Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.871
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000137

RESUMO

The URH1p enzyme from the yeast Saccharomyces cerevisiae has gained significant interest due to its role in nitrogenous base metabolism, particularly involving uracil and nicotinamide salvage. Indeed, URH1p was initially classified as a nucleoside hydrolase (NH) with a pronounced preference for uridine substrate but was later shown to also participate in a Preiss-Handler-dependent pathway for recycling of both endogenous and exogenous nicotinamide riboside (NR) towards NAD+ synthesis. Here, we present the detailed enzymatic and structural characterisation of the yeast URH1p enzyme, a member of the group I NH family of enzymes. We show that the URH1p has similar catalytic efficiencies for hydrolysis of NR and uridine, advocating a dual role of the enzyme in both NAD+ synthesis and nucleobase salvage. We demonstrate that URH1p has a monomeric structure that is unprecedented for members of the NH homology group I, showing that oligomerisation is not strictly required for the N-ribosidic activity in this family of enzymes. The size, thermal stability and activity of URH1p towards the synthetic substrate 5-fluoruridine, a riboside precursor of the antitumoral drug 5-fluorouracil, make the enzyme an attractive tool to be employed in gene-directed enzyme-prodrug activation therapy against solid tumours.


Assuntos
Niacinamida , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Niacinamida/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Relação Estrutura-Atividade , Compostos de Piridínio/metabolismo , Compostos de Piridínio/química , N-Glicosil Hidrolases/metabolismo , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/química , Uridina/metabolismo , Uridina/análogos & derivados , Uridina/química , Especificidade por Substrato , Humanos , Modelos Moleculares
2.
Nature ; 631(8020): 393-401, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776962

RESUMO

AMPylation is a post-translational modification in which AMP is added to the amino acid side chains of proteins1,2. Here we show that, with ATP as the ligand and actin as the host activator, the effector protein LnaB of Legionella pneumophila exhibits AMPylase activity towards the phosphoryl group of phosphoribose on PRR42-Ub that is generated by the SidE family of effectors, and deubiquitinases DupA and DupB in an E1- and E2-independent ubiquitination process3-7. The product of LnaB is further hydrolysed by an ADP-ribosylhydrolase, MavL, to Ub, thereby preventing the accumulation of PRR42-Ub and ADPRR42-Ub and protecting canonical ubiquitination in host cells. LnaB represents a large family of AMPylases that adopt a common structural fold, distinct from those of the previously known AMPylases, and LnaB homologues are found in more than 20 species of bacterial pathogens. Moreover, LnaB also exhibits robust phosphoryl AMPylase activity towards phosphorylated residues and produces unique ADPylation modifications in proteins. During infection, LnaB AMPylates the conserved phosphorylated tyrosine residues in the activation loop of the Src family of kinases8,9, which dampens downstream phosphorylation signalling in the host. Structural studies reveal the actin-dependent activation and catalytic mechanisms of the LnaB family of AMPylases. This study identifies, to our knowledge, an unprecedented molecular regulation mechanism in bacterial pathogenesis and protein phosphorylation.


Assuntos
Monofosfato de Adenosina , Proteínas de Bactérias , Legionella pneumophila , Fosfotirosina , Transdução de Sinais , Humanos , Actinas/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , ADP-Ribosilação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Hidrólise , Legionella pneumophila/enzimologia , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidade , Ligantes , Modelos Moleculares , N-Glicosil Hidrolases/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Tirosina/metabolismo , Tirosina/química , Ubiquitina/metabolismo , Ubiquitinação , Enzimas Desubiquitinantes/metabolismo , Dobramento de Proteína , Fosfotirosina/química , Fosfotirosina/metabolismo
3.
Int J Biol Macromol ; 270(Pt 1): 132289, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735607

RESUMO

S-Adenosyl-l-homocysteine hydrolase (SAHH) is a crucial enzyme that governs S-adenosyl methionine (SAM)-dependent methylation reactions within cells and regulates the intracellular concentration of SAH. Legionella pneumophila, the causative pathogen of Legionnaires' disease, encodes Lpg2021, which is the first identified dimeric SAHH in bacteria and is a promising target for drug development. Here, we report the structure of Lpg2021 in its ligand-free state and in complexes with adenine (ADE), adenosine (ADO), and 3-Deazaneplanocin A (DZNep). X-ray crystallography, isothermal titration calorimetry (ITC), and molecular docking were used to elucidate the binding mechanisms of Lpg2021 to its substrates and inhibitors. Virtual screening was performed to identify potential Lpg2021 inhibitors. This study contributes a novel perspective to the understanding of SAHH evolution and establishes a structural framework for designing specific inhibitors targeting pathogenic Legionella pneumophila SAHH.


Assuntos
Adenosil-Homocisteinase , Legionella pneumophila , Simulação de Acoplamento Molecular , Legionella pneumophila/enzimologia , Especificidade por Substrato , Adenosil-Homocisteinase/metabolismo , Adenosil-Homocisteinase/antagonistas & inibidores , Adenosil-Homocisteinase/química , Cristalografia por Raios X , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/química , Adenina/química , Adenina/metabolismo , Adenina/análogos & derivados , Ligação Proteica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , N-Glicosil Hidrolases
4.
Cell ; 186(17): 3619-3631.e13, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595565

RESUMO

During viral infection, cells can deploy immune strategies that deprive viruses of molecules essential for their replication. Here, we report a family of immune effectors in bacteria that, upon phage infection, degrade cellular adenosine triphosphate (ATP) and deoxyadenosine triphosphate (dATP) by cleaving the N-glycosidic bond between the adenine and sugar moieties. These ATP nucleosidase effectors are widely distributed within multiple bacterial defense systems, including cyclic oligonucleotide-based antiviral signaling systems (CBASS), prokaryotic argonautes, and nucleotide-binding leucine-rich repeat (NLR)-like proteins, and we show that ATP and dATP degradation during infection halts phage propagation. By analyzing homologs of the immune ATP nucleosidase domain, we discover and characterize Detocs, a family of bacterial defense systems with a two-component phosphotransfer-signaling architecture. The immune ATP nucleosidase domain is also encoded within diverse eukaryotic proteins with immune-like architectures, and we show biochemically that eukaryotic homologs preserve the ATP nucleosidase activity. Our findings suggest that ATP and dATP degradation is a cell-autonomous innate immune strategy conserved across the tree of life.


Assuntos
Viroses , Humanos , Células Eucarióticas , Células Procarióticas , Trifosfato de Adenosina , N-Glicosil Hidrolases
5.
Toxins (Basel) ; 15(3)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36977072

RESUMO

Streptavidin-Saporin can be considered a type of 'secondary' targeted toxin. The scientific community has taken advantage of this conjugate in clever and fruitful ways using many kinds of biotinylated targeting agents to send saporin into a cell selected for elimination. Saporin is a ribosome-inactivating protein that causes inhibition of protein synthesis and cell death when delivered inside a cell. Streptavidin-Saporin, mixed with biotinylated molecules to cell surface markers, results in powerful conjugates that are used both in vitro and in vivo for behavior and disease research. Streptavidin-Saporin harnesses the 'Molecular Surgery' capability of saporin, creating a modular arsenal of targeted toxins used in applications ranging from the screening of potential therapeutics to behavioral studies and animal models. The reagent has become a well-published and validated resource in academia and industry. The ease of use and diverse functionality of Streptavidin-Saporin continues to have a significant impact on the life science industry.


Assuntos
Imunotoxinas , Animais , Saporinas , Imunotoxinas/farmacologia , Estreptavidina , Proteínas Inativadoras de Ribossomos Tipo 1 , Morte Celular , Proteínas de Plantas/farmacologia , N-Glicosil Hidrolases
6.
ACS Infect Dis ; 9(4): 966-978, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36920074

RESUMO

Helicobacter pylori is found in the gut lining of more than half of the world's population, causes gastric ulcers, and contributes to stomach cancers. Menaquinone synthesis in H. pylori relies on the rare futalosine pathway, where H. pylori 5'-methylthioadenosine nucleosidase (MTAN) is proposed to play an essential role. Transition state analogues of MTAN, including BuT-DADMe-ImmA (BTDIA) and MeT-DADMe-ImmA (MTDIA), exhibit bacteriostatic action against numerous diverse clinical isolates of H. pylori with minimum inhibitory concentrations (MIC's) of <2 ng/mL. Three H. pylori BTDIA-resistant clones were selected under increasing BTDIA pressure. Whole genome sequencing showed no mutations in MTAN. Instead, resistant clones had mutations in metK, methionine adenosyltransferase (MAT), feoA, a regulator of the iron transport system, and flhF, a flagellar synthesis regulator. The mutation in metK causes expression of a MAT with increased catalytic activity, leading to elevated cellular S-adenosylmethionine. Metabolite analysis and the mutations associated with resistance suggest multiple inputs associated with BTDIA resistance. Human gut microbiome exposed to MTDIA revealed no growth inhibition under aerobic or anaerobic conditions. Transition state analogues of H. pylori MTAN have potential as agents for treating H. pylori infection without disruption of the human gut microbiome or inducing resistance in the MTAN target.


Assuntos
Helicobacter pylori , Humanos , Helicobacter pylori/genética , Purina-Núcleosídeo Fosforilase , N-Glicosil Hidrolases
7.
Anal Biochem ; 666: 115047, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682579

RESUMO

Due to the emergence of multidrug resistant pathogens, it is imperative to identify new targets for antibiotic drug discovery. The S-adenosylhomocysteine (SAH) nucleosidase enzyme is a promising target for antimicrobial drug development due to its critical functions in multiple bacterial processes including recycling of toxic byproducts of S-adenosylmethionine (SAM)-mediated reactions and producing the precursor of the universal quorum sensing signal, autoinducer-2 (AI-2). Riboswitches are structured RNA elements typically used by bacteria to precisely monitor and respond to changes in essential bacterial processes, including metabolism. Natural riboswitches fused to a reporter gene can be exploited to detect changes in metabolism or in physiological signaling. We performed a high-throughput screen (HTS) using an SAH-riboswitch controlled ß-galactosidase reporter gene in Escherichia coli to discover small molecules that inhibit SAH recycling. We demonstrate that the assay strategy using SAH riboswitches to detect the effects of SAH nucleosidase inhibitors can quickly identify compounds that penetrate the barriers of Gram-negative bacterial cells and perturb pathways involving SAH.


Assuntos
Riboswitch , S-Adenosilmetionina/metabolismo , RNA/genética , Bactérias/genética , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo
8.
PLoS One ; 17(10): e0275023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264993

RESUMO

Klebsiella pneumoniae is a bacterial pathogen that is increasingly responsible for hospital-acquired pneumonia and sepsis. Progressive development of antibiotic resistance has led to higher mortality rates and creates a need for novel treatments. Because of the essential role that nucleotides play in many bacterial processes, enzymes involved in purine and pyrimidine metabolism and transport are ideal targets for the development of novel antibiotics. Herein we describe the structure of K. pneumoniae adenosine monophosphate nucleosidase (KpAmn), a purine salvage enzyme unique to bacteria, as determined by cryoelectron microscopy. The data detail a well conserved fold with a hexameric overall structure and clear density for the putative active site residues. Comparison to the crystal structures of homologous prokaryotic proteins confirms the presence of many of the conserved structural features of this protein yet reveals differences in distal loops in the absence of crystal contacts. This first cryo-EM structure of an Amn enzyme provides a basis for future structure-guided drug development and extends the accuracy of structural characterization of this family of proteins beyond this clinically relevant organism.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Microscopia Crioeletrônica , N-Glicosil Hidrolases , Antibacterianos , Purinas , Nucleotídeos , Monofosfato de Adenosina , Pirimidinas , Infecções por Klebsiella/microbiologia
9.
Toxins (Basel) ; 14(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136551

RESUMO

Ribosome-inactivating proteins (RIPs) are a group of proteins with rRNA N-glycosylase activity that catalyze the removal of a specific adenine located in the sarcin-ricin loop of the large ribosomal RNA, which leads to the irreversible inhibition of protein synthesis and, consequently, cell death. The case of elderberry (Sambucus nigra L.) is unique, since more than 20 RIPs and related lectins have been isolated and characterized from the flowers, seeds, fruits, and bark of this plant. However, these kinds of proteins have never been isolated from elderberry leaves. In this work, we have purified RIPs and lectins from the leaves of this shrub, studying their main physicochemical characteristics, sequences, and biological properties. In elderberry leaves, we found one type 2 RIP and two related lectins that are specific for galactose, four type 2 RIPs that fail to agglutinate erythrocytes, and one type 1 RIP. Several of these proteins are homologous to others found elsewhere in the plant. The diversity of RIPs and lectins in the different elderberry tissues, and the different biological activities of these proteins, which have a high degree of homology with each other, constitute an excellent source of proteins that are of great interest in diagnostics, experimental therapy, and agriculture.


Assuntos
Ricina , Sambucus nigra , Sambucus , Adenina , Sequência de Aminoácidos , Galactose , N-Glicosil Hidrolases/genética , Folhas de Planta/metabolismo , Lectinas de Plantas/farmacologia , Proteínas de Plantas/genética , Plantas/metabolismo , RNA Ribossômico , Proteínas Inativadoras de Ribossomos/metabolismo , Proteínas Inativadoras de Ribossomos/farmacologia , Ribossomos/metabolismo , Ricina/metabolismo , Sambucus nigra/genética , Sambucus nigra/metabolismo
10.
Biochemistry ; 61(17): 1883-1893, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35969806

RESUMO

Enzyme-catalyzed hydrolysis is a fundamental chemical transformation involved in many essential metabolic processes. The enzyme 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes the hydrolysis of adenosine-containing metabolites in cysteine and methionine metabolism. Although MTAN enzymes contain highly similar active site architecture and generally follow a dissociative (DN*AN) reaction mechanism, substantial differences in reaction rates and chemical transition state structures have been reported. To understand how subtle changes in sequence and structure give rise to differences in chemistry between homologous enzymes, we have probed the reaction coordinates of two MTAN enzymes using quantum mechanical/molecular mechanical and molecular dynamics simulations combined with experimental methods. We show that the transition state structure and energy are significantly affected by the recruitment and positioning of the catalytic water molecule and that subtle differences in the noncatalytic active site residues alter the environment of the catalytic water, leading to changes in the reaction coordinate and observed reaction rate.


Assuntos
N-Glicosil Hidrolases , Água , Catálise , Desoxiadenosinas , Hidrólise , N-Glicosil Hidrolases/química , Purina-Núcleosídeo Fosforilase , Tionucleosídeos
11.
Toxins (Basel) ; 14(8)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36006228

RESUMO

Ribosome-inactivating proteins (RIPs) are known as RNA N-glycosylases. They depurinate the major rRNA, damaging ribosomes and inhibiting protein synthesis. Here, new single-chain (type-1) RIPs named sodins were isolated from the seeds (five proteins), edible leaves (one protein) and roots (one protein) of Salsola soda L. Sodins are able to release Endo's fragment when incubated with rabbit and yeast ribosomes and inhibit protein synthesis in cell-free systems (IC50 = 4.83-79.31 pM). In addition, sodin 5, the major form isolated from seeds, as well as sodin eL and sodin R, isolated from edible leaves and roots, respectively, display polynucleotide:adenosine glycosylase activity and are cytotoxic towards the Hela and COLO 320 cell lines (IC50 = 0.41-1200 nM), inducing apoptosis. The further characterization of sodin 5 reveals that this enzyme shows a secondary structure similar to other type-1 RIPs and a higher melting temperature (Tm = 76.03 ± 0.30 °C) and is non-glycosylated, as other sodins are. Finally, we proved that sodin 5 possesses antifungal activity against Penicillium digitatum.


Assuntos
Salsola , Sequência de Aminoácidos , Animais , Células HeLa , Humanos , N-Glicosil Hidrolases/química , Proteínas de Plantas/química , Coelhos , Proteínas Inativadoras de Ribossomos/metabolismo , Proteínas Inativadoras de Ribossomos/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 1 , Ribossomos/metabolismo , Salsola/metabolismo
12.
Biochemistry ; 61(17): 1853-1861, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35994320

RESUMO

Trichomonas vaginalis is the causative parasitic protozoan of the disease trichomoniasis, the most prevalent, nonviral sexually transmitted disease in the world. T. vaginalis is a parasite that scavenges nucleosides from the host organism via catalysis by nucleoside hydrolase (NH) enzymes to yield purine and pyrimidine bases. One of the four NH enzymes identified within the genome of T. vaginalis displays unique specificity toward purine nucleosides, adenosine and guanosine, but not inosine, and atypically shares greater sequence similarity to the pyrimidine hydrolases. Bioinformatic analysis of this enzyme, adenosine/guanosine-preferring nucleoside ribohydrolase (AGNH), was incapable of identifying the residues responsible for this uncommon specificity, highlighting the need for structural information. Here, we report the X-ray crystal structures of holo, unliganded AGNH and three additional structures of the enzyme bound to fragment and small-molecule inhibitors. Taken together, these structures facilitated the identification of residue Asp231, which engages in substrate interactions in the absence of those residues that typically support the canonical purine-specific tryptophan-stacking specificity motif. An altered substrate-binding pose is mirrored by repositioning within the protein scaffold of the His80 general acid/base catalyst. The newly defined structure-determined sequence markers allowed the assignment of additional NH orthologs, which are proposed to exhibit the same specificity for adenosine and guanosine alone and further delineate specificity classes for these enzymes.


Assuntos
N-Glicosil Hidrolases , Parasitos , Adenosina/química , Animais , Guanosina , Inosina/metabolismo , N-Glicosil Hidrolases/química , Parasitos/metabolismo , Pirimidinas , Especificidade por Substrato
13.
J Vis Exp ; (185)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35938815

RESUMO

Protozoan parasites infect humans and many warm-blooded animals. Toxoplasma gondii, a major protozoan parasite, is commonly found in HIV-positive patients, organ transplant recipients and pregnant women, resulting in the severe health condition, Toxoplasmosis. Another major protozoan, Neospora caninum, which bears many similarities to Toxoplasma gondii, causes serious diseases in animals, as does Encephalomyelitis and Myositis-Polyradiculitis in dogs and cows, resulting in stillborn calves. All these exhibited similar nucleoside triphosphate hydrolases (NTPase). Neospora caninum has a NcNTPase, while Toxoplasma gondii has a TgNTPase-I. The enzymes are thought to play crucial roles in propagation and survival. In order to establish compounds and/or extracts preventing protozoan infection, we targeted these enzymes for drug discovery. The next step was to establish a novel, highly sensitive, and highly accurate assay by combining a conventional biochemical enzyme assay with a fluorescent assay to determine ADP content. We also validated that the novel assay fulfills the criteria to carry out high-throughput screening (HTS) in the two protozoan enzymes. We performed HTS, identified 19 compounds and six extracts from two synthetic compound libraries and an extract library derived from marine bacteria, respectively. In this study, a detailed explanation has been introduced on how to carry out HTS, including information about the preparation of reagents, devices, robot arm, etc.


Assuntos
Coccidiose , Neospora , Robótica , Toxoplasma , Animais , Anticorpos Antiprotozoários , Bovinos , Coccidiose/parasitologia , Coccidiose/veterinária , Cães , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Hidrolases , N-Glicosil Hidrolases , Nucleosídeos , Polifosfatos , Gravidez
14.
Toxins (Basel) ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35878187

RESUMO

Type I ribosome-inactivating proteins (RIPs) are plant toxins that inhibit protein synthesis by exerting rRNA N-glycosylase activity (EC 3.2.2.22). Due to the lack of a cell-binding domain, type I RIPs are not target cell-specific. However once linked to antibodies, so called immunotoxins, they are promising candidates for targeted anti-cancer therapy. In this study, sapovaccarin-S1 and -S2, two newly identified type I RIP isoforms differing in only one amino acid, were isolated from the seeds of Saponaria vaccaria L. Sapovaccarin-S1 and -S2 were purified using ammonium sulfate precipitation and subsequent cation exchange chromatography. The determined molecular masses of 28,763 Da and 28,793 Da are in the mass range typical for type I RIPs and the identified amino acid sequences are homologous to known type I RIPs such as dianthin 30 and saporin-S6 (79% sequence identity each). Sapovaccarin-S1 and -S2 showed adenine-releasing activity and induced cell death in Huh-7 cells. In comparison to other type I RIPs, sapovaccarin-S1 and -S2 exhibited a higher thermostability as shown by nano-differential scanning calorimetry. These results suggest that sapovaccarin-S1 and -S2 would be optimal candidates for targeted anti-cancer therapy.


Assuntos
Saponaria , Vaccaria , N-Glicosil Hidrolases/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Isoformas de Proteínas , Proteínas Inativadoras de Ribossomos/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/química , Ribossomos/metabolismo , Saponaria/química , Saponaria/metabolismo , Sementes/química
15.
Curr Protein Pept Sci ; 23(4): 211-225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35598240

RESUMO

S-adenosylhomocysteine nucleosidase (MTAN) is a protein that plays a crucial role in several pathways of bacteria that are essential for its survival and pathogenesis. In addition to the role of MTAN in methyl-transfer reactions, methionine biosynthesis, and polyamine synthesis, MTAN is also involved in bacterial quorum sensing (QS). In QS, chemical signaling autoinducer (AI) secreted by bacteria assists cell to cell communication and is regulated in a cell density-dependent manner. They play a significant role in the formation of bacterial biofilm. MTAN plays a major role in the synthesis of these autoinducers. Signaling molecules secreted by bacteria, i.e., AI-1 are recognized as acylated homoserine lactones (AHL) that function as signaling molecules within bacteria. QS enables bacteria to establish physical interactions leading to biofilm formation. The formation of biofilm is a primary reason for the development of multidrug-resistant properties in pathogenic bacteria like Enterococcus faecalis (E. faecalis). In this regard, inhibition of E. faecalis MTAN (EfMTAN) will block the QS and alter the bacterial biofilm formation. In addition to this, it will also block methionine biosynthesis and many other critical metabolic processes. It should also be noted that inhibition of EfMTAN will not have any effect on human beings as this enzyme is not present in humans. This review provides a comprehensive overview of the structural-functional relationship of MTAN. We have also highlighted the current status, enigmas that warrant further studies, and the prospects for identifying potential inhibitors of EfMTAN for the treatment of E. faecalis infections. In addition to this, we have also reported structural studies of EfMTAN using homology modeling and highlighted the putative binding sites of the protein.


Assuntos
N-Glicosil Hidrolases , Percepção de Quorum , Bactérias/metabolismo , Biofilmes , Homocisteína , Humanos , Metionina , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/metabolismo
16.
Metallomics ; 14(6)2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35485745

RESUMO

Metalloenzymes catalyze a diverse set of challenging chemical reactions that are essential for life. These metalloenzymes rely on a wide range of metallocofactors, from single metal ions to complicated metallic clusters. Incorporation of metal ions and metallocofactors into apo-proteins often requires the assistance of proteins known as metallochaperones. Nucleoside triphosphate hydrolases (NTPases) are one important class of metallochaperones and are found widely distributed throughout the domains of life. These proteins use the binding and hydrolysis of nucleoside triphosphates, either adenosine triphosphate or guanosine triphosphate, to carry out highly specific and regulated roles in the process of metalloenzyme maturation. Here, we review recent literature on NTPase metallochaperones and describe the current mechanistic proposals and available structural data. By using representative examples from each type of NTPase, we also illustrate the challenges in studying these complicated systems. We highlight open questions in the field and suggest future directions. This minireview is part of a special collection of articles in memory of Professor Deborah Zamble, a leader in the field of nickel biochemistry.


Assuntos
Metalochaperonas , Metaloproteínas , Trifosfato de Adenosina/metabolismo , Hidrolases , Metalochaperonas/metabolismo , Metais/metabolismo , N-Glicosil Hidrolases , Nucleosídeo-Trifosfatase , Nucleosídeos , Polifosfatos
17.
Toxins (Basel) ; 14(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35324681

RESUMO

Saporin is a ribosome-inactivating protein that can cause inhibition of protein synthesis and causes cell death when delivered inside a cell. Development of commercial Saporin results in a technology termed 'molecular surgery', with Saporin as the scalpel. Its low toxicity (it has no efficient method of cell entry) and sturdy structure make Saporin a safe and simple molecule for many purposes. The most popular applications use experimental molecules that deliver Saporin via an add-on targeting molecule. These add-ons come in several forms: peptides, protein ligands, antibodies, even DNA fragments that mimic cell-binding ligands. Cells that do not express the targeted cell surface marker will not be affected. This review will highlight some newer efforts and discuss significant and unexpected impacts on science that molecular surgery has yielded over the last almost four decades. There are remarkable changes in fields such as the Neurosciences with models for Alzheimer's Disease and epilepsy, and game-changing effects in the study of pain and itch. Many other uses are also discussed to record the wide-reaching impact of Saporin in research and drug development.


Assuntos
Disciplinas das Ciências Biológicas , Imunotoxinas , Indicadores e Reagentes , Ligantes , N-Glicosil Hidrolases , Proteínas de Plantas/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas
18.
J Pharm Biomed Anal ; 211: 114614, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35123329

RESUMO

In Leishmania donovani, the causative protozoan of visceral leishmaniasis, nucleoside hydrolase enzyme (NH) is fundamental for the biosynthesis of its DNA and RNA. Therefore, LdNH is considered a potential target for the development of new leishmaniasis chemotherapy. Moringa oleifera Lamarck is a medicinal plant native to northeastern India with numerous pharmacological properties, including antileishmanial activity. Thus, this study aimed to explore the inhibitory activity of different extracts from M. oleifera leaves and flowers on LdNH. Using LdNH covalently immobilized on magnetic particles (LdNH-MPs), a novel activity assay was developed based on the direct quantification of the formed product by HPLC-DAD. This study screened 12 extracts from leaves and flowers of M. oleifera using different extraction methods. The hydroethanolic (70% ethanol) extract from flowers, obtained by infusion (FIEH) or ultrasound-assisted extraction (FUEH), exhibited respectively IC50 values of 26.2 ± 4.63 µg/mL and 4.96 ± 0.52 µg/mL. The most promising extract (FUEH) was investigated by high-resolution LdNH inhibition profiling, which showed different regions of inhibition in the biochromatogram. A ligand fishing assay was attempted to pinpoint the bioactive compounds. Experimental conditions employed in the elution step of the ligand fishing assay did not result in ligands isolation. However, the analyses of the crude extract solution and the supernatants after the incubation with the active and inactive LdNH-MPs indicated missing peaks referring to compounds selectively retained in the active LdNH-MPs incubation. The missing peaks eluted in the same region that exhibits inhibition in the high-resolution LdNH inhibition profiling. The ligands were identified by UHPLC-MS/MS as palatinose, adenosine, 3-p-coumaroylquinic acid, 4-p-coumaroylquinic acid, hyperoside, quercetin-3-O-malonyl glycoside, and kaempferol-3-O-galactoside.


Assuntos
Moringa oleifera , Ligantes , N-Glicosil Hidrolases , Extratos Vegetais/análise , Folhas de Planta/química , Espectrometria de Massas em Tandem
19.
Biochem J ; 479(4): 463-477, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35175282

RESUMO

ADP-ribosylation has primarily been known as post-translational modification of proteins. As signalling strategy conserved in all domains of life, it modulates substrate activity, localisation, stability or interactions, thereby regulating a variety of cellular processes and microbial pathogenicity. Yet over the last years, there is increasing evidence of non-canonical forms of ADP-ribosylation that are catalysed by certain members of the ADP-ribosyltransferase family and go beyond traditional protein ADP-ribosylation signalling. New macromolecular targets such as nucleic acids and new ADP-ribose derivatives have been established, notably extending the repertoire of ADP-ribosylation signalling. Based on the physiological relevance known so far, non-canonical ADP-ribosylation deserves its recognition next to the traditional protein ADP-ribosylation modification and which we therefore review in the following.


Assuntos
ADP-Ribosilação/fisiologia , ADP Ribose Transferases/química , ADP Ribose Transferases/classificação , ADP Ribose Transferases/fisiologia , Difosfato de Adenosina/metabolismo , Guanosina/metabolismo , N-Glicosil Hidrolases/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , Sequências Reguladoras de Ácido Ribonucleico , Transdução de Sinais , Relação Estrutura-Atividade , Timidina/metabolismo , Ubiquitina/metabolismo
20.
Mol Cancer ; 21(1): 16, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031058

RESUMO

BACKGROUND: Gliomas are the most common malignant primary brain tumours with a highly immunosuppressive tumour microenvironment (TME) and poor prognosis. Circular RNAs (circRNA), a newly found type of endogenous noncoding RNA, characterized by high stability, abundance, conservation, have been shown to play an important role in the pathophysiological processes and TME remodelling of various tumours. METHODS: CircRNA sequencing analysis was performed to explore circRNA expression profiles in normal and glioma tissues. The biological function of a novel circRNA, namely, circNEIL3, in glioma development was confirmed both in vitro and in vivo. Mechanistically, RNA pull-down, mass spectrum, RNA immunoprecipitation (RIP), luciferase reporter, and co-immunoprecipitation assays were conducted. RESULTS: We identified circNEIL3, which could be cyclized by EWS RNA-binding protein 1(EWSR1), to be upregulated in glioma tissues and to correlate positively with glioma malignant progression. Functionally, we confirmed that circNEIL3 promotes tumorigenesis and carcinogenic progression of glioma in vitro and in vivo. Mechanistically, circNEIL3 stabilizes IGF2BP3 (insulin-like growth factor 2 mRNA binding protein 3) protein, a known oncogenic protein, by preventing HECTD4-mediated ubiquitination. Moreover, circNEIL3 overexpression glioma cells drives macrophage infiltration into the tumour microenvironment (TME). Finally, circNEIL3 is packaged into exosomes by hnRNPA2B1 and transmitted to infiltrated tumour associated macrophages (TAMs), enabling them to acquire immunosuppressive properties by stabilizing IGF2BP3 and in turn promoting glioma progression. CONCLUSIONS: This work reveals that circNEIL3 plays a nonnegligible multifaceted role in promoting gliomagenesis, malignant progression and macrophage tumour-promoting phenotypes polarization, highlighting that circNEIL3 is a potential prognostic biomarker and therapeutic target in glioma.


Assuntos
Exossomos/metabolismo , Glioma/etiologia , Glioma/metabolismo , Macrófagos/metabolismo , N-Glicosil Hidrolases/genética , RNA Circular/genética , Proteína EWS de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Xenoenxertos , Humanos , Imuno-Histoquímica , Imunomodulação , Macrófagos/imunologia , Masculino , Camundongos , Modelos Biológicos , N-Glicosil Hidrolases/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteína EWS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Relação Estrutura-Atividade , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA