior to the first training session of reference memory significantly increased the distance moved, suggesting that inactivation of NI delays acquisition in this spatial task. Inactivation also interfered with the retrieval phase of spatial reference memory, as the time in target quadrant for lidocaine group was less, and the escape latency was higher compared to the control group. However, no difference was observed in the consolidation phase. In the working memory task, with inter-trial intervals of 75 min, the escape latency was higher when NI was inactivated in the retrieval phase. In addition, c-fos and pCREB/CREB levels decreased in NI-inhibited rats. This study suggests that nucleus incertus might participate in acquisition of spatial reference, and retrieval of both spatial reference and working memory. Further studies should investigate possible roles of NI in the hippocampal plasticity.


Assuntos
Deficiências da Aprendizagem/fisiopatologia , Memória/fisiologia , Núcleos da Rafe/fisiologia , Aprendizagem Espacial/fisiologia , Anestésicos Locais/toxicidade , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipocampo/metabolismo , Deficiências da Aprendizagem/induzido quimicamente , Lidocaína/toxicidade , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Fatores de Tempo
10.
Eur J Neurosci ; 40(2): 2352-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24862585

RESUMO

Controllable/escapable tailshocks (ESs) do not produce the behavioral and neurochemical outcomes produced by equal yoked uncontrollable/inescapable tailshocks (ISs). The prelimbic cortex is known to play a key role in mediating the protective effects of control. The concepts of act/outcome learning and control seem similar, and act/outcome learning is mediated by a circuit involving the prelimbic cortex and posterior dorsomedial striatum (DMS). Thus, we tested the involvement of the DMS in the protective effect of ES, in rats. First, we examined Fos immunoreactivity in both the DMS and dorsolateral striatum (DLS) after ES and yoked IS. We then investigated the effect of blocking DMS or DLS N-methyl-d-aspartate receptors with the specific antagonist D-(-)-2-amino-5-phosphopentanoic acid (D-AP5) on the release of dorsal raphe nucleus serotonin (5-HT) during ES, as well as on the level of anxiety produced by the ES experience 24 h later. ES, but not yoked IS, produced a large increase of Fos activity in the DMS. Consistent with the Fos data, D-AP5 in the DMS, but not in the DLS, prevented the inhibition of dorsal raphe nucleus 5-HT release normally produced by ES. Furthermore, D-AP5 administered into the DMS before ES, but not into the DLS, increased anxiety 24 h later, leading to levels similar to those produced by IS. These results suggest that, as with appetitive act/outcome contingency learning, the protective effects of behavioral control over a stressor require the DMS.


Assuntos
Corpo Estriado/fisiologia , Reação de Fuga , Aprendizagem , Estresse Psicológico/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Corpo Estriado/metabolismo , Masculino , Proteínas Oncogênicas v-fos/genética , Proteínas Oncogênicas v-fos/metabolismo , Núcleos da Rafe/metabolismo , Núcleos da Rafe/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Serotonina/metabolismo , Estresse Psicológico/fisiopatologia , Valina/análogos & derivados , Valina/farmacologia
11.
J Neurosci ; 34(21): 7113-23, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24849347

RESUMO

Impulsivity, risk-taking behavior, and elevated stress responsivity are prominent symptoms of mania, a behavioral state common to schizophrenia and bipolar disorder. Though inflammatory processes activated within the brain are involved in the pathophysiology of both disorders, the specific mechanisms by which neuroinflammation drives manic behavior are not well understood. Serotonin cell bodies originating within the dorsal raphe (DR) play a major role in the regulation of behavioral features characteristic of mania. Therefore, we hypothesized that the link between neuroinflammation and manic behavior may be mediated by actions on serotonergic neurocircuitry. To examine this, we induced local neuroinflammation in the DR by viral delivery of Cre recombinase into interleukin (IL)-1ß(XAT) transgenic male and female mice, resulting in overexpressing of the proinflammatory cytokine, IL-1ß. For assertion of brain-region specificity of these outcomes, the prefrontal cortex (PFC), as a downstream target of DR serotonergic projections, was also infused. Inflammation within the DR, but not the PFC, resulted in a profound display of manic-like behavior, characterized by increased stress-induced locomotion and responsivity, and reduced risk-aversion/fearfulness. Microarray analysis of the DR revealed a dramatic increase in immune-related genes, and dysregulation of genes important in GABAergic, glutamatergic, and serotonergic neurotransmission. Behavioral and physiological changes were driven by a loss of serotonergic neurons and reduced output as measured by high-performance liquid chromatography, demonstrating inflammation-induced serotonergic hypofunction. Behavioral changes were rescued by acute selective serotonin reuptake inhibitor treatment, supporting the hypothesis that serotonin dysregulation stemming from neuroinflammation in the DR underlies manic-like behaviors.


Assuntos
Encefalite/patologia , Núcleos da Rafe/citologia , Núcleos da Rafe/fisiologia , Neurônios Serotoninérgicos/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Citalopram/farmacologia , Dependovirus/genética , Modelos Animais de Doenças , Encefalite/genética , Encefalite/fisiopatologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estresse Psicológico/sangue , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/genética
12.
J Physiol ; 592(6): 1309-23, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24445316

RESUMO

Several brain regions are thought to function as important sites of chemoreception including the nucleus of the solitary tract (NTS), medullary raphe and retrotrapezoid nucleus (RTN). In the RTN, mechanisms of chemoreception involve direct H(+)-mediated activation of chemosensitive neurons and indirect modulation of chemosensitive neurons by purinergic signalling. Evidence suggests that RTN astrocytes are the source of CO2-evoked ATP release. However, it is not clear whether purinergic signalling also influences CO2/H(+) responsiveness of other putative chemoreceptors. The goals of this study are to determine if CO2/H(+)-sensitive neurons in the NTS and medullary raphe respond to ATP, and whether purinergic signalling in these regions influences CO2 responsiveness in vitro and in vivo. In brain slices, cell-attached recordings of membrane potential show that CO2/H(+)-sensitive NTS neurons are activated by focal ATP application; however, purinergic P2-receptor blockade did not affect their CO2/H(+) responsiveness. CO2/H(+)-sensitive raphe neurons were unaffected by ATP or P2-receptor blockade. In vivo, ATP injection into the NTS increased cardiorespiratory activity; however, injection of a P2-receptor blocker into this region had no effect on baseline breathing or CO2/H(+) responsiveness. Injections of ATP or a P2-receptor blocker into the medullary raphe had no effect on cardiorespiratory activity or the chemoreflex. As a positive control we confirmed that ATP injection into the RTN increased breathing and blood pressure by a P2-receptor-dependent mechanism. These results suggest that purinergic signalling is a unique feature of RTN chemoreception.


Assuntos
Células Quimiorreceptoras/fisiologia , Núcleos da Rafe/fisiologia , Receptores Purinérgicos P2/fisiologia , Núcleo Solitário/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Hipercapnia/fisiopatologia , Masculino , Ratos , Ratos Wistar , Centro Respiratório/fisiologia , Fenômenos Fisiológicos Respiratórios , Transdução de Sinais
13.
Brain Res ; 1543: 165-72, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24246733

RESUMO

Early recovery from incomplete spinal cord contusion is improved by prolonged stimulation of the hindbrain's serotonergic nucleus raphe magnus (NRM). Here we examine whether increases in cyclic adenosine monophosphate (cAMP), an intracellular signaling molecule with several known restorative actions on damaged neural tissue, could play a role. Subsequent changes in cAMP-dependent phosphorylation of protein kinase A (PKA) and PKA-dependent phosphorylation of the transcription factor "cAMP response element-binding protein" (CREB) are also analyzed. Rats with moderate weight-drop injury at segment T8 received 2h of NRM stimulation beginning three days after injury, followed immediately by separate extraction of cervical, thoracic and lumbar spinal cord for immunochemical assay. Controls lacked injury, stimulation or both. Injury reduced cAMP levels to under half of normal in all three spinal regions. NRM stimulation completely restored these levels, while producing no significant change in non-injured rats. Pretreatment with the 5-HT7 receptor antagonist pimozide (1 mg/kg, intraperitoneal) lowered cAMP in non-injured rats to injury amounts, which were unchanged by NRM stimulation. The phosphorylated fraction of PKA (pPKA) and CREB (pCREB) was reduced significantly in all three regions after SCI and restored by NRM stimulation, except for pCREB in lumbar segments. In conclusion, SCI produces spreading deficits in cAMP, pPKA and pCREB that are reversible by Gs protein-coupled 5-HT receptors responding to raphe-spinal activity, although these signaling molecules are not reactive to NRM stimulation in normal tissue. These findings can partly explain the benefits of NRM stimulation after SCI.


Assuntos
Proteína de Ligação a CREB/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Estimulação Encefálica Profunda/métodos , Núcleos da Rafe/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Ratos , Ratos Sprague-Dawley
14.
Neuroscience ; 250: 352-63, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23867764

RESUMO

In nocturnal rodents, brain areas that promote wakefulness have a circadian pattern of neural activation that mirrors the sleep/wake cycle, with more neural activation during the active phase than during the rest phase. To investigate whether differences in temporal patterns of neural activity in wake-promoting regions contribute to differences in daily patterns of wakefulness between nocturnal and diurnal species, we assessed Fos expression patterns in the tuberomammillary (TMM), supramammillary (SUM), and raphe nuclei of male grass rats maintained in a 12:12 h light-dark cycle. Day-night profiles of Fos expression were observed in the ventral and dorsal TMM, in the SUM, and in specific subpopulations of the raphe, including serotonergic cells, with higher Fos expression during the day than during the night. Next, to explore whether the cerebrospinal fluid is an avenue used by the TMM and raphe in the regulation of target areas, we injected the retrograde tracer cholera toxin subunit beta (CTB) into the ventricular system of male grass rats. While CTB labeling was scarce in the TMM and other hypothalamic areas including the suprachiasmatic nucleus, which contains the main circadian pacemaker, a dense cluster of CTB-positive neurons was evident in the caudal dorsal raphe, and the majority of these neurons appeared to be serotonergic. Since these findings are in agreement with reports for nocturnal rodents, our results suggest that the evolution of diurnality did not involve a change in the overall distribution of neuronal connections between systems that support wakefulness and their target areas, but produced a complete temporal reversal in the functioning of those systems.


Assuntos
Encéfalo/fisiologia , Líquido Cefalorraquidiano/fisiologia , Ritmo Circadiano/fisiologia , Histamina/fisiologia , Serotonina/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Toxina da Cólera , Imuno-Histoquímica , Masculino , Corpos Mamilares/fisiologia , Vias Neurais/fisiologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Núcleos da Rafe/fisiologia , Ratos , Neurônios Serotoninérgicos/fisiologia
15.
Arq. neuropsiquiatr ; 71(4): 249-253, abr. 2013. graf
Artigo em Inglês | LILACS | ID: lil-670882

RESUMO

In mammalian, several evidences suggest that central serotonin participates in thermoregulation. Nucleus raphe obscurus (NRO), a serotonergic nucleus, has been recognized to be the source of generation of various hemodynamic patterns in different behavioral conditions, but its involvement in thermoregulation is unclear. In the present study, extracellular action potentials of NRO neurons were recorded in anesthetized rats, which were submitted to cold and warm stimuli in the tail. The firing rate of the neurons was compared before and after each stimulation. It was found that 59% of the neurons submitted to a cold stimulus trial had a significant increase in their firing frequency, while 48% of the neurons submitted to warm stimulation trial were inhibited. The opposite responses in neuronal activity of NRO units to cooling or heating suggest that these cells are involved in producing the homoeothermic vascular adaptations secondary to changes in cutaneous temperature in the rat tail.


A termorregulação em mamíferos envolve a participação da serotonina. O núcleo obscuro da rafe (NRO), que é serotoninérgico, participa do controle autonômico, mas seu envolvimento na termorregulação é incerto. Neste estudo, registramos potenciais de ação extracelulares de neurônios do NRO em ratos anestesiados nos quais a cauda foi submetida a estímulos de calor ou frio. A frequência de disparo dos neurônios foi comparada antes e depois dos estímulos. O grupo controle não apresentou modificação da frequência de disparo, enquanto que 59% dos neurônios registrados em animais submetidos a estímulo de frio tiveram sua frequência aumentada. Por outro lado, 48% dos animais submetidos a estímulo de calor tiveram sua frequência de disparo diminuída. As respostas opostas da frequência de disparo em neurônios de animais submetidos à estimulação com frio e calor sugere que estes neurônios estejam envolvidos na geração de respostas hemodinâmicas, que são coerentes com a termorregulação nesta espécie.


Assuntos
Animais , Masculino , Ratos , Regulação da Temperatura Corporal/fisiologia , Temperatura Baixa , Neurônios/fisiologia , Núcleos da Rafe/fisiologia , Vias Neurais , Condução Nervosa/fisiologia , Ratos Wistar , Núcleos da Rafe/citologia
16.
J Neurosci ; 32(49): 17582-96, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23223282

RESUMO

Activation of the dynorphin/κ-opioid receptor (KOR) system by repeated stress exposure or agonist treatment produces place aversion, social avoidance, and reinstatement of extinguished cocaine place preference behaviors by stimulation of p38α MAPK, which subsequently causes the translocation of the serotonin transporter (SERT, SLC6A4) to the synaptic terminals of serotonergic neurons. In the present study we extend those findings by showing that stress-induced potentiation of cocaine conditioned place preference occurred by a similar mechanism. In addition, SERT knock-out mice did not show KOR-mediated aversion, and selective reexpression of SERT by lentiviral injection into the dorsal raphe restored the prodepressive effects of KOR activation. Kinetic analysis of several neurotransporters demonstrated that repeated swim stress exposure selectively increased the V(max) but not K(m) of SERT without affecting dopamine transport or the high-capacity, low-affinity transporters. Although the serotonergic neurons in the dorsal raphe project throughout the forebrain, a significant stress-induced increase in cell-surface SERT expression was only evident in the ventral striatum, and not in the dorsal striatum, hippocampus, prefrontal cortex, amygdala, or dorsal raphe. Stereotaxic microinjections of the long-lasting KOR antagonist norbinaltorphimine demonstrated that local KOR activation in the nucleus accumbens, but not dorsal raphe, mediated this stress-induced increase in ventral striatal surface SERT expression. Together, these results support the hypothesis that stress-induced activation of the dynorphin/KOR system produces a transient increase in serotonin transport locally in the ventral striatum that may underlie some of the adverse consequences of stress exposure, including the potentiation of the rewarding effects of cocaine.


Assuntos
Aprendizagem da Esquiva/fisiologia , Cocaína/farmacologia , Corpo Estriado/metabolismo , Dinorfinas/fisiologia , Recompensa , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Encéfalo/metabolismo , Dopamina/metabolismo , Dinorfinas/metabolismo , Quinase 3 de Receptor Acoplado a Proteína G/genética , Quinase 3 de Receptor Acoplado a Proteína G/fisiologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microinjeções/métodos , Naltrexona/administração & dosagem , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/administração & dosagem , Antagonistas de Entorpecentes/farmacocinética , Nicotina/efeitos adversos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/metabolismo , Núcleos da Rafe/fisiologia , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides kappa/fisiologia , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Síndrome de Abstinência a Substâncias/metabolismo , Sinaptossomos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
17.
Eur J Neurosci ; 36(10): 3322-3332, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22925150

RESUMO

The dorsal raphe nucleus (DRN) and ventrolateral periaqueductal grey (vlPAG) regions contain populations of dopamine neurons, often considered to be a dorsal caudal extension of the A10 group [mostly found in the ventral tegmental area (VTA)]. Recent studies suggest they are involved in promoting wakefulness and mediate some of the antinociceptive and rewarding properties of opiates. However, little is known about their electrophysiological properties. To address this, we used Pitx3-GFP and tyrosine hydroxylase (TH)-GFP mice to carry out targeted whole-cell recordings from this population in acute brain slices. We found that DRN/vlPAG dopamine neurons have characteristics similar to most VTA dopamine neurons, but distinct from dorsal raphe serotonin neurons. They fire broad action potentials at a relatively slow, regular rate, exhibit a hyperpolarization-activated inward current and delayed repolarization, and show spike-frequency adaptation in response to prolonged depolarization. In addition, they receive fast excitatory and inhibitory synaptic inputs. Moreover, we found co-expression of vasoactive intestinal polypeptide in small, periaqueductal dopamine neurons, but generally not in larger, more ventral dopamine neurons.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Núcleos da Rafe/fisiologia , Potenciais de Ação , Animais , Expressão Gênica , Proteínas de Fluorescência Verde , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Serotoninérgicos/fisiologia , Potenciais Sinápticos , Fatores de Transcrição/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo
18.
Neuroscience ; 220: 201-7, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22710065

RESUMO

Seasonal affective disorder (SAD), a major depressive disorder recurring in the fall and winter, is caused by the reduction of light in the environment, and its depressive symptoms can be alleviated by bright light therapy. Both circadian and monoaminergic systems have been implicated in the etiology of SAD. However, the underlying neural pathways through which light regulates mood are not well understood. The present study utilized a diurnal rodent model, Arvicanthis niloticus, to explore the neural pathways mediating the effects of light on brain regions involved in mood regulation. Animals kept in constant darkness received light exposure in early subjective day, the time when light therapy is usually applied. The time course of neural activity following light exposure was assessed using Fos protein as a marker in the following brain regions/cells: the suprachiasmatic nucleus (SCN), orexin neurons in the perifornical-lateral hypothalamic area (PF-LHA) and the dorsal raphe nucleus (DRN). A light-induced increase in Fos expression was observed in orexin neurons and the DRN, but not in the SCN. As the DRN is densely innervated by orexinergic inputs, the involvement of orexinergic signaling in mediating the effects of light on the DRN was tested in the second experiment. The animals were injected with the selective orexin receptor type 1 (OXR1) antagonist SB-334867 prior to the light exposure. The treatment of SB-334867 significantly inhibited the Fos induction in the DRN. The results collectively point to the role of orexin neurons in mediating the effects of light on the mood-regulating monoaminergic areas, suggesting an orexinergic pathway that underlies light-dependent mood fluctuation and the beneficial effects of light therapy.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Vias Neurais/fisiologia , Neuropeptídeos/metabolismo , Núcleos da Rafe/fisiologia , Transdução de Sinais/fisiologia , Animais , Ritmo Circadiano/fisiologia , Escuridão , Imuno-Histoquímica , Luz , Neurônios/metabolismo , Orexinas , Fototerapia , Proteínas Proto-Oncogênicas c-fos/análise , Proteínas Proto-Oncogênicas c-fos/biossíntese , Ratos , Transtorno Afetivo Sazonal/metabolismo , Transtorno Afetivo Sazonal/fisiopatologia
19.
Synapse ; 66(10): 885-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22733588

RESUMO

Altered brain serotonin activity is implicated in schizophrenia. We have previously shown differential involvement of serotonergic projections from the dorsal or median raphe nucleus in phencyclidine-induced hyperlocomotion in rats, a behavioral model of aspects of schizophrenia. Here we further investigated the effects of serotonergic lesions of the raphe nuclei on phencyclidine-induced hyperlocomotion by parallel assessment of Fos-like immunoreactivity (FLI), a marker of neuronal activation in the brain. Male Sprague-Dawley rats were anesthetized with pentobarbitone and stereotaxically microinjected with 5 µg of the serotonergic neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), into either the dorsal raphe (DRN) or median raphe nucleus (MRN). Two weeks after the surgery, rats with lesions of the MRN, but not those with lesions of the DRN, showed significant enhancement of the hyperlocomotion induced by injection of 2.5 mg/kg of phencyclidine. Rats with MRN lesions also showed significantly higher levels of FLI in the polymorphic layer of the dentate gyrus in the dorsal hippocampus (PoDG) when compared with sham-operated controls. Rats with lesions of the DRN showed significantly higher levels of FLI in the nucleus accumbens (NAcc). These results indicate that FLI in the PoDG, but not the NAcc, correlates with enhanced phencyclidine-induced locomotor hyperactivity in MRN-lesioned rats. These results support our previous studies suggesting a role of serotonergic projections from the MRN to the dorsal hippocampus in some of the symptoms of schizophrenia.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Locomoção/efeitos dos fármacos , Fenciclidina/farmacologia , Proteínas Proto-Oncogênicas c-fos/análise , Núcleos da Rafe/fisiologia , Serotoninérgicos/toxicidade , Serotonina/fisiologia , 5,7-Di-Hidroxitriptamina/toxicidade , Animais , Denervação , Imuno-Histoquímica , Masculino , Núcleo Accumbens/química , Proteínas Proto-Oncogênicas c-fos/imunologia , Núcleos da Rafe/química , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
20.
Am J Physiol Regul Integr Comp Physiol ; 302(2): R224-32, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22071154

RESUMO

In urethane/α-chloralose anesthetized rats, cold exposure increased brown adipose tissue sympathetic nerve activity (BAT SNA: +699 ± 104% control). Intravenous administration of 2-deoxy-D-glucose (2-DG; 200 mg·ml(-1)·kg(-1)) reversed the cold-evoked activation of BAT SNA (nadir: 139 ± 36% of control) and decreased BAT temperature (-1.1 ± 0.2°C), expired CO(2) (-0.4 ± 0.1%), and core temperature (-0.5 ± 0.0). Similarly, unilateral nanoinjection of the glucoprivic agent 5-thioglucose (5-TG; 12 µg/100 nl) in the ventrolateral medulla (VLM) completely reversed the cold-evoked increase in BAT SNA (nadir: 104 ± 7% of control), and decreased T(BAT) (-1.4 ± 0.3°C), expired CO(2) (-0.2 ± 0.0%), and heart rate (-35 ± 10 beats/min). The percentage of rostral raphé pallidus (RPa)-projecting neurons in the dorsal hypothalamic area/dorsomedial hypothalamus that expressed Fos in response to cold exposure (ambient temperature: 4-10°C) did not differ between saline (28 ± 6%) and 2-DG (30 ± 5%) pretreated rats, whereas the percentage of spinally projecting neurons in the RPa/raphé magnus that expressed Fos in response to cold exposure was lower in 2-DG- compared with saline-pretreated rats (22 ± 6% vs. 42 ± 5%, respectively). The increases in BAT SNA evoked by nanoinjection of bicuculline in the RPa or by transection of the neuraxis at the pontomedullary border were resistant to inhibition by glucoprivation. These results suggest that neurons within the VLM play a role in the glucoprivic inhibition of BAT SNA and metabolism, that this inhibition requires neural structures rostral to the pontomedullary border, and that this inhibition is mediated by a GABAergic input to the RPa.


Assuntos
Tecido Adiposo Marrom/inervação , Bulbo/fisiologia , Neurônios/fisiologia , Núcleos da Rafe/fisiologia , Sistema Nervoso Simpático/fisiologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/fisiologia , Animais , Antimetabólitos/farmacologia , Temperatura Baixa , Desoxiglucose/farmacologia , Masculino , Bulbo/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Termogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA