Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Anal Toxicol ; 44(2): 200-205, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-31384953

RESUMO

Amphetamines, frequently used recreational drugs with high risk of toxicity, are commonly included in urine drug screens. This screening is based on enzyme immunoassay, which is a quick and easy-to-perform technique, but may lack specificity resulting from cross-reactivity with other compounds, causing false positive results. We present two cases of presumed false positive MULTIGENT® amphetamine/methamphetamine and MULTIGENT® ecstasy (Abbott®) immunoassays with the beta-blocker metoprolol. Both metoprolol-poisoned patients presented positive urine screening despite no history of drug abuse. No confirmation for amphetamine molecular structures was found with gas chromatography-mass spectrometry. The cross-reactivity was further investigated by doping urine samples with metoprolol and its two major phase-I metabolites. Metoprolol showed positive results for both amphetamine and MDMA tests at low concentrations (200 and 150 µg/mL, respectively). Metoprolol metabolites cross-reacted with the amphetamines immunoassay only, but at higher concentrations (i.e., 2000 µg/mL for α-hydroxymetoprolol and 750 µg/mL for O-demethylmetoprolol). In conclusion, false positive results in amphetamines and MDMA immunoassays are possible in the presence of metoprolol. Toxicologists should be aware of frequent analytical interferences with immunoassays and a detailed medication history should be taken into consideration for interpretation. In vitro investigation of suspected cross-reactivity should include not only the parent drug but also its related metabolites.


Assuntos
Anfetamina/metabolismo , Técnicas Imunoenzimáticas/métodos , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Detecção do Abuso de Substâncias/métodos , Adulto , Anfetaminas , Reações Cruzadas , Feminino , Toxicologia Forense , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Imunoensaio , Masculino , Metanfetamina , Metoprolol/análogos & derivados , Metoprolol/metabolismo , Pessoa de Meia-Idade
2.
J Proteome Res ; 15(2): 619-27, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26705142

RESUMO

The illicit drug 3,4-methylenedioxymethamphetamine (MDMA) has profound physiological cerebral, cardiac, and hepatic effects that are reflected in the blood. Screening of blood for MDMA and other narcotics are routinely performed in forensics analysis using ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-HR-TOFMS). The aim of this study was to investigate whether such UPLC-HR-TOFMS data collected over a two-year period could be used for untargeted metabolomics to determine MDMA metabolites as well as endogenous changes related to drug response and toxicology. Whole blood samples from living Danish drivers' positive for MDMA in different concentrations were compared to negative control samples using various statistical methods. The untargeted identification of known MDMA metabolites was used to validate the methods. The results further revealed changes of several acylcarnitines, adenosine monophosphate, adenosine, inosine, thiomorpholine 3-carboxylate, tryptophan, S-adenosyl-l-homocysteine (SAH), and lysophospatidylcholine (lysoPC) species in response to MDMA. These endogenous metabolites could be implicated in an increased energy demand and mechanisms related to the serotonergic syndrome as well as drug induced neurotoxicity. The findings showed that it was possible to extract meaningful results from retrospective UPLC-HR-TOFMS screening data for metabolic profiling in relation to drug metabolism, endogenous physiological effects, and toxicology.


Assuntos
Toxicologia Forense/estatística & dados numéricos , Metabolômica/métodos , N-Metil-3,4-Metilenodioxianfetamina/sangue , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Cromatografia Líquida/métodos , Humanos , Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Detecção do Abuso de Substâncias/métodos
3.
J Anal Toxicol ; 38(5): 249-55, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682111

RESUMO

Users of the illicit drug, 3,4-methylenedioxymethamphetamine (MDMA), show signs of neurotoxicity. However, the precise mechanism of neurotoxicity caused by use of MDMA has not yet been elucidated. Synthetic glutathione (GSH) conjugates of MDMA are transported into the brain by the GSH transporter and subsequently produce neurotoxicity. The objective of this research is to show direct evidence of the formation of GSH adducts of MDMA in human hepatocytes. High-performance liquid chromatography coupled with tandem mass spectrometry was utilized to examine in vitro incubations of MDMA with cryopreserved human hepatocytes. The use of hydrophilic liquid chromatography in combination with linear ion trap mass spectrometry permitted the identification of two possible GSH metabolites. Enhanced product ion scans of m/z = 499 and 487 amu of extracts from hepatocytes treated with 1.0 mM MDMA show a distinct fragmentation pattern (m/z 194.2, 163, 135, 105), suggesting the formation of MDMA-GSH conjugate, MDMA-SG and 3,4-dihydroxymethamphetamine-SG. The formation of an MDMA-GSH conjugate was further supported by the apparent lack of the same fragmentation pattern from hepatocyte samples without MDMA treatment. The results generated from this study yield valuable qualitative and quantitative information about the neurotoxic thioether metabolites formed from MDMA in humans.


Assuntos
Hepatócitos/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Glutationa/metabolismo , Humanos , Espectrometria de Massas
4.
Anal Chim Acta ; 822: 37-50, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24725746

RESUMO

Methylenedioxy designer drugs of abuse such as 3,4-methylenedioxymethamphetamine (MDMA) can be selectively toxic to serotonergic neurons and glutathione (GSH) adducts have been implicated in its neurotoxicity. The catecholic demethylenyl metabolites of MDMA, 3,4-dihydroxymethamphetamine and 3,4-dihydroxyamphetamine, are metabolically oxidized to the corresponding ortho-quinones, which are highly reactive intermediates. These intermediates can then be conjugated with GSH preventing cellular damage. Furthermore, glutathionyl transferase (GST) activity was described to be irreversibly inhibited by the catechols dopamine, α-methyldopa and their GSH conjugates. Therefore, the aims of the present work were the detection and characterization of GSH conjugates of ten methylenedioxy drugs of abuse and their phase I metabolites as well as to assess their inhibition potency on GST activity. The substrates were incubated using human placental GST with or without preincubation by cytochrome P450 enzymes preparations. GST inhibition was tested using chlorodinitrobenzene GSH conjugation as marker reaction. GSH conjugates were analyzed and characterized using LC-high-resolution-MS/MS. For confirmation of postulated fragmentation patterns, formation of GSH conjugates of selected deuterated analogs (deuterated analogue approach, DAA) of the investigated drugs was explored. For the methylenedioxy amphetamines the following steps could be identified: conjugation of the parent compounds at position 2, 5, 6, of the demethylenyl metabolites at position 2 and 5, and of the further deaminated demethylenyl metabolites at position 2. For the ß-keto-phenylalkylamine and pyrrolidinophenone, conjugation of the demethylenyl metabolites and of the deaminated demethylenyl metabolites at position 2 could be identified. The DAA allowed the differentiation of the 2 and 5/6 isomers by confirmation of the postulated mass spectral fragments. Finally, the tested drugs and phase I metabolites showed no inhibition potency on GST activity.


Assuntos
Glutationa Transferase/metabolismo , Glutationa/química , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/metabolismo , Desoxiepinefrina/análogos & derivados , Desoxiepinefrina/análise , Desoxiepinefrina/química , Dinitroclorobenzeno/química , Ensaios Enzimáticos , Feminino , Glutationa Transferase/antagonistas & inibidores , Humanos , Isomerismo , N-Metil-3,4-Metilenodioxianfetamina/química , Placenta/enzimologia , Gravidez , Espectrofotometria Ultravioleta , Espectrometria de Massas em Tandem
5.
Toxicol Sci ; 139(2): 407-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24595818

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a potentially neurotoxic recreational drug of abuse. Though the mechanisms involved are still not completely understood, formation of reactive metabolites and mitochondrial dysfunction contribute to MDMA-related neurotoxicity. Neuronal mitochondrial trafficking, and their targeting to synapses, is essential for proper neuronal function and survival, rendering neurons particularly vulnerable to mitochondrial dysfunction. Indeed, MDMA-associated disruption of Ca(2+) homeostasis and ATP depletion have been described in neurons, thus suggesting possible MDMA interference on mitochondrial dynamics. In this study, we performed real-time functional experiments of mitochondrial trafficking to explore the role of in situ mitochondrial dysfunction in MDMA's neurotoxic actions. We show that the mixture of MDMA and six of its major in vivo metabolites, each compound at 10µM, impaired mitochondrial trafficking and increased the fragmentation of axonal mitochondria in cultured hippocampal neurons. Furthermore, the overexpression of mitofusin 2 (Mfn2) or dynamin-related protein 1 (Drp1) K38A constructs almost completely rescued the trafficking deficits caused by this mixture. Finally, in hippocampal neurons overexpressing a Mfn2 mutant, Mfn2 R94Q, with impaired fusion and transport properties, it was confirmed that a dysregulation of mitochondrial fission/fusion events greatly contributed to the reported trafficking phenotype. In conclusion, our study demonstrated, for the first time, that the mixture of MDMA and its metabolites, at concentrations relevant to the in vivo scenario, impaired mitochondrial trafficking and increased mitochondrial fragmentation in hippocampal neurons, thus providing a new insight in the context of "ecstasy"-induced neuronal injury.


Assuntos
Transporte Axonal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Neurônios/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , GTP Fosfo-Hidrolases/metabolismo , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Ratos
6.
J Appl Toxicol ; 34(6): 618-27, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23670916

RESUMO

Hepatic injury after 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) intoxications is highly unpredictable and does not seem to correlate with either dosage or frequency of use. The mechanisms involved include the drug metabolic bioactivation and the hyperthermic state of the liver triggered by its thermogenic action and exacerbated by the environmental circumstances of abuse at hot and crowded venues. We became interested in understanding the interaction between ecstasy and its metabolites generated in vivo as users are always exposed to mixtures of parent drug and metabolites. With this purpose, Hep G2 cells were incubated with MDMA and its main human metabolites methylenedioxyamphetamine (MDA), α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA), individually and in mixture (drugs combined in proportion to their individual EC01 ), at normal (37 °C) and hyperthermic (40.5 °C) conditions. After 48 h, viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Extensive concentration-response analysis was performed with single drugs and the parameters of the individual non-linear logit fits were used to predict joint effects using the well-founded models of concentration addition (CA) and independent action (IA). Experimental testing revealed that mixture effects on cell viability conformed to CA, for both temperature settings. Additionally, substantial combination effects were attained even when each substance was present at concentrations that individually produced unnoticeable effects. Hyperthermic incubations dramatically increased the toxicity of the tested drug and metabolites, both individually and combined. These outcomes suggest that MDMA metabolism has hazard implications to liver cells even when metabolites are found in low concentrations, as they contribute additively to the overall toxic effect of MDMA.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Hepatócitos/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , 3,4-Metilenodioxianfetamina/metabolismo , 3,4-Metilenodioxianfetamina/toxicidade , Biotransformação , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Desoxiepinefrina/análogos & derivados , Desoxiepinefrina/metabolismo , Desoxiepinefrina/toxicidade , Relação Dose-Resposta a Droga , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Dinâmica não Linear , Medição de Risco , Temperatura , Fatores de Tempo
7.
Arch Toxicol ; 88(2): 455-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24101030

RESUMO

The neurotoxicity of "ecstasy" (3,4-methylenedioxymethamphetamine, MDMA) is thought to involve hepatic metabolism, though its real contribution is not completely understood. Most in vitro neurotoxicity studies concern isolated exposures of MDMA or its metabolites, at high concentrations, not considering their mixture, as expected in vivo. Therefore, our postulate is that combined deleterious effects of MDMA and its metabolites, at low micromolar concentrations that may be attained into the brain, may elicit neurotoxicity. Using human SH-SY5Y differentiated cells as dopaminergic neuronal model, we studied the neurotoxicity of MDMA and its MDMA metabolites α-methyldopamine and N-methyl-α-methyldopamine and their correspondent glutathione and N-acetylcysteine monoconjugates, under isolated exposure and as a mixture, at normothermic or hyperthermic conditions. The results showed that the mixture of MDMA and its metabolites was toxic to SH-SY5Y differentiated cells, an effect potentiated by hyperthermia and prevented by N-acetylcysteine. As a mixture, MDMA and its metabolites presented a different toxicity profile, compared to each compound alone, even at equimolar concentrations. Caspase 3 activation, increased reactive oxygen species production, and intracellular Ca(2+) raises were implicated in the toxic effect. The mixture increased intracellular glutathione levels by increasing its de novo synthesis. In conclusion, this study demonstrated, for the first time, that the mixture of MDMA and its metabolites, at low micromolar concentrations, which represents a more realistic approach of the in vivo scenario, elicited toxicity to human SH-SY5Y differentiated cells, thus constituting a new insight into the context of MDMA-related neurotoxicity.


Assuntos
Diferenciação Celular/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Neurônios/efeitos dos fármacos , Acetilcisteína/farmacologia , Cálcio/metabolismo , Caspase 3/metabolismo , Linhagem Celular/efeitos dos fármacos , Desoxiepinefrina/análogos & derivados , Desoxiepinefrina/toxicidade , Dopamina/metabolismo , Dopamina/farmacocinética , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Espécies Reativas de Oxigênio/metabolismo
8.
Arch Toxicol ; 88(2): 515-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24177245

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a recreational hallucinogenic drug of abuse known to elicit neurotoxic properties. Hepatic formation of neurotoxic metabolites is thought to play a major role in MDMA-related neurotoxicity, though the mechanisms involved are still unclear. Here, we studied the neurotoxicity mechanisms and stability of MDMA and 6 of its major human metabolites, namely α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) and their correspondent glutathione (GSH) and N-acetyl-cysteine (NAC) conjugates, under normothermic (37 °C) or hyperthermic conditions (40 °C), using cultured SH-SY5Y differentiated cells. We showed that MDMA metabolites exhibited toxicity to SH-SY5Y differentiated cells, being the GSH and NAC conjugates more toxic than their catecholic precursors and MDMA. Furthermore, whereas the toxicity of the catechol metabolites was potentiated by hyperthermia, NAC-conjugated metabolites revealed higher toxicity under normothermia and GSH-conjugated metabolites-induced toxicity was temperature-independent. Moreover, a time-dependent decrease in extracellular concentration of MDMA metabolites was observed, which was potentiated by hyperthermia. The antioxidant NAC significantly protected against the neurotoxic effects of MDMA metabolites. MDMA metabolites increased intracellular glutathione levels, though depletion in thiol content was observed in MDMA-exposed cells. Finally, the neurotoxic effects induced by the MDMA metabolite N-Me-α-MeDA involved caspase 3 activation. In conclusion, this study evaluated the stability of MDMA metabolites in vitro, and demonstrated that the catechol MDMA metabolites and their GSH and NAC conjugates, rather than MDMA itself, exhibited neurotoxic actions in SH-SY5Y differentiated cells, which were differently affected by hyperthermia, thus highlighting a major role for reactive metabolites and hyperthermia in MDMA's neurotoxicity.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Febre/induzido quimicamente , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Neurônios/efeitos dos fármacos , 3,4-Metilenodioxianfetamina/metabolismo , 3,4-Metilenodioxianfetamina/toxicidade , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular/efeitos dos fármacos , Desoxiepinefrina/análogos & derivados , Desoxiepinefrina/metabolismo , Desoxiepinefrina/toxicidade , Febre/metabolismo , Glutationa/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/farmacocinética , Neurônios/metabolismo , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Temperatura
9.
Toxicol Sci ; 138(1): 130-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24299738

RESUMO

3,4-(±)-Methylenedioxymethamphetamine (MDMA) and 3,4-(±)-methylenedioxyamphetamine (MDA), a primary metabolite of MDMA, are phenylethylamine derivatives that cause serotonergic neurotoxicity. Although several phenylethylamine derivatives activate microglia, little is known about the effects of MDMA on glial cells, and evidence of MDMA-induced microglial activation remains ambiguous. We initially determined microglial occupancy status of the parietal cortex in rats at various time points following a single neurotoxic dose of MDMA (20mg/kg, SC). A biphasic microglial response to MDMA was observed, with peak microglial occupancy occurring 12- and 72-h post-MDMA administration. Because direct injection of MDMA into the brain does not produce neurotoxicity, the glial response to MDMA metabolites was subsequently examined in vivo and in vitro. Rats were treated with MDA (20mg/kg, SC) followed by ex vivo biopsy culture to determine the activation of quiescent microglia. A reactive microglial response was observed 72 h after MDA administration that subsided by 7 days. In contrast, intracerebroventricular (ICV) administration of MDA failed to produce a microglial response. However, thioether metabolites of MDA derived from α-methyldopamine (α-MeDA) elicited a robust microglial response following icv injection. We subsequently determined the direct effects of various MDMA metabolites on primary cultures of E18 hippocampal mixed glial and neuronal cells. 5-(Glutathion-S-yl)-α-MeDA, 2,5-bis-(glutathion-S-yl)-α-MeDA, and 5-(N-acetylcystein-S-yl)-α-MeDA all stimulated the proliferation of glial fibrillary acidic protein-positive astrocytes at a dose of 10 µM. The findings indicate that glial cells are activated in response to MDMA/MDA and support a role for thioether metabolites of α-MeDA in the neurotoxicity.


Assuntos
3,4-Metilenodioxianfetamina/toxicidade , Microglia/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Síndromes Neurotóxicas/metabolismo , 3,4-Metilenodioxianfetamina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Imuno-Histoquímica , Injeções Intraventriculares , Masculino , Microglia/metabolismo , Microglia/patologia , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Ratos , Ratos Sprague-Dawley , Sulfetos
10.
Arch Toxicol ; 87(1): 111-22, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23001138

RESUMO

The recreational and illicit use of amphetaminic designer compounds, specially 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy), is of concern worldwide. Such psychostimulating drugs are frequently present as complex mixtures in 'rave' pills, making concomitant polysubstance use a common trend. However, the understanding of possible combination effects with these substances is still scarce. The present study was aimed at predicting the cytotoxic effects of mixtures of four amphetaminic derivatives: MDMA, methamphetamine, 4-methylthioamphetamine and d-amphetamine in a human hepatoma cell line. Concentration-response curves for all single-mixture components were recorded by the MTT assay. Data obtained for individual agents were then used to compute the additivity expectations for mixtures of definite composition, using the pharmacological models of concentration addition (CA) and independent action. By comparing the predicted calculations with the experimentally observed effects, we concluded that CA accurately predicts the combination of amphetamines, which act together to generate additive effects over a large range of concentrations. Notably, we observed substantial mixture effects even when each drug was present at low concentrations, which individually produced unnoticeable effects. Nonetheless, for all tested mixtures, a small deviation from additivity was observed towards higher concentrations, particularly at high effect levels. A possible metabolic interaction, which could explain such deviation, was investigated, and it was observed that at higher mixture concentrations increased MDMA metabolism could be contributing to divergences from additivity. In conclusion, the present work clearly demonstrates that potentially harmful interactions among amphetaminic drugs are expected when these drugs are taken concomitantly.


Assuntos
Anfetaminas/farmacologia , Dextroanfetamina/farmacologia , Interações Medicamentosas , Drogas Ilícitas/farmacologia , Metanfetamina/farmacologia , Modelos Teóricos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Análise de Regressão
11.
Clin Toxicol (Phila) ; 50(10): 1165-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23163617

RESUMO

UNLABELLED: This case report is considered exempt from University of California-San Diego Investigational Review Board. INTRODUCTION: There is a limited published experience detailing detection and toxicity of multiple novel psychoactive substances. We report a case of a patient with prolonged psychosis who had JWH-072, cannabicyclohexanol, 3',4'-methylenedioxy-α-pyrrolidinopropiophenone (MDPPP) and methylenedioxyamphetamine (MDA) identified in multiple biological samples. CASE DETAILS: An 18-year-old man presented to the emergency department (ED) with acute onset psychosis after allegedly smoking "spice." Due to agitation and psychosis refractory to multiple medications, a lumbar puncture was performed and he was admitted. All blood, urine, and CSF (cerebral spinal fluid) testing was normal. He remained psychotic for almost 1 week. MDPPP, JWH-072 and MDA were detected in initial blood, urine, and CSF samples. Cannabicyclohexanol was detected only in his serum. DISCUSSION AND CONCLUSION: JWH-072 is a cannabinoid-2 receptor (CB-2) agonist which has not been reported previously in the literature. Its clinical effects are unknown. Cannabicyclohexanol is a known component of "spice" products and has been associated with agitation and psychosis. MDPPP and MDA are designer phenylethylamines likely to cause agitation and sympathomimetic symptoms. Simultaneous detection of novel psychoactive substances in multiple biological fluids has not been previously reported. This case suggests that the interaction of these particular substances may be associated with prolonged psychosis.


Assuntos
Canabinoides/metabolismo , Drogas Desenhadas/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Piperidinas/metabolismo , Psicoses Induzidas por Substâncias/metabolismo , Detecção do Abuso de Substâncias/métodos , Adolescente , Canabinoides/intoxicação , Cicloexanóis/metabolismo , Cicloexanóis/intoxicação , Drogas Desenhadas/intoxicação , Interações Medicamentosas , Quimioterapia Combinada , Humanos , Masculino , N-Metil-3,4-Metilenodioxianfetamina/intoxicação , Fenóis/metabolismo , Fenóis/intoxicação , Piperidinas/intoxicação , Psicoses Induzidas por Substâncias/etiologia
12.
Toxicology ; 289(2-3): 175-84, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21871945

RESUMO

MDMA (3,4-methylenedioxymethamphetamine) metabolism is a major cause of MDMA-mediated hepatotoxicity. In this study the effects of MDMA and its metabolites on the glutathione system were evaluated. Glutathione (GSH/GSSG) levels and gene expression of glutamate cysteine ligase catalytic subunit (GCLC), glutathione-S-transferase (GST) and pregnane X receptor (PXR) were compared in the immortalized human liver epithelial cell line THLE-Neo lacking phase I metabolism and primary rat hepatocytes expressing both phase I and II metabolism. Furthermore, we evaluated the potential protective effects of two antioxidants, N-acetyl-cysteine (NAC) and sulforaphane (SFN) in these cell systems. In THLE-Neo cells, the MDMA metabolite 3,4-dihydroxymetamphetamine (HHMA) significantly decreased cell viability and depleted GSH levels, resulting in an increased expression of GCLC and GST up to 3.4- and 2.2-fold, respectively. In primary rat hepatocytes, cell viability or GSH levels were not significantly affected upon MDMA exposure. GCLC expression levels where not significantly altered either, although GST expression was increased 2.3-fold. NAC counteracted MDMA-induced cytotoxicity and restored GSH levels. Phase II enzyme expression was also reverted. Conversely, SFN increased MDMA-induced cytotoxicity and GSH depletion, while GCLC and GST expression were significantly induced. In addition, PXR expression decreased after HHMA and MDMA exposure, while co-exposure to SFN induced it up to 3.6- and 3.9-fold compared to vehicle-control in the THLE-Neo cells and rat hepatocytes, respectively. Taken together, these data indicate that HHMA is a major factor in the MDMA-mediated hepatotoxicity through interaction with the glutathione system. The results of our study show that for MDMA intoxication the treatment with an antioxidant such as NAC may counteract the potentially hepatotoxicity. However, SFN supplementation should be considered with care because of the indications of possible drug-drug interactions.


Assuntos
Antioxidantes/farmacologia , Desoxiepinefrina/análogos & derivados , Glutationa/biossíntese , Hepatócitos/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Substâncias Protetoras/farmacologia , Animais , Antioxidantes/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Desoxiepinefrina/metabolismo , Desoxiepinefrina/toxicidade , Interações Medicamentosas/fisiologia , Glutationa/metabolismo , Hepatócitos/metabolismo , Humanos , Masculino , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Substâncias Protetoras/metabolismo , Ratos , Ratos Wistar
13.
Neuropharmacology ; 61(1-2): 202-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21497613

RESUMO

The popular synthetic drug of abuse 3,4-methylenedioxymethampetamine (MDMA) and its metabolite 3,4-methylenedioxyamphetamine (MDA) act mainly on the serotonergic system, though they also increase the amount of extracellular dopamine (DA) in the brain, presumably via reversal of the membrane dopamine transporter (DAT). As the involvement of exocytotic DA release is debated, we investigated if these drugs alter the intracellular calcium concentration ([Ca(2+)](i)) and subsequent DA exocytosis in single PC12 cells using respectively Fura-2 imaging and amperometry. MDMA and MDA did not change basal [Ca(2+)](i) or exocytosis, but inhibited depolarization-evoked increases in [Ca(2+)](i) and exocytosis following 15 min exposure to high concentrations of drugs (1 mM). Surprisingly, MDA was more potent in inhibiting exocytosis than MDMA and already inhibited exocytosis at concentrations that did not inhibit depolarization-evoked Ca(2+) influx (10-100 µM). Without 15 min pre-exposure, both drugs failed to inhibit depolarization-evoked Ca(2+) influx. These results indicate that at high concentrations both MDMA and MDA inhibit exocytosis via indirect inhibition of Ca(2+) influx, whereas at lower concentrations MDA may also reduce vesicle cycling. Our data suggest that the DAT-independent increase in extracellular DA in vivo is not due to direct stimulation of exocytosis, but rather to effects of these drugs on other neurotransmitter systems that innervate the dopaminergic system.


Assuntos
3,4-Metilenodioxianfetamina/administração & dosagem , Cálcio/antagonistas & inibidores , Cálcio/metabolismo , Dopamina/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Vesículas Sinápticas/metabolismo , 3,4-Metilenodioxianfetamina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Células PC12 , Ratos , Vesículas Sinápticas/efeitos dos fármacos
14.
Eur J Pharmacol ; 643(2-3): 162-9, 2010 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-20599925

RESUMO

The initial objectives of this study were to evaluate the extent of 3, 4-methylenedioxymethamphetamine (MDMA) induced loss of cell viability (cytotoxicity), induction of reactive oxygen species formation and damage to sub-cellular organelles (e.g. mitochondria/lysosomes) in freshly isolated rat hepatocytes under normothermic conditions (37 degrees C) and to compare the results with the effects obtained under hyperthermic conditions (41 degrees C). MDMA induced cytotoxicity, reactive oxygen species formation, mitochondrial membrane potential decline and lysosomal membrane leakiness in isolated rat hepatocytes at 37 degrees C. A rise in incubation temperature from 37 degrees C to 41 degrees C had an additive/synergic effect on the oxidative stress markers. We observed variations in mitochondrial membrane potential and lysosomal membrane stability that are significantly (P<0.05) higher than those under normothermic conditions. Antioxidants, reactive oxygen species scavengers, lysosomal inactivators, mitochondrial permeability transition (MPT) pore sealing agents, NADPH P450 reductase inhibitor, and inhibitors of reduced CYP2E1 and CYP2D6 prevented all MDMA induced hepatocyte oxidative stress cytotoxicity markers. It is therefore suggested that metabolic reductive activation of MDMA by reduced cytochrome P450s and glutathione could lead to generation of some biological reactive intermediates which could activate reactive oxygen species generation and cause mitochondrial and lysosomal oxidative stress membrane damages. We finally concluded that hyperthermia could potentiate MDMA induced liver toxicity probably through a mitochondrial/lysosomal toxic cross-talk in freshly isolated rat hepatocytes.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Alucinógenos/toxicidade , Temperatura Alta/efeitos adversos , Lisossomos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Inibidores do Citocromo P-450 CYP2D6 , Inibidores do Citocromo P-450 CYP2E1 , Inibidores Enzimáticos/farmacologia , Glutationa/antagonistas & inibidores , Alucinógenos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Lisossomos/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
15.
Br J Pharmacol ; 160(4): 860-77, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20590585

RESUMO

BACKGROUND AND PURPOSE: Caffeine exacerbates the hyperthermia associated with an acute exposure to 3,4 methylenedioxymethamphetamine (MDMA, 'Ecstasy') in rats. The present study investigated the mechanisms mediating this interaction. EXPERIMENTAL APPROACH: Adult male Sprague-Dawley rats were treated with caffeine (10 mg x kg(-1); i.p.) and MDMA (15 mg x kg(-1); i.p.) alone and in combination. Core body temperatures were monitored before and after drug administration. KEY RESULTS: Central catecholamine depletion blocked MDMA-induced hyperthermia and its exacerbation by caffeine. Caffeine provoked a hyperthermic response when the catecholamine releaser d-amphetamine (1 mg x kg(-1)) was combined with the 5-HT releaser D-fenfluramine (5 mg x kg(-1)) or the non-selective dopamine receptor agonist apomorphine (1 mg x kg(-1)) was combined with the 5-HT(2) receptor agonist DOI (2 mg x kg(-1)) but not following either agents alone. Pretreatment with the dopamine D(1) receptor antagonist Schering (SCH) 23390 (1 mg x kg(-1)), the 5-HT(2) receptor antagonist ketanserin (5 mg x kg(-1)) or alpha(1)-adreno- receptor antagonist prazosin (0.2 mg x kg(-1)) blocked MDMA-induced hyperthermia and its exacerbation by caffeine. Co-administration of a combination of MDMA with the PDE-4 inhibitor rolipram (0.025 mg x kg(-1)) and the adenosine A(1/2) receptor antagonist 9-chloro-2-(2-furanyl)-[1,2,4]triazolo[1,5-C]quinazolin-5-amine 15943 (10 mg x kg(-1)) or the A(2A) receptor antagonist SCH 58261 (2 mg x kg(-1)) but not the A(1) receptor antagonist DPCPX (10 mg x kg(-1)) exacerbated MDMA-induced hyperthermia. CONCLUSIONS AND IMPLICATIONS: A mechanism comprising 5-HT and catecholamines is proposed to mediate MDMA-induced hyperthermia. A combination of adenosine A(2A) receptor antagonism and PDE inhibition can account for the exacerbation of MDMA-induced hyperthermia by caffeine.


Assuntos
Inibidores da Captação Adrenérgica/toxicidade , Cafeína/toxicidade , Febre/induzido quimicamente , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Inibidores de Fosfodiesterase/toxicidade , Antagonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Inibidores da Captação Adrenérgica/antagonistas & inibidores , Inibidores da Captação Adrenérgica/metabolismo , Inibidores da Captação Adrenérgica/farmacocinética , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Cafeína/antagonistas & inibidores , Catecolaminas/antagonistas & inibidores , Catecolaminas/fisiologia , Dopaminérgicos/farmacologia , Interações Medicamentosas , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , N-Metil-3,4-Metilenodioxianfetamina/antagonistas & inibidores , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/farmacocinética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Inibidores da Fosfodiesterase 4 , Ratos , Ratos Sprague-Dawley , Serotonina/fisiologia , Serotoninérgicos/farmacologia , Fatores de Tempo
16.
J Chromatogr B Analyt Technol Biomed Life Sci ; 878(9-10): 815-22, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20167546

RESUMO

The investigation of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse requires very robust methods with high sensitivity and wide linearity ranges for the quantification of this drug of abuse and its main metabolites in body fluids. An optimized gas chromatography-ion trap mass spectrometry (GC-IT/MS) methodology with electron impact ionization addressing these issues is presented. The sample preparation involves an enzymatic hydrolysis of urine and plasma for conjugate cleavage, a SPE extraction, and a derivatization process. The method was fully validated in rat plasma and urine. Linearity for a wide concentration range was achieved for MDMA, and the metabolites 3,4-methylenedioxyamphetamine (MDA), 4-hydroxy-3-methoxyamphetamine (HMA) and 4-hydroxy-3-methoxymethamphetamine (HMMA). Limits of quantification were 2 ng/mL in plasma and 3.5 ng/mL in urine using a Selected Ion Monitoring detection mode. Selectivity, accuracy, precision, and recovery met the required criteria for the method validation. This GC-IT/MS method provides high sensitivity and adequate performance characteristics for the simultaneous quantification of MDMA, MDA, HMA and HMMA in the studied matrices.


Assuntos
3,4-Metilenodioxianfetamina/análise , Dopamina/análogos & derivados , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metanfetamina/análogos & derivados , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , 3,4-Metilenodioxianfetamina/sangue , 3,4-Metilenodioxianfetamina/urina , Animais , Dopamina/análise , Dopamina/sangue , Dopamina/urina , Masculino , Metanfetamina/análise , Metanfetamina/sangue , Metanfetamina/urina , N-Metil-3,4-Metilenodioxianfetamina/sangue , N-Metil-3,4-Metilenodioxianfetamina/urina , Ratos , Ratos Wistar , Sensibilidade e Especificidade
17.
J Neurosci Res ; 88(4): 905-16, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19798748

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA)-induced neurotoxicity leads to the formation of quinone metabolities and hydroxyl radicals and then to the production of reactive oxygen species (ROS). We evaluated the effect of a single dose of MDMA (20 mg/kg, i.p.) on the enzymatic and nonenzymatic cellular antioxidant defense system in different areas of rat brain in the early hours (<6 hr) of the administration itself, and we identified the morphological expressions of neurotoxicity induced by MDMA on the vulnerable brain areas in the first 24 hr. The acute administration of MDMA produces a decrease of reduced and oxidized glutathione ratio, and antioxidant enzyme activities were significantly reduced after 3 hr and after 6 hr in frontal cortex. Ascorbic acid levels strongly increased in striatum, hippocampus, and frontal cortex after 3 and 6 hr. High levels of malonaldehyde with respect to control were measured in striatum after 3 and 6 hr and in hippocampus and frontal cortex after 6 hr. An immunohistochemical investigation on the frontal, thalamic, hypothalamic, and striatal areas was performed. A strong positive reaction to the antivesicular monoamine transporter 2 was observed in the frontal section, in the basal ganglia and thalamus. Cortical positivity, located in the most superficial layer was revealed only for heat shock protein 70 after 24 hr.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Alucinógenos/metabolismo , Síndromes Neurotóxicas/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Cromatografia Líquida de Alta Pressão/métodos , Modelos Animais de Doenças , Eletroquímica/métodos , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa/metabolismo , Alucinógenos/toxicidade , Masculino , Malondialdeído , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
18.
Chem Res Toxicol ; 23(1): 211-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20017534

RESUMO

(+/-)-3,4-Methylenedioxymethamphetamine (MDMA, also known as "ecstasy") is a chiral drug that is essentially metabolized in humans through O-demethylenation into 3,4-dihydroxymethamphetamine (HHMA). There has recently been a resurgence of interest in the possibility that MDMA metabolites, especially 5-(N-acetylcystein-S-yl)-N-methyl-alpha-methyldopamine (designated as 5-NAC-HHMA), might play a role in MDMA neurotoxicity. However, the chirality of MDMA was not considered in previously reported in vivo studies because HHMA, the precursor of the 5-NAC-HHMA metabolite, was used as the racemate. Since the stereochemistry of this chiral drug needs to be considered, the first total synthesis of R-(-)-HHMA is reported. Using L-DOPA as the chiral source, the preparation of R-(-)-HHMA is achieved through seven steps, in 30% overall yield and 99.5% enantiomeric excess. The cytotoxicity of R-(-)-HHMA and related catecholamines has been further determined by flow cytometric analysis of propidium iodide uptake in human dopaminergic neuroblastoma SH-SY5Y cells and by an Escherichia coli plate assay, specific for the detection of oxidative toxicity. The good correlation between the toxicities observed in both systems suggests that SH-SY5Y cells are sensitive to oxidative toxicity and that cell death (necrosis) would be mediated by reactive oxygen species mainly generated from redox active quinonoid centers. In contrast, apoptosis was detected for 3,4-dimethoxymethamphetamine (MMMA), the synthetic precursor of HHMA possessing a protected catechol group. MMMA was not toxic in the bacterial assay, indicating that its toxicity is not related to increased oxidative stress. Finally, we can conclude that there is a need to distinguish the toxicity ascribed to MDMA itself, also bearing a protected catechol moiety, from that depending on MDMA biotransformation leading to catechol metabolites such as HHMA and the thioether conjugates.


Assuntos
Desoxiepinefrina/análogos & derivados , Catecolaminas/química , Catecolaminas/toxicidade , Linhagem Celular Tumoral , Desoxiepinefrina/síntese química , Desoxiepinefrina/química , Desoxiepinefrina/toxicidade , Citometria de Fluxo , Humanos , Levodopa/química , N-Metil-3,4-Metilenodioxianfetamina/química , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Estereoisomerismo , Testes de Toxicidade
19.
Cardiovasc Toxicol ; 9(1): 30-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19333788

RESUMO

Repeated administration of 3,4-methylenedioxymethamphetamine (MDMA) (ecstasy) produces eccentric left ventricular (LV) dilation and diastolic dysfunction. While the mechanism(s) underlying this toxicity are unknown, oxidative stress plays an important role. MDMA is metabolized into redox cycling metabolites that produce superoxide. In this study, we demonstrated that metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes. Metabolites of MDMA used in this study included alpha-methyl dopamine, N-methyl alpha-methyl dopamine and 2,5-bis(glutathion-S-yl)-alpha-MeDA. Dihydroethidium was used to detect drug-induced increases in reactive oxygen species (ROS) production in ventricular myocytes. Contractile function and changes in intracellular calcium transients were measured in paced (1 Hz), Fura-2 AM loaded, myocytes using the IonOptix system. Production of ROS in ventricular myocytes treated with MDMA was not different from control. In contrast, all three metabolites of MDMA exhibited time- and concentration-dependent increases in ROS that were prevented by N-acetyl-cysteine (NAC). The metabolites of MDMA, but not MDMA alone, significantly decreased contractility and impaired relaxation in myocytes stimulated at 1 Hz. These effects were prevented by NAC. Together, these data suggest that MDMA-induced oxidative stress in the left ventricle can be due, at least in part, to the metabolism of MDMA to redox active metabolites.


Assuntos
Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Desoxiepinefrina/análogos & derivados , Desoxiepinefrina/toxicidade , Relação Dose-Resposta a Droga , Glutationa/análogos & derivados , Glutationa/toxicidade , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Masculino , Miócitos Cardíacos/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
20.
Artigo em Inglês | MEDLINE | ID: mdl-19026602

RESUMO

A method was developed and fully validated for simultaneous quantification of methamphetamine (MAMP), amphetamine, hydroxy-methamphetamine, methylenedioxymethamphetamine (MDMA, ecstasy), methylenedioxyamphetamine, 3-hydroxy-4-methoxy-methamphetamine, and 3-hydroxy-4-methoxy-amphetamine in 100 microL mouse plasma and 7.5mg brain. Solid phase extraction and gas chromatography-electron impact ionization mass spectrometry in selected-ion monitoring mode achieved plasma linear ranges of 10-20 to 20,000 ng/mL and 0.1-0.2 to 200 ng/mg in brain. Recoveries were greater than 91%, bias 92.3-110.4%, and imprecision less than 5.3% coefficient of variation. This method was used for measuring MAMP and MDMA and metabolites in plasma and brain during mouse neurotoxicity studies.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Metanfetamina/análise , Metanfetamina/sangue , N-Metil-3,4-Metilenodioxianfetamina/análise , N-Metil-3,4-Metilenodioxianfetamina/sangue , Animais , Química Encefálica , Humanos , Hidrólise , Masculino , Metanfetamina/metabolismo , Camundongos , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA