Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Neuroscience ; 553: 145-159, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38992567

RESUMO

Glutamate excitotoxicity is involved in retinal ganglion cell (RGC) death in various retinal degenerative diseases, including ischemia-reperfusion injury and glaucoma. Excitotoxic RGC death is caused by both direct damage to RGCs and indirect damage through neuroinflammation of retinal glial cells. Omidenepag (OMD), a novel E prostanoid receptor 2 (EP2) agonist, is a recently approved intraocular pressure-lowering drug. The second messenger of EP2 is cyclic adenosine monophosphate (cAMP), which activates protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). In this study, we investigated the neuroprotective effects of OMD on excitotoxic RGC death by focusing on differences in cAMP downstream signaling from the perspective of glia-neuron interactions. We established a glutamate excitotoxicity model in vitro and NMDA intravitreal injection model in vivo. In vitro, rat primary RGCs were used in an RGC survival rate assay. MG5 cells (mouse microglial cell line) and A1 cells (astrocyte cell line) were used for immunocytochemistry and Western blotting to evaluate the expressions of COX-1/2, PKA, Epac1/2, pCREB, cleaved caspase-3, inflammatory cytokines, and neurotrophic factors. Mouse retinal specimens underwent hematoxylin and eosin staining, flat-mounted retina examination, and immunohistochemistry. OMD significantly suppressed excitotoxic RGC death, cleaved caspase-3 expression, and activated glia both in vitro and in vivo. Moreover, it inhibited Epac1 and inflammatory cytokine expression and promoted COX-2, pCREB, and neurotrophic factor expression. OMD may have neuroprotective effects through inhibition of the Epac pathway and promotion of the COX-2-EP2-cAMP-PKA pathway by modulating glia-neuron interaction.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , AMP Cíclico , Ciclo-Oxigenase 2 , Neuroglia , Fármacos Neuroprotetores , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/metabolismo , AMP Cíclico/metabolismo , Camundongos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP2/agonistas , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ratos Sprague-Dawley , Ratos , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Camundongos Endogâmicos C57BL , Masculino , N-Metilaspartato/farmacologia , N-Metilaspartato/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
2.
Cells ; 13(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920637

RESUMO

Excessive levels of glutamate activity could potentially damage and kill neurons. Glutamate excitotoxicity is thought to play a critical role in many CNS and retinal diseases. Accordingly, glutamate excitotoxicity has been used as a model to study neuronal diseases. Immune proteins, such as major histocompatibility complex (MHC) class I molecules and their receptors, play important roles in many neuronal diseases, while T-cell receptors (TCR) are the primary receptors of MHCI. We previously showed that a critical component of TCR, CD3ζ, is expressed by mouse retinal ganglion cells (RGCs). The mutation of CD3ζ or MHCI molecules compromises the development of RGC structure and function. In this study, we investigated whether CD3ζ-mediated molecular signaling regulates RGC death in glutamate excitotoxicity. We show that mutation of CD3ζ significantly increased RGC survival in NMDA-induced excitotoxicity. In addition, we found that several downstream molecules of TCR, including Src (proto-oncogene tyrosine-protein kinase) family kinases (SFKs) and spleen tyrosine kinase (Syk), are expressed by RGCs. Selective inhibition of an SFK member, Hck, or Syk members, Syk or Zap70, significantly increased RGC survival in NMDA-induced excitotoxicity. These results provide direct evidence to reveal the underlying molecular mechanisms that control RGC death under disease conditions.


Assuntos
Complexo CD3 , Ácido Glutâmico , Células Ganglionares da Retina , Transdução de Sinais , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Animais , Ácido Glutâmico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Complexo CD3/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Quinases da Família src/metabolismo , Quinase Syk/metabolismo
3.
Eur J Pharmacol ; 970: 176510, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493917

RESUMO

Activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway protects against N-methyl-D-aspartic acid (NMDA)-induced excitotoxic retinal injury. AMPK activation enhances fatty acid metabolism and ketone body synthesis. Ketone bodies are transported into neurons by monocarboxylate transporters (MCTs) and exert neuroprotective effects. In this study, we examined the distribution and expression levels of MCT1 and MCT2 in the retina and analyzed the effects of pharmacological inhibition of MCTs on the protective effects of metformin and 5-aminoimidazole-4-carboxamide (AICAR), activators of AMPK, against NMDA-induced retinal injury in rats. MCT1 was expressed in the blood vessels, processes of astrocytes and Müller cells, and inner segments of photoreceptors in the rat retina, whereas MCT2 was expressed in neuronal cells in the ganglion cell layer (GCL) and in astrocyte processes. The expression levels of MCT2, but not MCT1, decreased one day after intravitreal injection of NMDA (200 nmol). Intravitreal injection of NMDA decreased the number of cells in the GCL compared to the vehicle seven days after injection. Simultaneous injection of metformin (20 nmol) or AICAR (50 nmol) with NMDA attenuated NMDA-induced cell loss in the GCL, and these protective effects were attenuated by AR-C155858 (1 pmol), an inhibitor of MCTs. AR-C155858 alone had no significant effect on the retinal structure. These results suggest that AMPK-activating compounds protect against NMDA-induced excitotoxic retinal injury via mechanisms involving MCTs in rats. NMDA-induced neurotoxicity may be associated with retinal neurodegenerative changes in glaucoma and diabetic retinopathy. Therefore, AMPK-activating compounds may be effective in managing these retinal diseases.


Assuntos
Metformina , Doenças Retinianas , Tiofenos , Uracila/análogos & derivados , Ratos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , N-Metilaspartato/toxicidade , Ratos Sprague-Dawley , Retina/metabolismo , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/prevenção & controle , Doenças Retinianas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Metformina/efeitos adversos
4.
Exp Neurol ; 376: 114759, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38519010

RESUMO

Malformations of cortical development (MCDs) are caused by abnormal neuronal migration processes during the fetal period and are a major cause of intractable epilepsy in infancy. However, the timing of hyperexcitability or epileptogenesis in MCDs remains unclear. To identify the early developmental changes in the brain of the MCD rat model, which exhibits increased seizure susceptibility during infancy (P12-15), we analyzed the pathological changes in the brains of MCD model rats during the neonatal period and tested NMDA-induced seizure susceptibility. Pregnant rats were injected with two doses of methylazoxymethanol acetate (MAM, 15 mg/kg, i.p.) to induce MCD, while controls were administered normal saline. The cortical development of the offspring was measured by performing magnetic resonance imaging (MRI) on postnatal days (P) 1, 5, and 8. At P8, some rats were sacrificed for immunofluorescence, Golgi staining, and Western analysis. In another set of rats, the number and latency to onset of spasms were monitored for 90 min after the NMDA (5 mg/kg i.p.) injection at P8. In MCD rats, in vivo MR imaging showed smaller brain volume and thinner cortex from day 1 after birth (p < 0.001). Golgi staining and immunofluorescence revealed abnormal neuronal migration, with a reduced number of neuronal cell populations and less dendritic arborization at P8. Furthermore, MCD rats exhibited a significant reduction in the expression of NMDA receptors and AMPAR4, along with an increase in AMPAR3 expression (p < 0.05). Although there was no difference in the latency to seizure onset between MCD rats and controls, the MCD rats survived significantly longer than the controls. These results provide insights into the early developmental changes in the cortex of a MCD rat model and suggest that delayed and abnormal neuronal development in the immature brain is associated with a blunted response to NMDA-induced excitotoxic injury. These developmental changes may be involved in the sudden onset of epilepsy in patients with MCD or prenatal brain injury.


Assuntos
Movimento Celular , Modelos Animais de Doenças , Malformações do Desenvolvimento Cortical , N-Metilaspartato , Neurônios , Ratos Sprague-Dawley , Animais , Ratos , N-Metilaspartato/toxicidade , Feminino , Gravidez , Movimento Celular/efeitos dos fármacos , Neurônios/patologia , Neurônios/efeitos dos fármacos , Malformações do Desenvolvimento Cortical/induzido quimicamente , Malformações do Desenvolvimento Cortical/patologia , Animais Recém-Nascidos , Acetato de Metilazoximetanol/toxicidade , Acetato de Metilazoximetanol/análogos & derivados , Córtex Cerebral/patologia , Córtex Cerebral/efeitos dos fármacos , Masculino , Imageamento por Ressonância Magnética
5.
Exp Eye Res ; 238: 109740, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056553

RESUMO

Glutamate induced damage to retinal ganglion cells (RGCs) requires tight physiological regulation of the N-methyl-D-aspartate (NMDA) receptors. Previously, studies have demonstrated the neuroprotective abilities of antioxidants like coenzyme Q10 (CoQ10) and vitamin E analogs like α-tocopherol against neuropathies resulting from NMDA insult, but have failed to shed light on the effect of CoQ10 and trolox, a hydrophilic analog of vitamin E, on glaucomatous neurodegeneration. In the current study, we wanted to investigate whether the combined effect of trolox with CoQ10 could alleviate NMDA-induced death of retinal cells while also trying to elucidate the underlying mechanism in relation to the yet unexplained role of vascular endothelial growth factor (VEGF) in NMDA-mediated excitotoxicity. After successful NMDA-induced degeneration, we followed it up with the treatment of combination of Trolox and CoQ10. The structural damage by NMDA was repaired significantly and retina retained structural integrity comparable to levels of control in the treatment group of Trolox and CoQ10. Detection of ROS generation after NMDA insult showed that together, Trolox and CoQ10 could significantly bring down the high levels of free radicals while also rescuing mitochondrial membrane potential (MMP). A significant increase in NMDA receptor Grin2A by CoQ10 alone as well as by CoQ10 and trolox was accompanied by a lowered Grin2B receptor expression, suggesting neuroprotective action of Trolox and CoQ10. Subsequently, lowered VEGFR1 and VEGFR2 receptor expression by NMDA treatment also recovered when subjected to combined treatment of Trolox and CoQ10. Western blot analyses also indicated the same whereby Trolox and CoQ10 could increase the diminished levels of phosphorylated VEGFR2. Immunofluorescence studies also indicated a positive correlation between recovered VEGFR2 and NMDAR2A levels and diminished levels of NMDAR2D, confirming the results obtained by RT-PCR analysis. This is the first report in our knowledge that demonstrates the efficacy of trolox in combination with CoQ10 highlighting the importance of maintaining VEGF levels that are lowered in ocular diseases due to NMDA-related toxicities.


Assuntos
Ubiquinona , Fator A de Crescimento do Endotélio Vascular , Ratos , Animais , Ubiquinona/farmacologia , Ubiquinona/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , N-Metilaspartato/toxicidade , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo , Neuroproteção , Regulação para Cima , Vitamina E
6.
Int Immunopharmacol ; 118: 109976, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37098655

RESUMO

Glaucoma, one of the most common ocular neurodegenerative diseases worldwide, is characterized by retinal ganglion cell (RGC) loss. There is a large body of literature that describes the neuroprotective role of melatonin against neurodegenerative diseases by regulating neuroinflammation, although the exact mechanism through which melatonin acts on RGC is still uncertain. This study assessed the protective effects of melatonin using a NMDA-induced RGC injury model, and studied the possible mechanisms involved in this process. Melatonin promoted RGC survival, improved retinal function, and inhibited the apoptosis and necrosis of retinal cells. To understand the mechanism of the neuroprotective effects of melatonin on RGC, microglia and inflammation-related pathways were assessed after melatonin administration and microglia ablation. Melatonin promoted RGC survival by suppressing microglia-derived proinflammatory cytokines, in particular TNFα, which in turn inhibited the activation of p38 MAPK pathway. Inhibiting TNFα or manipulating p38 MAPK pathway protected damaged RGC. Our results suggest that melatonin protects against NMDA-induced RGC injury by inhibiting the microglial TNFα-RGC p38 MAPK pathway. It should be considered a candidate neuroprotective therapy against retinal neurodegenerative diseases.


Assuntos
Melatonina , Células Ganglionares da Retina , Microglia , N-Metilaspartato/toxicidade , N-Metilaspartato/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose
7.
Neurosci Res ; 193: 1-12, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36796452

RESUMO

Adenosine A1 receptors (AA1R) have been shown to counteract N-methyl-D-aspartate (NMDA)-mediated glutamatergic excitotoxicity. In the present study, we investigated the role of AA1R in neuroprotection by trans-resveratrol (TR) against NMDA-induced retinal injury. In total, 48 rats were divided into the following four groups: normal rats pretreated with vehicle; rats that received NMDA (NMDA group); rats that received NMDA after pretreatment with TR; and rats that received NMDA after pretreatment with TR and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an AA1R antagonist. Assessment of general and visual behaviour was performed using the open field test and two-chamber mirror test, respectively, on Days 5 and 6 post NMDA injection. Seven days after NMDA injection, animals were euthanized, and eyeballs and optic nerves were harvested for histological parameters, whereas retinae were isolated to determine the redox status and expression of pro- and anti-apoptotic proteins. In the present study, the retinal and optic nerve morphology in the TR group was protected from NMDA-induced excitotoxic damage. These effects were correlated with the lower retinal expression of proapoptotic markers, lipid peroxidation, and markers of nitrosative/oxidative stress. The general and visual behavioural parameters in the TR group showed less anxiety-related behaviour and better visual function than those in the NMDA group. All the findings observed in the TR group were abolished by administration of DPCPX.


Assuntos
N-Metilaspartato , Receptor A1 de Adenosina , Ratos , Animais , N-Metilaspartato/toxicidade , Resveratrol , Ratos Sprague-Dawley , Neuroproteção , Receptores de N-Metil-D-Aspartato
8.
Toxicol In Vitro ; 84: 105453, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35944748

RESUMO

Memantine is a non-competitive antagonist with a moderate affinity to the N-methyl-d-Aspartate (NMDA) receptor. The present study assessed memantine's neuroprotective activity using electrophysiology of ex-vivo hippocampal slices. Interestingly, a nicotinic component was necessary for memantine's neuroprotection (NP). Memantine demonstrated a bell-shaped dose-response curve of NP against NMDA. Memantine was neuroprotective at concentrations below 3 µM, but the NP declined at higher concentrations (>3 µM) when memantine inhibits the NMDA receptor. Additional evidence that memantine NP is mediated by an alternate mechanism independent of the inhibition of the NMDA receptor is supported by its ability to protect neurons when applied before or after the NMDA insult and in the presence of D(-)-2-Amino-5-phosphonopentanoic acid (APV), the standard NMDA receptor inhibitor. We found several similarities between the memantine NP mechanism and the neuroprotective nicotinic drug, the 4R cembranoid. Memantine's NP requires the release of acetylcholine, the activation of α4ß2, and is independent of MEK/MAPK signaling. Both 4R and memantine require the activation of PI3K/AKT for NP against NMDA-mediated excitotoxicity, although at different concentrations. In conclusion, our studies show memantine is neuroprotective through a nicotinic pathway, similar to the nicotinic drug 4R. This information leads to a better understanding of memantine's mechanisms of action and explains its dose-dependent effectiveness in Alzheimer's and other neurological disorders.


Assuntos
Memantina , Fármacos Neuroprotetores , Hipocampo/metabolismo , Memantina/metabolismo , Memantina/farmacologia , N-Metilaspartato/toxicidade , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Nicotina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
9.
Bioorg Med Chem ; 59: 116675, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35202968

RESUMO

A range of novel 1-phenyl-benzopyrrolizidin-3-one derivatives were synthesized and evaluated for neuroprotective effects against N-methyl-ᴅ-aspartate (NMDA)-induced injury in PC12 cells. Interestingly, derivatives that 1-phenyl moiety bearing electron-donating group, especially benzyloxy, and the trans-forms exhibited better protective activity against NMDA-induced neurotoxicity. Compound 11 m demonstrated the best neuroprotective potency and shown a dose-dependent prevention. The increased intracellular calcium (Ca2+) influx caused by NMDA in PC12 cells was reversed in the case of compound 11 m pretreatment at 15 µM. These results suggested that the synthesized 1-phenyl-benzopyrrolizidin-3-one derivatives exerted neuroprotective effect on NMDA-induced excitotoxicity in PC12 cells associated with inhibition of Ca2+ overload and can be further optimized for the development of neuroprotective agents.


Assuntos
N-Metilaspartato , Fármacos Neuroprotetores , Animais , Cálcio/metabolismo , N-Metilaspartato/toxicidade , Fármacos Neuroprotetores/farmacologia , Células PC12 , Ratos , Receptores de N-Metil-D-Aspartato
10.
Curr Eye Res ; 47(6): 866-873, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35188034

RESUMO

PURPOSE: Retinal and optic nerve damage in glaucoma involves excitotoxicity via N-methyl-D-aspartate (NMDA) receptors. Since, trans-resveratrol (TR) is known to provide neuroprotection, we investigated its protective effects against NMDA-induced retinal and optic nerve injury. METHODS: Sprague Dawley rats were divided into four groups which received vehicle (PBS), NMDA, and TR 0.4 or TR 4 nmol 24 h prior to NMDA, unilaterally and intravitreally. Seven days post-injection, rats were euthanized; eyeballs were enucleated and subjected to hematoxylin and eosin and terminal transferase dUTP nick end labeling staining while optic nerves were isolated for toluidine blue staining. RESULTS: Retinal morphometry showed that ganglion cell layer (GCL) layer thickness within inner retina (IR), retinal cell count (RCC) per 100-µm length of GCL, RCC per 100-µm2 area of GCL, and RCC per 100 µm2 of IR were significantly higher in both TR-treated groups compared to the NMDA group. No differences were observed between the two dose groups. Optic nerve morphology was in accordance with the retinal morphology whereby TR-treated groups showed significantly lesser degenerative changes compared to NMDA-treated group. CONCLUSIONS: TR protects against NMDA-induced changes in retinal and optic nerve morphology by preventing retinal cell apoptosis.


Assuntos
Carcinoma de Células Renais , Traumatismos Oculares , Neoplasias Renais , Traumatismos do Nervo Óptico , Doenças Retinianas , Animais , Apoptose , N-Metilaspartato/toxicidade , Nervo Óptico , Traumatismos do Nervo Óptico/induzido quimicamente , Traumatismos do Nervo Óptico/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Resveratrol/farmacologia , Retina , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/prevenção & controle
11.
Exp Eye Res ; 212: 108785, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600894

RESUMO

Epigenetic gene enhancer of zeste homolog-2 (Ezh2) is reported to be associated with ocular neurodegenerative diseases; however, its underlying mechanism is poorly understood. The present study aimed to determine the role of 3-deazaneplanocin A (DZNep), which inhibits the transcription of Ezh2 by reducing the trimethylation of histone 3 lysine 27 (H3K27me3), in a retinal ganglion cell (RGC) degeneration model. Retinal damage was caused by intravitreal injection of N-methyl-D-aspartate (NMDA). DZNep and the vehicle control were intravitreally applied immediately post-NMDA injection. The severity of retinal damage was evaluated by immunofluorescence and terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining, and retinal function was determined by electroretinogram (ERG). The transcriptome was examined by RNA sequencing and quantitative PCR (qPCR). Microglial cells were detected by immunohistochemistry. DZNep significantly prevented the cell death in the ganglion cell layer (GCL) and inner nuclear layer (INL) induced by NMDA. DZNep preserved the ERG b- and a-wave amplitudes and the b/a ratio in NMDA-treated mice. Moreover, RNA sequencing and qPCR revealed that neuroprotective genes were upregulated and played an important role in preserving retinal cells. In addition, DZNep inhibited the NMDA-induced activation of microglial cells. Our results suggest that H3K27me3 controls RGC survival at the transcriptional and epigenetic levels. The absence of H3K27me3 deposition upregulates neuroprotective genes to protect RGCs. Therefore, DZNep, which inhibits Ezh2 activity, could be a novel therapeutic treatment for ocular neurodegenerative diseases.


Assuntos
Adenosina/análogos & derivados , Degeneração Retiniana/tratamento farmacológico , Células Ganglionares da Retina/efeitos dos fármacos , Adenosina/administração & dosagem , Animais , Contagem de Células , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Eletrorretinografia , Injeções Intravítreas , Masculino , Camundongos , N-Metilaspartato/toxicidade , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
12.
J Neurosci ; 41(33): 7148-7159, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34210784

RESUMO

Following stroke, the survival of neurons and their ability to reestablish connections is critical to functional recovery. This is strongly influenced by the balance between neuronal excitation and inhibition. In the acute phase of experimental stroke, lethal hyperexcitability can be attenuated by positive allosteric modulation of GABAA receptors (GABAARs). Conversely, in the late phase, negative allosteric modulation of GABAAR can correct the suboptimal excitability and improves both sensory and motor recovery. Here, we hypothesized that octadecaneuropeptide (ODN), an endogenous allosteric modulator of the GABAAR synthesized by astrocytes, influences the outcome of ischemic brain tissue and subsequent functional recovery. We show that ODN boosts the excitability of cortical neurons, which makes it deleterious in the acute phase of stroke. However, if delivered after day 3, ODN is safe and improves motor recovery over the following month in two different paradigms of experimental stroke in mice. Furthermore, we bring evidence that, during the subacute period after stroke, the repairing cortex can be treated with ODN by means of a single hydrogel deposit into the stroke cavity.SIGNIFICANCE STATEMENT Stroke remains a devastating clinical challenge because there is no efficient therapy to either minimize neuronal death with neuroprotective drugs or to enhance spontaneous recovery with neurorepair drugs. Around the brain damage, the peri-infarct cortex can be viewed as a reservoir of plasticity. However, the potential of wiring new circuits in these areas is restrained by a chronic excess of GABAergic inhibition. Here we show that an astrocyte-derived peptide, can be used as a delayed treatment, to safely correct cortical excitability and facilitate sensorimotor recovery after stroke.


Assuntos
Inibidor da Ligação a Diazepam/uso terapêutico , Agonistas de Receptores de GABA-A/uso terapêutico , Neurônios/efeitos dos fármacos , Neuropeptídeos/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Receptores de GABA-A/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Adulto , Animais , Astrócitos/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Inibidor da Ligação a Diazepam/deficiência , Inibidor da Ligação a Diazepam/fisiologia , Implantes de Medicamento , Potenciais Somatossensoriais Evocados , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Humanos , Hidrogéis , Infarto da Artéria Cerebral Média/tratamento farmacológico , Trombose Intracraniana/tratamento farmacológico , Trombose Intracraniana/etiologia , Luz , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/toxicidade , Neurônios/fisiologia , Neuropeptídeos/deficiência , Neuropeptídeos/fisiologia , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/deficiência , Fragmentos de Peptídeos/fisiologia , Ratos , Rosa Bengala/efeitos da radiação , Rosa Bengala/toxicidade , Método Simples-Cego , Acidente Vascular Cerebral/etiologia
13.
J Mol Histol ; 52(3): 449-459, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33755822

RESUMO

Currently, the excessive activation of N-methyl-D-aspartate receptors (NMDARs) is considered to be a crucial mechanism of brain injury. Lycium barbarum A (LyA) is a dimer of phenol amides isolated from the fruit of Lycium barbarum. Our previous studies have shown that LyA has potential antioxidant activity. This study aimed to explore the neuroprotective effect of LyA and its potential mechanism. Firstly, the molecular docking was used to preliminarily explore the potential function of LyA to block NMDAR. Then, the ability of LyA was further verified by NMDA-induced human neuroblastoma SH-SY5Y cells in vivo. Treatment with LyA significantly attenuated NMDA-induced neuronal insults by increasing cell viability, reducing lactate dehydrogenase (LDH) release, and increasing cell survival. Meanwhile, LyA significantly reversed the increase in intracellular calcium and in ROS production induced by NMDA. Finally, the western blot indicated that LyA could suppress the Ca2+ influx and increase the p-NR2B, p-CaMKII, p-JNK, and p-p38 level induced by NMDA. These above findings provide evidence that LyA protect against brain injury, and restraining NMDARs and suppressing mitochondrial oxidative stress and inhibiting cell apoptosis may be involved in the protective mechanism.


Assuntos
Amidas/farmacologia , Dimerização , N-Metilaspartato/toxicidade , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Fenóis/farmacologia , Amidas/química , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Fenóis/química , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
J Biol Regul Homeost Agents ; 34(4): 1355-1368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32907306

RESUMO

miR-382-3p can regulate apoptosis through multiple pathways, but the mechanism remains unknown. In this experiment, we explored whether miR-382-3p can modulate the N-methyL-D-aspartate (NMDA)- induced HT22 cell apoptosis by regulating the RhoC/ROCK1 signaling pathway. An excitatory neurotoxicity model of HT22 cells was induced in vitro with 2 mmol/L NMDA. The cells were divided into normal control, NMDA-induced, NMDA + miR-382-3p mimic, and NMDA + miR-382-3p inhibitor groups. The 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) method, Real-time PCR, Western blot, and flow cytometry were performed to investigate the mechanisms. The results found that NMDA can increase the oxidative stress of HT22 cells in a dose-dependent manner, downregulate the expression of miR-382-3p, upregulate the expression of mRNA and protein abundance of ROCK1 and RhoC, increase the expression levels of proapoptotic proteins Bax, Caspase-3, and Caspase-9, increase the apoptosis of HT22 cells, and reduce the activity and survival rate of HT22 cells. Compared with the NMDA-induced group, the miR-382-3p mimic-transfected HT22 cells increased the expression of miR- 382-3p, reduced the expression of the mRNA and protein abundance of ROCK1 and RhoC, inhibited the expression of proapoptotic proteins Bax, Caspase-3, and Caspase-9, reduced the apoptosis of HT22 cells, and increased the activity and survival rate of HT22 cells. The results suggest that increasing the expression of miR-382-3p can inhibit the activity of the RhoC/ROCK1 signaling pathway, reduce the expression of proapoptotic proteins, reduce the oxidative stress and apoptosis of HT22 cells, and increase the activity and survival rate of HT22 cells.


Assuntos
Apoptose , Linhagem Celular Tumoral , Humanos , MicroRNAs/genética , N-Metilaspartato/toxicidade , Transdução de Sinais , Quinases Associadas a rho , Proteína de Ligação a GTP rhoC
15.
Neurochem Res ; 45(11): 2703-2711, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32892226

RESUMO

Kukoamine (KuA) is a spermine alkaloid present in traditional Chinese medicine Cortex Lycii radices, which possesses various pharmacological properties. Our previous studies have demonstrated that KuA exerts neuroprotective effects against H2O2-induced oxidative stress, radiation-induced neuroinflammation, oxidative stress and neuronal apoptosis, as well as neurotoxin-induced Parkinson's disease through apoptosis inhibition and autophagy enhancement. The present study aimed to investigate the neuroprotective effects of KuA against NMDA-induced neuronal injury in cultured primary cortical neurons and explore the underlying mechanism. Incubation with 200 µM NMDA for 30 min induced excitotoxicity in primary cultured cortical neurons. The results demonstrated that pretreatment with KuA attenuated NMDA induced cell injury, LDH leakage and neuronal apoptosis. KuA also regulated apoptosis-related proteins. Thus, incubation with the alkaloid decreased the ratio of Bax/Bcl-2, and inhibited the release of cytochrome C, the expression of p53 and the cleavage of caspase-3. Moreover, KuA prevented the upregulation of GluN2B-containing NMDA receptors (NMDAR). Additionally, pretreatment with KuA reversed NMDA-induced dephosphorylation of Akt and GSK-3ß and the protective effect of KuA on NMDA-induced cytotoxicity was abolished by wortmannin, a PI3K inhibitor. Taken together, these results indicated that KuA exerted neuroprotective effects against NMDA-induced neurotoxicity in cultural primary cortical neurons and caused the down-regulation of GluN2B-containing NMDARs as well as the phosphorylation of proteins belonging to the PI3K/Akt/GSK-3ß signaling pathway.


Assuntos
N-Metilaspartato/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espermina/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Regulação para Baixo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Espermina/farmacologia
16.
Mar Drugs ; 18(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604880

RESUMO

Astaxanthin (ASX) is a carotenoid pigment with strong antioxidant properties. We have reported previously that ASX protects neurons from the noxious effects of amyloid-ß peptide oligomers, which promote excessive mitochondrial reactive oxygen species (mROS) production and induce a sustained increase in cytoplasmic Ca2+ concentration. These properties make ASX a promising therapeutic agent against pathological conditions that entail oxidative and Ca2+ dysregulation. Here, we studied whether ASX protects neurons from N-methyl-D-aspartate (NMDA)-induced excitotoxicity, a noxious process which decreases cellular viability, alters gene expression and promotes excessive mROS production. Incubation of the neuronal cell line SH-SY5Y with NMDA decreased cellular viability and increased mitochondrial superoxide production; pre-incubation with ASX prevented these effects. Additionally, incubation of SH-SY5Y cells with ASX effectively reduced the basal mROS production and prevented hydrogen peroxide-induced cell death. In primary hippocampal neurons, transfected with a genetically encoded cytoplasmic Ca2+ sensor, ASX also prevented the increase in intracellular Ca2+ concentration induced by NMDA. We suggest that, by preventing the noxious mROS and Ca2+ increases that occur under excitotoxic conditions, ASX could be useful as a therapeutic agent in neurodegenerative pathologies that involve alterations in Ca2+ homeostasis and ROS generation.


Assuntos
Cálcio/metabolismo , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Hipocampo/efeitos dos fármacos , Humanos , N-Metilaspartato/toxicidade , Neuroblastoma , Neurônios/efeitos dos fármacos , Cultura Primária de Células , Ratos , Xantofilas/farmacologia
17.
Mol Vis ; 26: 409-422, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32565669

RESUMO

Purpose: Glaucoma is a group of chronic optic neuropathies characterized by the degeneration of retinal ganglion cells (RGCs) and their axons, and they ultimately cause blindness. Because neuroprotection using neurotrophic factors against RGC loss has been proven a beneficial strategy, extensive attempts have been made to perform gene transfer of neurotrophic proteins. This study used the inner retinal injury mouse model to evaluate the neuroprotective effect of tyrosine triple mutated and self-complementary adeno-associated virus (AAV) encoding brain-derived neurotrophic factor (BDNF; tm-scAAV2-BDNF). Methods: C57BL/6J mice were intravitreally injected with 1 µl of tm-scAAV2-BDNF and its control AAV at a titer of 6.6 E+13 genome copies/ml. Three weeks later, 1 µl of 2 mM N-methyl-D-aspartate (NMDA) was administered in the same way as the viral injection. Six days after the NMDA injection, we assessed the dark-adapted electroretinography (ERG). Mice were sacrificed at one week after the NMDA injection, followed by RNA quantification, protein detection, and histopathological analysis. Results: The RNA expression of BDNF in retinas treated with tm-scAAV2-BDNF was about 300-fold higher than that of its control AAV. Meanwhile, the expression of recombinant BDNF protein increased in retinas treated with tm-scAAV2-BDNF. In addition, histological analysis revealed that tm-scAAV2-BDNF prevented thinning of the inner retina. Furthermore, b-wave amplitudes of the tm-scAAV2-BDNF group were significantly higher than those of the control vector group. Histopathological and electrophysiological evaluations showed that tm-scAAV2-BDNF treatment offered significant protection against NMDA toxicity. Conclusions: Results showed that tm-scAAV2-BDNF-treated retinas were resistant to NMDA injury, while retinas treated with the control AAV exhibited histopathological and functional changes after the administration of NMDA. These results suggest that tm-scAAV2-BDNF is potentially effective against inner retinal injury, including normal tension glaucoma.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Terapia Genética/métodos , N-Metilaspartato/toxicidade , Doenças Retinianas/terapia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Eletrorretinografia , Expressão Gênica , Vetores Genéticos , Imuno-Histoquímica , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/administração & dosagem , Proteínas Recombinantes , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia
18.
Toxicol In Vitro ; 67: 104888, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32416136

RESUMO

Compound DCMQA (4, 5-O-dicaffeoyl-1-O-[4-malic acid methyl ester]-quinic acid) is a natural caffeoylquinic acid derivative isolated from Arctium lappa L. roots. Caffeoylquinic acid derivatives have been reported to possess neuroprotective effects through inhibiting oxidative stress and apoptosis in vitro. However, whether DCMQA exerts protective effects on N-methyl-D-aspartate (NMDA)-induced neurotoxicity and the underlying mechanism has not been elucidated. In this study, the results indicated that pretreatment of DCMQA prevented the loss of cell viability and attenuated the LDH leakage in SH-SY5Y cells exposed to NMDA. Hoechst 33342 staining and Annexin V-PI double staining illustrated that DCMQA suppressed NMDA-induced morphological damage and neuronal apoptosis. Moreover, DCMQA inhibited NMDA-mediated Ca2+ influx, excessive intracellular ROS generation and loss of mitochondrial membrane potential (MMP). Western blot analysis showed that DCMQA attenuated the Bax/Bcl-2 ratio, release of cytochrome c as well as expression of caspase-9 and caspase-3. Besides, DCMQA down-regulated GluN2B-containing NMDA receptors (NMDARs) and up-regulated GluN2A-containing NMDARs, promoted the disruption of nNOS and PSD95 as well as activation of CaMK II-α. Furthermore, computational docking study indicated that DCMQA possessed a good affinity for NMDARs. These results indicated that DCMQA protects SH-SY5Y cells against NMDA-induced neuronal damage. In addition, the underlying mechanisms of DCMQA-mediated neuroprotection are associated with modulating NMDARs and disruption of nNOS-PSD95 as well as the activation of CaMK II-α.


Assuntos
N-Metilaspartato/toxicidade , Fármacos Neuroprotetores/farmacologia , Ácido Quínico/análogos & derivados , Receptores de N-Metil-D-Aspartato/metabolismo , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Ácido Quínico/farmacologia
19.
Mol Vis ; 26: 135-149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180679

RESUMO

Purpose: To analyze whether activation of endogenous wingless (Wnt)/ß-catenin signaling in Müller cells is involved in protection of retinal ganglion cells (RGCs) following excitotoxic damage. Methods: Transgenic mice with a tamoxifen-dependent ß-catenin deficiency in Müller cells were injected with N-methyl-D-aspartate (NMDA) into the vitreous cavity of one eye to induce excitotoxic damage of the RGCs, while the contralateral eye received PBS only. Retinal damage was quantified by counting the total number of RGC axons in cross sections of optic nerves and measuring the thickness of the retinal layers on meridional sections. Then, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was performed to identify apoptotic cells in retinas of both genotypes. Western blot analyses to assess the level of retinal ß-catenin and real-time RT-PCR to quantify the retinal expression of neuroprotective factors were performed. Results: Following NMDA injection of wild-type mice, a statistically significant increase in retinal ß-catenin protein levels was observed compared to PBS-injected controls, an effect that was blocked in mice with a Müller cell-specific ß-catenin deficiency. Furthermore, in mice with a ß-catenin deficiency in Müller cells, NMDA injection led to a statistically significant decrease in RGC axons as well as a substantial increase in TUNEL-positive cells in the RGC layer compared to the NMDA-treated controls. Moreover, in the retinas of the control mice a NMDA-mediated statistically significant induction of leukemia inhibitory factor (Lif) mRNA was detected, an effect that was substantially reduced in mice with a ß-catenin deficiency in Müller cells. Conclusions: Endogenous Wnt/ß-catenin signaling in Müller cells protects RGCs against excitotoxic damage, an effect that is most likely mediated via the induction of neuroprotective factors, such as Lif.


Assuntos
Células Ependimogliais/metabolismo , Nervo Óptico/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Tamoxifeno/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Axônios/efeitos dos fármacos , Axônios/metabolismo , Células Ependimogliais/efeitos dos fármacos , Marcação In Situ das Extremidades Cortadas , Fator Inibidor de Leucemia/metabolismo , Camundongos , Camundongos Transgênicos , N-Metilaspartato/toxicidade , Nervo Óptico/efeitos dos fármacos , Retina/efeitos dos fármacos , Retina/patologia , Células Ganglionares da Retina/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/deficiência
20.
Neurochem Res ; 45(4): 752-759, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31894462

RESUMO

Glutamate excitotoxicity via N-methyl-D-aspartate (NMDA) receptors is thought to be a factor involved in the loss of retinal neuronal cells, including retinal ganglion cells, in retinal diseases such as diabetic retinopathy and acute angle closure glaucoma. Herein we report the protective effect of systemic administration of ML233, an apelin receptor agonist, against retinal neuronal cell death induced by the intravitreal injection of NMDA into mice. Intraperitoneal administration of ML233 prevented the NMDA-induced reduction in the amplitude of scotopic threshold responses (STR), which mainly reflect the activity of the retinal ganglion cells. Immunohistochemical staining showed that ML233 inhibited the NMDA-induced loss of retinal ganglion cells and amacrine cells. In addition, ML233 suppressed the breakdown of spectrin αII, a neuronal cytoskeleton protein cleaved by calpain activation, in the retina after intravitreal injection of NMDA. Intraperitoneal administration of ML233 increased the phosphorylation of Akt, a potent anti-apoptotic protein in neurons, in the retina. Furthermore, oral administration of ML233 protected against the decrease in the STR amplitudes and the loss of retinal ganglion cells caused by NMDA. These results suggest that systemic administration of ML233 protected retinal neurons from NMDA receptor-mediated excitotoxicity and that drugs activating the apelin receptor may be a new candidate for preventing the progression of these retinal diseases.


Assuntos
Receptores de Apelina/agonistas , Iminas/farmacologia , Mesilatos/farmacologia , N-Metilaspartato/toxicidade , Doenças Retinianas/prevenção & controle , Neurônios Retinianos/efeitos dos fármacos , Administração Oral , Animais , Iminas/administração & dosagem , Injeções Intraperitoneais , Injeções Intravítreas , Masculino , Mesilatos/administração & dosagem , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças Retinianas/metabolismo , Neurônios Retinianos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA