Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Elife ; 132024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857064

RESUMO

Enterococcus faecium is a microbiota species in humans that can modulate host immunity (Griffin and Hang, 2022), but has also acquired antibiotic resistance and is a major cause of hospital-associated infections (Van Tyne and Gilmore, 2014). Notably, diverse strains of E. faecium produce SagA, a highly conserved peptidoglycan hydrolase that is sufficient to promote intestinal immunity (Rangan et al., 2016; Pedicord et al., 2016; Kim et al., 2019) and immune checkpoint inhibitor antitumor activity (Griffin et al., 2021). However, the functions of SagA in E. faecium were unknown. Here, we report that deletion of sagA impaired E. faecium growth and resulted in bulged and clustered enterococci due to defective peptidoglycan cleavage and cell separation. Moreover, ΔsagA showed increased antibiotic sensitivity, yielded lower levels of active muropeptides, displayed reduced activation of the peptidoglycan pattern-recognition receptor NOD2, and failed to promote cancer immunotherapy. Importantly, the plasmid-based expression of SagA, but not its catalytically inactive mutant, restored ΔsagA growth, production of active muropeptides, and NOD2 activation. SagA is, therefore, essential for E. faecium growth, stress resistance, and activation of host immunity.


Assuntos
Enterococcus faecium , Inibidores de Checkpoint Imunológico , N-Acetil-Muramil-L-Alanina Amidase , Enterococcus faecium/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Inibidores de Checkpoint Imunológico/farmacologia , Humanos , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Peptidoglicano/metabolismo , Camundongos
2.
PLoS Biol ; 22(5): e3002628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814940

RESUMO

The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.


Assuntos
Trifosfato de Adenosina , Divisão Celular , Proteínas de Escherichia coli , Escherichia coli , Peptidoglicano , Peptidoglicano/metabolismo , Hidrólise , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/genética , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Parede Celular/metabolismo , Conformação Proteica , Modelos Moleculares , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Proteínas da Membrana Bacteriana Externa , Transportadores de Cassetes de Ligação de ATP , Regulador de Condutância Transmembrana em Fibrose Cística , Lipoproteínas , Proteínas de Ciclo Celular
3.
mBio ; 15(2): e0254023, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38275913

RESUMO

Bacterial infections are a growing global healthcare concern, as an estimated annual 4.95 million deaths are associated with antimicrobial resistance (AMR). Methicillin-resistant Staphylococcus aureus is one of the deadliest pathogens and a high-priority pathogen according to the World Health Organization. Peptidoglycan hydrolases (PGHs) of phage origin have been postulated as a new class of antimicrobials for the treatment of bacterial infections, with a novel mechanism of action and no known resistances. The modular architecture of PGHs permits the creation of chimeric PGH libraries. In this study, the chimeric enzyme MEndoB was selected from a library of staphylococcal PGHs based on its rapid and sustained activity against staphylococci in human serum. The benefit of the presented screening approach was illustrated by the superiority of MEndoB in a head-to-head comparison with other PGHs intended for use against staphylococcal bacteremia. MEndoB displayed synergy with antibiotics and rapid killing in human whole blood with complete inhibition of re-growth over 24 h at low doses. Successful treatment of S. aureus-infected zebrafish larvae with MEndoB provided evidence for its in vivo effectiveness. This was further confirmed in a lethal systemic mouse infection model in which MEndoB significantly reduced S. aureus loads and tumor necrosis factor alpha levels in blood in a dose-dependent manner, which led to increased survival of the animals. Thus, the thorough lead candidate selection of MEndoB resulted in an outstanding second-generation PGH with in vitro, ex vivo, and in vivo results supporting further development.IMPORTANCEOne of the most pressing challenges of our era is the rising occurrence of bacteria that are resistant to antibiotics. Staphylococci are prominent pathogens in humans, which have developed multiple strategies to evade the effects of antibiotics. Infections caused by these bacteria have resulted in a high burden on the health care system and a significant loss of lives. In this study, we have successfully engineered lytic enzymes that exhibit an extraordinary ability to eradicate staphylococci. Our findings substantiate the importance of meticulous lead candidate selection to identify therapeutically promising peptidoglycan hydrolases with unprecedented activity. Hence, they offer a promising new avenue for treating staphylococcal infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Sepse , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Staphylococcus aureus , Peptidoglicano , Peixe-Zebra , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/uso terapêutico , Sepse/tratamento farmacológico
4.
Nat Commun ; 14(1): 3338, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286542

RESUMO

Secreted proteins are one of the direct molecular mechanisms by which microbiota influence the host, thus constituting a promising field for drug discovery. Here, through bioinformatics-guided screening of the secretome of clinically established probiotics from Lactobacillus, we identify an uncharacterized secreted protein (named LPH here) that is shared by most of these probiotic strains (8/10) and demonstrate that it protects female mice from colitis in multiple models. Functional studies show that LPH is a bi-functional peptidoglycan hydrolase with both N-Acetyl-ß-D-muramidase and DL-endopeptidase activities that can generate muramyl dipeptide (MDP), a NOD2 ligand. Different active site mutants of LPH in combination with Nod2 knockout female mice confirm that LPH exerts anti-colitis effects through MDP-NOD2 signaling. Furthermore, we validate that LPH can also exert protective effects on inflammation-associated colorectal cancer in female mice. Our study reports a probiotic enzyme that enhances NOD2 signaling in vivo in female mice and describes a molecular mechanism that may contribute to the effects of traditional Lactobacillus probiotics.


Assuntos
Colite , Probióticos , Camundongos , Feminino , Animais , Ligantes , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD2/metabolismo , Peptidoglicano/metabolismo
5.
PLoS One ; 18(3): e0282843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36897919

RESUMO

Streptococcus pneumoniae is an important cause of fatal pneumonia in humans. These bacteria express virulence factors, such as the toxins pneumolysin and autolysin, that drive host inflammatory responses. In this study we confirm loss of pneumolysin and autolysin function in a group of clonal pneumococci that have a chromosomal deletion resulting in a pneumolysin-autolysin fusion gene Δ(lytA'-ply')593. The Δ(lytA'-ply')593 pneumococci strains naturally occur in horses and infection is associated with mild clinical signs. Here we use immortalized and primary macrophage in vitro models, which include pattern recognition receptor knock-out cells, and a murine acute pneumonia model to show that a Δ(lytA'-ply')593 strain induces cytokine production by cultured macrophages, however, unlike the serotype-matched ply+lytA+ strain, it induces less tumour necrosis factor α (TNFα) and no interleukin-1ß production. The TNFα induced by the Δ(lytA'-ply')593 strain requires MyD88 but, in contrast to the ply+lytA+ strain, is not reduced in cells lacking TLR2, 4 or 9. In comparison to the ply+lytA+ strain in a mouse model of acute pneumonia, infection with the Δ(lytA'-ply')593 strain resulted in less severe lung pathology, comparable levels of interleukin-1α, but minimal release of other pro-inflammatory cytokines, including interferon-γ, interleukin-6 and TNFα. These results suggest a mechanism by which a naturally occurring Δ(lytA'-ply')593 mutant strain of S. pneumoniae that resides in a non-human host has reduced inflammatory and invasive capacity compared to a human S. pneumoniae strain. These data probably explain the relatively mild clinical disease in response to S. pneumoniae infection seen in horses in comparison to humans.


Assuntos
Streptococcus pneumoniae , Fator de Necrose Tumoral alfa , Animais , Camundongos , Cavalos , Fator de Necrose Tumoral alfa/genética , N-Acetil-Muramil-L-Alanina Amidase/genética , Virulência/genética , Sorogrupo , Estreptolisinas , Proteínas de Bactérias/genética , Imunidade
6.
Viruses ; 14(12)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36560804

RESUMO

Staphylococcus aureus is a major causative agent of bovine mastitis, a disease considered one of the most economically devastating in the dairy sector. Considering the increasing prevalence of antibiotic-resistant strains, novel therapeutic approaches efficiently targeting extra- and intracellular bacteria and featuring high activity in the presence of raw milk components are needed. Here, we have screened a library of eighty peptidoglycan hydrolases (PGHs) for high activity against S. aureus in raw bovine milk, twelve of which were selected for further characterization and comparison in time-kill assays. The bacteriocins lysostaphin and ALE-1, and the chimeric PGH M23LST(L)_SH3b2638 reduced bacterial numbers in raw milk to the detection limit within 10 min. Three CHAP-based PGHs (CHAPGH15_SH3bAle1, CHAPK_SH3bLST_H, CHAPH5_LST_H) showed gradually improving activity with increasing dilution of the raw milk. Furthermore, we demonstrated synergistic activity of CHAPGH15_SH3bAle1 and LST when used in combination. Finally, modification of four PGHs (LST, M23LST(L)_SH3b2638, CHAPK_SH3bLST, CHAPGH15_SH3bAle1) with the cell-penetrating peptide TAT significantly enhanced the eradication of intracellular S. aureus in bovine mammary alveolar cells compared to the unmodified parentals in a concentration-dependent manner.


Assuntos
Mastite , Infecções Estafilocócicas , Feminino , Humanos , Animais , Staphylococcus aureus , Peptidoglicano , Leite/microbiologia , N-Acetil-Muramil-L-Alanina Amidase/genética , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Mastite/tratamento farmacológico , Células Epiteliais
7.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32958710

RESUMO

Streptococcus pneumoniae is a leading pathogen for bacterial pneumonia, which can be treated with bacteriophage lysins harboring a conserved choline binding module (CBM). Such lysins regularly function as choline-recognizing dimers. Previously, we reported a pneumococcus-specific lysin ClyJ comprising the binding domain from the putative endolysin gp20 from the Streptococcus phage SPSL1 and the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) catalytic domain from the PlyC lysin. A variant of ClyJ with a shortened linker, i.e., ClyJ-3, shows improved activity and reduced cytotoxicity. Resembling typical CBM-containing lysins, ClyJ-3 dimerized upon binding with choline. Herein, we further report a choline-recognizing variant of ClyJ-3, i.e., ClyJ-3m, constructed by deleting its C-terminal tail. Biochemical characterization showed that ClyJ-3m remains a monomer after it binds to choline yet exhibits improved bactericidal activity against multiple pneumococcal strains with different serotypes. In an S. pneumoniae-infected bacteremia model, a single intraperitoneal administration of 2.32 µg/mouse of ClyJ-3m showed 70% protection, while only 20% of mice survived in the group receiving an equal dose of ClyJ-3 (P < 0.05). A pharmacokinetic analysis following single intravenously doses of 0.29 and 1.16 mg/kg of ClyJ-3 or ClyJ-3m in BALB/c mice revealed that ClyJ-3m shows a similar half-life but less clearance and a greater area under curve than ClyJ-3. Taken together, the choline-recognizing monomer ClyJ-3m exhibited enhanced bactericidal activity and improved pharmacokinetic proprieties compared to those of its parental ClyJ-3 lysin. Our study also provides a new way for rational design and programmed engineering of lysins targeting S. pneumoniae.


Assuntos
Bacteriemia , Colina , Fagos de Streptococcus , Streptococcus pneumoniae , Animais , Camundongos , Camundongos Endogâmicos BALB C , N-Acetil-Muramil-L-Alanina Amidase/genética
8.
Microbiology (Reading) ; 165(9): 1013-1023, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31264955

RESUMO

Mycobacteriophages are viruses that infect and kill mycobacteria. The peptidoglycan hydrolase, lysin A (LysA), coded by one of the most potent mycobacteriophages, D29, carries two catalytic domains at its N-terminus and a cell wall-binding domain at its C-terminus. Here, we have explored the importance of the centrally located lysozyme-like catalytic domain (LD) of LysA in phage physiology. We had previously identified an R198A substitution that causes inactivation of the LD when it is present alone on a polypeptide. Here, we show that upon incorporation of the same mutation (i.e. R350A) in full-length LysA, the protein demonstrates substantially reduced activity in vitro, even in the presence of the N-terminal catalytic domain, and has less efficient mycobacterial cell lysis ability when it is expressed in Mycobacterium smegmatis. These data suggest that an active LD is required for the full-length protein to function optimally. Moreover, a mutant D29 phage harbouring this substitution (D29R350A) in its LysA protein shows significantly delayed host M. smegmatis lysis. However, the mutant phage demonstrates an increase in burst size and plaque diameter. Taken together, our data show the importance of an intact LD region in D29 LysA PG hydrolase, and indicate an evolutionary advantage over other phages that lack such a domain in their endolysins.


Assuntos
Endopeptidases/genética , Micobacteriófagos , Mycobacterium smegmatis/virologia , N-Acetil-Muramil-L-Alanina Amidase/genética , Domínio Catalítico/genética , Parede Celular/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Mutação , Micobacteriófagos/genética , Micobacteriófagos/crescimento & desenvolvimento , Micobacteriófagos/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Mol Microbiol ; 110(1): 114-127, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30039535

RESUMO

Chronic infection with Helicobacter pylori can lead to the development of gastric ulcers and stomach cancers. The helical cell shape of H. pylori promotes stomach colonization. Screens for loss of helical shape have identified several periplasmic peptidoglycan (PG) hydrolases and non-enzymatic putative scaffolding proteins, including Csd5. Both over and under expression of the PG hydrolases perturb helical shape, but the mechanism used to coordinate and localize their enzymatic activities is not known. Using immunoprecipitation and mass spectrometry we identified Csd5 interactions with cytosolic proteins CcmA, a bactofilin required for helical shape, and MurF, a PG precursor synthase, as well as the inner membrane spanning ATP synthase. A combination of Csd5 domain deletions, point mutations, and transmembrane domain chimeras revealed that the N-terminal transmembrane domain promotes MurF, CcmA, and ATP synthase interactions, while the C-terminal SH3 domain mediates PG binding. We conclude that Csd5 promotes helical shape as part of a membrane associated, multi-protein shape complex that includes interactions with the periplasmic cell wall, a PG precursor synthesis enzyme, the bacterial cytoskeleton, and ATP synthase.


Assuntos
Parede Celular/metabolismo , Citoesqueleto/metabolismo , Helicobacter pylori/citologia , Helicobacter pylori/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptídeo Sintases/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Deleção de Genes , Helicobacter pylori/genética , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , Peptídeo Sintases/química , Peptídeo Sintases/genética , Periplasma/metabolismo , Análise de Sequência de Proteína
10.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970228

RESUMO

To provide food security, innovative approaches to preventing plant disease are currently being explored. Here, we demonstrate that lytic bacteriophages and phage lysis proteins are effective at triggering lysis of the phytopathogen Agrobacterium tumefaciens Phages Atu_ph02 and Atu_ph03 were isolated from wastewater and induced lysis of C58-derived strains of A. tumefaciens The coinoculation of A. tumefaciens with phages on potato discs limited tumor formation. The genomes of Atu_ph02 and Atu_ph03 are nearly identical and are ∼42% identical to those of T7 supercluster phages. In silico attempts to find a canonical lysis cassette were unsuccessful; however, we found a putative phage peptidoglycan hydrolase (PPH), which contains a C-terminal transmembrane domain. Remarkably, the endogenous expression of pph in the absence of additional phage genes causes a block in cell division and subsequent lysis of A. tumefaciens cells. When the presumed active site of the N-acetylmuramidase domain carries an inactivating mutation, PPH expression causes extensive cell branching due to a block in cell division but does not trigger rapid cell lysis. In contrast, the mutation of positively charged residues at the extreme C terminus of PPH causes more rapid cell lysis. Together, these results suggest that PPH causes a block in cell division and triggers cell lysis through two distinct activities. Finally, the potent killing activity of this single lysis protein can be modulated, suggesting that it could be engineered to be an effective enzybiotic.IMPORTANCE The characterization of bacteriophages such as Atu_ph02 and Atu_ph03, which infect plant pathogens such as Agrobacterium tumefaciens, may be the basis of new biocontrol strategies. First, cocktails of diverse bacteriophages could be used as a preventative measure to limit plant diseases caused by bacteria; a bacterial pathogen is unlikely to simultaneously develop resistances to multiple bacteriophage species. The specificity of bacteriophage treatment for the host is an asset in complex communities, such as in orchards where it would be detrimental to harm the symbiotic bacteria in the environment. Second, bacteriophages are potential sources of enzymes that efficiently lyse bacterial cells. These phage proteins may have a broad specificity, but since proteins do not replicate as phages do, their effect is highly localized, providing an alternative to traditional antibiotic treatments. Thus, studies of lytic bacteriophages that infect A. tumefaciens may provide insights for designing preventative strategies against bacterial pathogens.


Assuntos
Agrobacterium tumefaciens/fisiologia , Bacteriólise , Bacteriófagos/enzimologia , Expressão Gênica , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas Virais/metabolismo , Agrobacterium tumefaciens/genética , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , Filogenia , Domínios Proteicos , Proteínas Virais/química , Proteínas Virais/genética , Águas Residuárias/virologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-28289031

RESUMO

Phage-derived lytic proteins are a promising alternative to conventional antimicrobials. One of their most interesting properties is that they do not readily select for resistant strains, which is likely due to the fact that their targets are essential for the viability of the bacterial cell. Moreover, genetic engineering allows the design of new "tailor-made" proteins that may exhibit improved antibacterial properties. One example of this is the chimeric protein CHAPSH3b, which consists of a catalytic domain from the virion-associated peptidoglycan hydrolase of phage vB_SauS-phiIPLA88 (HydH5) and the cell wall binding domain of lysostaphin. CHAPSH3b had previously shown the ability to kill Staphylococcus aureus cells. Here, we demonstrate that this lytic protein also has potential for the control of biofilm-embedded S. aureus cells. Additionally, subinhibitory doses of CHAPSH3b can decrease biofilm formation by some S. aureus strains. Transcriptional analysis revealed that exposure of S. aureus cells to this enzyme leads to the downregulation of several genes coding for bacterial autolysins. One of these proteins, namely, the major autolysin AtlA, is known to participate in staphylococcal biofilm development. Interestingly, an atl mutant strain did not display inhibition of biofilm development when grown at subinhibitory concentrations of CHAPSH3b, contrary to the observations made for the parental and complemented strains. Also, deletion of atl led to low-level resistance to CHAPSH3b and the endolysin LysH5. Overall, our results reveal new aspects that should be considered when designing new phage-derived lytic proteins aimed for antimicrobial applications.


Assuntos
Antibacterianos/farmacologia , N-Acetil-Muramil-L-Alanina Amidase/genética , Fagos de Staphylococcus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/virologia , Proteínas Virais de Fusão/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Parede Celular/metabolismo , Endopeptidases/metabolismo , Lisostafina/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Proteínas Virais de Fusão/genética
12.
Biochem Biophys Res Commun ; 478(2): 881-6, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27514447

RESUMO

The quenching enzyme AIO6 (AiiO-AIO6) has been reported as a feed additive preparation for application in aquaculture and biological control of pathogenic Aeromonas hydrophila. We developed an economical strategy to express AIO6BS (AiiO-AIO6BS, codon optimized AIO6 in Bacillus subtilis) in Bacillus subtilis for facilitating its widespread application. Promoter p43 without the signal peptide was used for secretory expression of AIO6BS in B. subtilis. Western blotting analysis demonstrated that AIO6BS was successfully expressed and secreted into the cell culture. Expression analysis of AIO6BS in the single or double mutant of the lytC and lytD genes for cell autolysis in B. subtilis 1A751 and cell autolysis-resistant engineered strain LM2531 derived from the wild type 168 indicated that the release of the heterologous protein AIO6BS was not simply mediated by cell lysis. Expression level of AIO6BS did not change in the mutants of B. subtilis that harbored mutations in the secA, tatAC, or ecsA genes compared with that in the parent wild type strain. These results suggested the AIO6BS protein was likely secreted via a non-classical secretion pathway. The expression analysis of the various N- or C-terminal truncated gene products indicated that AIO6BS probably acts as an export signal to direct its self-secretion across the cell membrane.


Assuntos
Bacillus subtilis/genética , Sistemas de Secreção Bacterianos/genética , Códon/química , Regulação Bacteriana da Expressão Gênica , N-Acetil-Muramil-L-Alanina Amidase/genética , Via Secretória/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Códon/metabolismo , Mutação , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Regiões Promotoras Genéticas , Engenharia de Proteínas , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Proteínas SecA
13.
Nat Commun ; 7: 10859, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26924467

RESUMO

Bacterial pathogens produce complex carbohydrate capsules to protect against bactericidal immune molecules. Paradoxically, the pneumococcal capsule sensitizes the bacterium to antimicrobial peptides found on epithelial surfaces. Here we show that upon interaction with antimicrobial peptides, encapsulated pneumococci survive by removing capsule from the cell surface within minutes in a process dependent on the suicidal amidase autolysin LytA. In contrast to classical bacterial autolysis, during capsule shedding, LytA promotes bacterial survival and is dispersed circumferentially around the cell. However, both autolysis and capsule shedding depend on the cell wall hydrolytic activity of LytA. Capsule shedding drastically increases invasion of epithelial cells and is the main pathway by which pneumococci reduce surface bound capsule during early acute lung infection of mice. The previously unrecognized role of LytA in removing capsule to combat antimicrobial peptides may explain why nearly all clinical isolates of pneumococci conserve this enzyme despite the lethal selective pressure of antibiotics.


Assuntos
Cápsulas Bacterianas/fisiologia , Células Epiteliais/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Streptococcus pneumoniae/metabolismo , Animais , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica/fisiologia , Camundongos , Mutação , N-Acetil-Muramil-L-Alanina Amidase/genética , Infecções Pneumocócicas/microbiologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia
14.
Infect Immun ; 84(6): 1672-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001537

RESUMO

Excretion of cytoplasmic proteins in pro- and eukaryotes, also referred to as "nonclassical protein export," is a well-known phenomenon. However, comparatively little is known about the role of the excreted proteins in relation to pathogenicity. Here, the impact of two excreted glycolytic enzymes, aldolase (FbaA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), on pathogenicity was investigated in Staphylococcus aureus Both enzymes bound to certain host matrix proteins and enhanced adherence of the bacterial cells to host cells but caused a decrease in host cell invasion. FbaA and GAPDH also bound to the cell surfaces of staphylococcal cells by interaction with the major autolysin, Atl, that is involved in host cell internalization. Surprisingly, FbaA showed high cytotoxicity to both MonoMac 6 (MM6) and HaCaT cells, while GAPDH was cytotoxic only for MM6 cells. Finally, the contribution of external FbaA and GAPDH to S. aureus pathogenicity was confirmed in an insect infection model.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Interações Hospedeiro-Patógeno , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Staphylococcus aureus/patogenicidade , Adesinas Bacterianas/genética , Adesinas Bacterianas/toxicidade , Animais , Aderência Bacteriana , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/toxicidade , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/microbiologia , Larva/microbiologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/microbiologia , Mariposas/microbiologia , N-Acetil-Muramil-L-Alanina Amidase/genética , Ligação Proteica , Transdução de Sinais , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Análise de Sobrevida , Virulência
15.
Int J Food Microbiol ; 218: 17-26, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26594790

RESUMO

The foodborne pathogen Listeria monocytogenes, responsible for listeriosis a rare but severe infection disease, can survive in the food processing environment for month or even years. So-called persistent L. monocytogenes strains greatly increase the risk of (re)contamination of food products, and are therefore a great challenge for food safety. However, our understanding of the mechanism underlying persistence is still fragmented. In this study we compared the exoproteome of three persistent strains with the reference strain EGDe under mild stress conditions using 2D differential gel electrophoresis. Principal component analysis including all differentially abundant protein spots showed that the exoproteome of strain EGDe (sequence type (ST) 35) is distinct from that of the persistent strain R479a (ST8) and the two closely related ST121 strains 4423 and 6179. Phylogenetic analyses based on multilocus ST genes showed similar grouping of the strains. Comparing the exoproteome of strain EGDe and the three persistent strains resulted in identification of 22 differentially expressed protein spots corresponding to 16 proteins. Six proteins were significantly increased in the persistent L. monocytogenes exoproteomes, among them proteins involved in alkaline stress response (e.g. the membrane anchored lipoprotein Lmo2637 and the NADPH dehydrogenase NamA). In parallel the persistent strains showed increased survival under alkaline stress, which is often provided during cleaning and disinfection in the food processing environments. In addition, gene expression of the proteins linked to stress response (Lmo2637, NamA, Fhs and QoxA) was higher in the persistent strain not only at 37 °C but also at 10 °C. Invasion efficiency of EGDe was higher in intestinal epithelial Caco2 and macrophage-like THP1 cells compared to the persistent strains. Concurrently we found higher expression of proteins involved in virulence in EGDe e.g. the actin-assembly-inducing protein ActA and the surface virulence associated protein SvpA. Furthermore proteins involved in cell wall modification, such as the lipoteichonic acid primase LtaP and the N-acetylmuramoyl-l-alanine amidase (Lmo2591) are more abundant in EGDe than in the persistent strains and could indirectly contribute to virulence. In conclusion this study provides information about a set of proteins that could potentially support survival of L. monocytogenes in abiotic niches in food processing environments. Based on these data, a more detailed analysis of the role of the identified proteins under stresses mimicking conditions in food producing environment is essential for further elucidate the mechanism of the phenomenon of persistence of L. monocytogenes.


Assuntos
Manipulação de Alimentos , Microbiologia de Alimentos , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/genética , Listeriose/patologia , Proteínas de Bactérias/genética , Células CACO-2 , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Listeria monocytogenes/classificação , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Proteínas de Membrana/genética , Tipagem de Sequências Multilocus , N-Acetil-Muramil-L-Alanina Amidase/genética , Filogenia , Análise de Componente Principal , Proteoma/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Fisiológico , Virulência/genética
16.
FEMS Microbiol Lett ; 352(1): 78-86, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24393327

RESUMO

Staphylococcus lugdunensis is a human skin commensal organism, but it is considered as a virulent Staphylococcus species. In a previous study, we described the first S. lugdunensis autolysin, AtlL. This enzyme displays two enzymatic domains and generates two peptidoglycan hydrolases, an N-acetylmuramoyl-l-alanine amidase and an N-acetylglucosaminidase. In this study, to further investigate the functions of this autolysin, a ΔatlL mutant was constructed. The microscopic examination of the mutant showed cell aggregates and revealed a rough outer cell surface demonstrating, respectively, the roles of AtlL in cell separation and peptidoglycan turnover. This ΔatlL mutant exhibited a lower susceptibility to Triton X-100-induced autolysis assays and appears to be more resistant to cell wall antibiotic-induced lysis and death compared with its parental strain. The atlL mutation affected the biofilm formation capacity of S. lugdunensis. Furthermore, the ΔatlL mutant showed trends toward reduced virulence using the Caenorhabditis elegans model. Overall, AtlL appears as a major cell wall autolysin of S. lugdunensis implicated in cell separation, in stress-induced autolysis and in bacterial pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriólise , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus lugdunensis/patogenicidade , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Caenorhabditis elegans , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Humanos , N-Acetil-Muramil-L-Alanina Amidase/genética , Staphylococcus lugdunensis/efeitos dos fármacos , Staphylococcus lugdunensis/genética , Staphylococcus lugdunensis/fisiologia , Virulência
17.
J Bacteriol ; 196(3): 527-39, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24244005

RESUMO

Peptidoglycan (PG) hydrolases associated with bacterial type IV secretion systems (T4SSs) are thought to generate localized lesions in the PG layer to facilitate assembly of the translocation channel. The pheromone-responsive plasmid pCF10 of Enterococcus faecalis encodes a putative cell wall hydrolase, PrgK, and here we report that a prgK deletion abolished functionality of the pCF10-encoded T4SS as monitored by pCF10 conjugative transfer. Expression in trans of wild-type prgK fully complemented this mutation. PrgK has three potential hydrolase motifs resembling staphylococcal LytM, soluble lytic transglycosylase (SLT), and cysteine-, histidine-dependent amidohydrolase/peptidase (CHAP) domains. Complementation analyses with mutant alleles established that PrgK bearing two hydrolase domains in any combination supported near-wild-type plasmid transfer, and PrgK bearing a single hydrolase domain supported at least a low level of transfer in filter matings. When exported to the Escherichia coli periplasm, each domain disrupted cell growth, and combinations of domains additionally induced cell rounding and blebbing and conferred enhanced sensitivity to osmotic shock. Each domain bound PG in vitro, but only the SLT domain exhibited detectable hydrolase activity, as shown by zymographic analyses and release of fluorescent PG fragments. Genes encoding three T4SS-associated, putative hydrolases, Lactococcus lactis CsiA, Tn925 Orf14, and pIP501 TraG, partially complemented the ΔprgK mutation. Our findings establish that PrgK is an essential component of the pCF10-encoded Prg/Pcf T4SS and that its hydrolase domains coordinate their activities for full PrgK function. PrgK is indispensable for plasmid transfer in liquid matings, suggestive of a role in formation or stabilization of mating junctions.


Assuntos
Enterococcus faecalis/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , N-Acetil-Muramil-L-Alanina Amidase/classificação , Feromônios/metabolismo , Plasmídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Regulação Enzimológica da Expressão Gênica , Mutação , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Estrutura Terciária de Proteína
18.
J Biol Chem ; 288(52): 36915-25, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24235140

RESUMO

Enterococcus faecalis strains are commensal bacteria in humans and other animals, and they are also the causative agent of opportunistic infectious diseases. Bacteriocin 41 (Bac41) is produced by certain E. faecalis clinical isolates, and it is active against other E. faecalis strains. Our genetic analyses demonstrated that the extracellular products of the bacL1 and bacA genes, which are encoded in the Bac41 operon, coordinately express the bacteriocin activity against E. faecalis. In this study, we investigated the molecular functions of the BacL1 and BacA proteins. Immunoblotting and N-terminal amino acid sequence analysis revealed that BacL1 and BacA are secreted without any processing. The coincidental treatment with the recombinant BacL1 and BacA showed complete bacteriocin activity against E. faecalis, but neither BacL1 nor BacA protein alone showed the bacteriocin activity. Interestingly, BacL1 alone demonstrated substantial degrading activity against the cell wall fraction of E. faecalis in the absence of BacA. Furthermore, MALDI-TOF MS analysis revealed that BacL1 has a peptidoglycan D-isoglutamyl-L-lysine endopeptidase activity via a NlpC/P60 homology domain. These results collectively suggest that BacL1 serves as a peptidoglycan hydrolase and, when BacA is present, results in the lysis of viable E. faecalis cells.


Assuntos
Bacteriocinas/química , Endopeptidases/química , Enterococcus faecalis/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Enterococcus faecalis/genética , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Terciária de Proteína
19.
Appl Environ Microbiol ; 79(19): 6187-90, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23892745

RESUMO

The role of virion-associated peptidoglycan hydrolases (VAPGHs) in the phage infection cycle is not clear. gp49, the VAPGH from Staphylococcus aureus phage 11, is not essential for phage growth but stabilizes the viral particles. 11Δ49 phages showed a reduced burst size and delayed host lysis. Complementation of gp49 with HydH5 from bacteriophage vB_SauS-phiIPLA88 restored the wild-type phenotype.


Assuntos
N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Fagos de Staphylococcus/enzimologia , Fagos de Staphylococcus/crescimento & desenvolvimento , Staphylococcus aureus/virologia , Proteínas Estruturais Virais/metabolismo , Vírion/metabolismo , Bacteriólise , Deleção de Genes , Teste de Complementação Genética , N-Acetil-Muramil-L-Alanina Amidase/genética , Fagos de Staphylococcus/genética , Proteínas Estruturais Virais/genética , Vírion/genética
20.
Biochem J ; 448(2): 201-11, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22931054

RESUMO

Tse1 (Tse is type VI secretion exported), an effector protein produced by Pseudomonas aeruginosa, is an amidase that hydrolyses the γ-D-glutamyl-DAP (γ-D-glutamyl-L-meso-diaminopimelic acid) linkage of the peptide bridge of peptidoglycan. P. aeruginosa injects Tse1 into the periplasm of recipient cells, degrading their peptidoglycan, thereby helping itself to compete with other bacteria. Meanwhile, to protect itself from injury by Tse1, P. aeruginosa expresses the cognate immunity protein Tsi1 (Tsi is type VI secretion immunity) in its own periplasm to inactivate Tse1. In the present paper, we report the crystal structures of Tse1 and the Tse1-(6-148)-Tsi1-(20-end) complex at 1.4 Å and 1.6 Å (1 Å=0.1 nm) resolutions respectively. The Tse1 structure adopts a classical papain-like α+ß fold. A cysteine-histidine catalytic diad is identified in the reaction centre of Tse1 by structural comparison and mutagenesis studies. Tsi1 binds Tse1 tightly. The HI loop (middle finger tip) from Tsi1 inserts into the large pocket of the Y-shaped groove on the surface of Tse1, and CD, EF, JK and LM loops (thumb, index finger, ring finger and little finger tips) interact with Tse1, thus blocking the binding of enzyme to peptidoglycan. The catalytic and inhibition mechanisms provide new insights into how P. aeruginosa competes with others and protects itself.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Mutagênese Sítio-Dirigida , N-Acetil-Muramil-L-Alanina Amidase/genética , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA