Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 645
Filtrar
1.
Cell Death Dis ; 15(5): 311, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697987

RESUMO

Cancer cells are highly dependent on bioenergetic processes to support their growth and survival. Disruption of metabolic pathways, particularly by targeting the mitochondrial electron transport chain complexes (ETC-I to V) has become an attractive therapeutic strategy. As a result, the search for clinically effective new respiratory chain inhibitors with minimized adverse effects is a major goal. Here, we characterize a new OXPHOS inhibitor compound called MS-L6, which behaves as an inhibitor of ETC-I, combining inhibition of NADH oxidation and uncoupling effect. MS-L6 is effective on both intact and sub-mitochondrial particles, indicating that its efficacy does not depend on its accumulation within the mitochondria. MS-L6 reduces ATP synthesis and induces a metabolic shift with increased glucose consumption and lactate production in cancer cell lines. MS-L6 either dose-dependently inhibits cell proliferation or induces cell death in a variety of cancer cell lines, including B-cell and T-cell lymphomas as well as pediatric sarcoma. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI-1) partially restores the viability of B-lymphoma cells treated with MS-L6, demonstrating that the inhibition of NADH oxidation is functionally linked to its cytotoxic effect. Furthermore, MS-L6 administration induces robust inhibition of lymphoma tumor growth in two murine xenograft models without toxicity. Thus, our data present MS-L6 as an inhibitor of OXPHOS, with a dual mechanism of action on the respiratory chain and with potent antitumor properties in preclinical models, positioning it as the pioneering member of a promising drug class to be evaluated for cancer therapy. MS-L6 exerts dual mitochondrial effects: ETC-I inhibition and uncoupling of OXPHOS. In cancer cells, MS-L6 inhibited ETC-I at least 5 times more than in isolated rat hepatocytes. These mitochondrial effects lead to energy collapse in cancer cells, resulting in proliferation arrest and cell death. In contrast, hepatocytes which completely and rapidly inactivated this molecule, restored their energy status and survived exposure to MS-L6 without apparent toxicity.


Assuntos
Antineoplásicos , Proliferação de Células , Complexo I de Transporte de Elétrons , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Animais , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Antineoplásicos/farmacologia , Camundongos , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desacopladores/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Ratos , NADH Desidrogenase/metabolismo , NADH Desidrogenase/antagonistas & inibidores
2.
Cell Death Dis ; 15(4): 253, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594244

RESUMO

Mitochondria are important for the activation of endothelial cells and the process of angiogenesis. NDUFS8 (NADH:ubiquinone oxidoreductase core subunit S8) is a protein that plays a critical role in the function of mitochondrial Complex I. We aimed to investigate the potential involvement of NDUFS8 in angiogenesis. In human umbilical vein endothelial cells (HUVECs) and other endothelial cell types, we employed viral shRNA to silence NDUFS8 or employed the CRISPR/Cas9 method to knockout (KO) it, resulting in impaired mitochondrial functions in the endothelial cells, causing reduction in mitochondrial oxygen consumption and Complex I activity, decreased ATP production, mitochondrial depolarization, increased oxidative stress and reactive oxygen species (ROS) production, and enhanced lipid oxidation. Significantly, NDUFS8 silencing or KO hindered cell proliferation, migration, and capillary tube formation in cultured endothelial cells. In addition, there was a moderate increase in apoptosis within NDUFS8-depleted endothelial cells. Conversely, ectopic overexpression of NDUFS8 demonstrated a pro-angiogenic impact, enhancing cell proliferation, migration, and capillary tube formation in HUVECs and other endothelial cells. NDUFS8 is pivotal for Akt-mTOR cascade activation in endothelial cells. Depleting NDUFS8 inhibited Akt-mTOR activation, reversible with exogenous ATP in HUVECs. Conversely, NDUFS8 overexpression boosted Akt-mTOR activation. Furthermore, the inhibitory effects of NDUFS8 knockdown on cell proliferation, migration, and capillary tube formation were rescued by Akt re-activation via a constitutively-active Akt1. In vivo experiments using an endothelial-specific NDUFS8 shRNA adeno-associated virus (AAV), administered via intravitreous injection, revealed that endothelial knockdown of NDUFS8 inhibited retinal angiogenesis. ATP reduction, oxidative stress, and enhanced lipid oxidation were detected in mouse retinal tissues with endothelial knockdown of NDUFS8. Lastly, we observed an increase in NDUFS8 expression in retinal proliferative membrane tissues obtained from human patients with proliferative diabetic retinopathy. Our findings underscore the essential role of the mitochondrial protein NDUFS8 in regulating endothelial cell activation and angiogenesis.


Assuntos
Angiogênese , Proteínas Proto-Oncogênicas c-akt , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Movimento Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Serina-Treonina Quinases TOR/metabolismo , RNA Interferente Pequeno/farmacologia , Lipídeos/farmacologia , Trifosfato de Adenosina/farmacologia , Proliferação de Células/genética , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo
3.
Inflammopharmacology ; 32(2): 1545-1573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308793

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a prominent cause of dementia, resulting in neurodegeneration and memory impairment. This condition imposes a considerable public health burden on both patients and their families due to the patients' functional impairments as well as the psychological and financial constraints. It has been well demonstrated that its aetiology involves proteinopathy, mitochondriopathies, and enhanced reactive oxygen species (ROS) generation, which are some of the key features of AD brains that further result in oxidative stress, excitotoxicity, autophagy, and mitochondrial dysfunction. OBJECTIVE: The current investigation was created with the aim of elucidating the neurological defence mechanism of trans,trans-Farnesol (TF) against intracerebroventricular-streptozotocin (ICV-STZ)-induced Alzheimer-like symptoms and related pathologies in rodents. MATERIALS AND METHODS: The current investigation involved male SD rats receiving TF (25-100 mg/kg, per oral) consecutively for 21 days in ICV-STZ-treated animals. An in silico study was carried out to explore the possible interaction between TF and NADH dehydrogenase and succinate dehydrogenase. Further, various behavioural (Morris water maze and novel object recognition test), biochemical (oxidants and anti-oxidant markers), activities of mitochondrial enzyme complexes and acetylcholinesterase (AChE), pro-inflammatory (tumor necrosis factor-alpha; TNF-α) levels, and histopathological studies were evaluated in specific brain regions. RESULTS: Rats administered ICV-STZ followed by treatment with TF (25, 50, and 100 mg/kg) for 21 days had significantly better mental performance (reduced escape latency to access platform, extended time spent in target quadrant, and improved differential index) in the Morris water maze test and new object recognition test models when compared to control (ICV-STZ)-treated groups. Further, TF treatment significantly restored redox proportion, anti-oxidant levels, regained mitochondrial capacities, attenuated altered AChE action, levels of TNF-α, and histopathological alterations in certain brain regions in comparison with control. In in silico analysis, TF caused greater interaction with NADH dehydrogenase and succinate dehydrogenase. CONCLUSION: The current work demonstrates the neuroprotective ability of TF in an experimental model with AD-like pathologies. The study further suggests that the neuroprotective impacts of TF may be related to its effects on TNF-α levels, oxidative stress pathways, and mitochondrial complex capabilities.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Masculino , Humanos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Farneseno Álcool/efeitos adversos , Estreptozocina/farmacologia , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Acetilcolinesterase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , NADH Desidrogenase/metabolismo , NADH Desidrogenase/farmacologia , NADH Desidrogenase/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Estresse Oxidativo , Aprendizagem em Labirinto , Modelos Animais de Doenças
4.
J Neuromuscul Dis ; 11(2): 485-491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217609

RESUMO

Background: The NADH dehydrogenase [ubiquinone] iron-sulfur protein 6 (NDUFS6) gene encodes for an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I). Bi-allelic NDUFS6 variants have been linked with a severe disorder mostly reported as a lethal infantile mitochondrial disease (LMID) or Leigh syndrome (LS). Objective: Here, we identified a homozygous variant (c.309 + 5 G > A) in NDUFS6 in one male patient with axonal neuropathy accompanied by loss of small fibers in skin biopsy and further complicated by optic atrophy and borderline intellectual disability. Methods: To address the pathogenicity of the variant, biochemical studies (mtDNA copy number quantification, ELISA, Proteomic profiling) of patient-derived leukocytes were performed. Results: The analyses revealed loss of NDUFS6 protein associated with a decrease of three further mitochondrial NADH dehydrogenase subunit/assembly proteins (NDUFA12, NDUFS4 and NDUFV1). Mitochondrial copy number is not altered in leukocytes and the mitochondrial biomarker GDF15 is not significantly changed in serum. Conclusions: Hence, our combined clinical and biochemical data strengthen the concept of NDUFS6 being causative for a very rare form of axonal neuropathy associated with optic atrophy and borderline intellectual disability, and thus expand (i) the molecular genetic landscape of neuropathies and (ii) the clinical spectrum of NDUFS6-associated phenotypes.


Assuntos
Deficiência Intelectual , Atrofia Óptica , Humanos , Masculino , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , NADPH Desidrogenase/metabolismo , Atrofia Óptica/genética , Proteômica
5.
Heart Surg Forum ; 27(1): E028-E037, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38286648

RESUMO

BACKGROUND: This study mainly investigated the mechanism and effects of AKAP1 in renal patients with acute heart failure (AHF). METHODS: Patients with renal patients with AHF and normal volunteers were collected. The left anterior descending arteries (LAD) of mice were ligated to induce myocardial infarction. RESULTS: AKAP1 messenger RNA (mRNA) expression was found to be down-regulated in renal patients with AHF. The serum levels of AKAP1 mRNA expression were negatively correlated with collagen I/III in patients. AKAP1 mRNA and protein expression in the heart tissue of mice with AHF were also found to be down-regulated in a time-dependent manner. Short hairpin (Sh)-AKAP1 promotes AHF in a mouse model. AKAP1 up-regulation reduces reactive oxygen species (ROS)-induced oxidative stress in an In Vitro model. AKAP1 up-regulation also reduces ROS-induced lipid peroxidation ferroptosis in an In Vitro model. AKAP1 induces NDUFS1 expression to increase GPX4 activity levels. AKAP1 protein interlinked with the NDUFS1 protein. Up-regulation of the AKAP1 gene reduced NDUFS1 ubiquitination, while down-regulation of the AKAP1 gene increased NDUFS1 ubiquitination in a model. In vivo imaging showed that the sh-AKAP1 virus reduced NDUFS1 expression in the heart of a mouse model. CONCLUSIONS: AKAP1 reduced ROS-induced lipid peroxidation ferroptosis through the inhibition of ubiquitination of NDUFS by mitochondrial damage in model of renal patients with AHF, suggest a novel target for AHF treatment.


Assuntos
Proteínas de Ancoragem à Quinase A , Ferroptose , Insuficiência Cardíaca , Animais , Humanos , Camundongos , Insuficiência Cardíaca/genética , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro , Proteínas de Ancoragem à Quinase A/metabolismo , NADH Desidrogenase/metabolismo
6.
Biochem Biophys Res Commun ; 693: 149374, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38096616

RESUMO

Cervical cancer, a common malignancy in women, poses a significant health burden worldwide. In this study, we aimed to investigate the expression, function, and potential mechanisms of NADH: ubiquinone oxidoreductase subunit A8 (NDUFA8) in cervical cancer. The Gene Expression Profiling Interactive Analysis (GEPIA) database and immunohistochemical scoring were used to analyze NDUFA8 expression in cervical cancer tissues and normal tissues. Quantitative real-time PCR and Western blot analyses were performed to assess the expression level of NDUFA8 in cervical cancer cell lines. NDUFA8 knockdown or overexpression experiments were conducted to evaluate its impact on cell proliferation and apoptosis. The mitochondrial respiratory status was analyzed by measuring cellular oxygen consumption, adenosine triphosphate (ATP) levels, and the expression levels of Mitochondrial Complex I activity, and Mitochondrial Complex IV-associated proteins Cytochrome C Oxidase Subunit 5B (COX5B) and COX6C. NDUFA8 exhibited high expression levels in cervical cancer tissues, and these levels were correlated with reduced survival rates. A significant upregulation of NDUFA8 expression was observed in cervical cancer cell lines compared to normal cells. Silencing NDUFA8 hindered cell proliferation, promoted apoptosis, and concurrently suppressed cellular mitochondrial respiration, resulting in decreased levels of available ATP. Conversely, NDUFA8 overexpression induced the opposite effects. Herein, we also found that E1A Binding Protein P300 (EP300) overexpression facilitated Histone H3 Lysine 27 (H3K27) acetylation enrichment, enhancing the activity of the NDUFA8 promoter region. NDUFA8, which is highly expressed in cervical cancer, is regulated by transcriptional control via EP300/H3K27 acetylation. By promoting mitochondrial respiration, NDUFA8 contributes to cervical cancer cell proliferation and apoptosis. These findings provide novel insights into NDUFA8 as a therapeutic target in cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/patologia , Fatores de Transcrição/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Apoptose/genética , Proliferação de Células/genética , Respiração , Trifosfato de Adenosina , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo
7.
Cell Death Dis ; 14(8): 512, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558663

RESUMO

Epigenetic modifications play important roles during the pathogenesis of multiple myeloma (MM). Herein, we found that protein arginine methyltransferase 1 (PRMT1) was highly expressed in MM patients, which was positively correlated with MM stages. High PRMT1 expression was correlated with adverse prognosis in MM patients. We further showed that silencing PRMT1 inhibited MM proliferation and tumorigenesis in vitro and in vivo. Mechanistically, we revealed that the knockdown of PRMT1 reduced the oxidative phosphorylation (OXPHOS) of MM cells through NDUFS6 downregulation. Meanwhile, we identified that WTAP, a key component of the m6A methyltransferase complex, was methylated by PRMT1, and NDUFS6 was identified as a bona fide m6A target of WTAP. Finally, we found that the combination of PRMT1 inhibitor and bortezomib synergistically inhibited MM progression. Collectively, our results demonstrate that PRMT1 plays a crucial role during MM tumorigenesis and suggeste that PRMT1 could be a potential therapeutic target in MM.


Assuntos
Mieloma Múltiplo , Fosforilação Oxidativa , Humanos , Metilação , Mieloma Múltiplo/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Transformação Celular Neoplásica , Carcinogênese/genética , Proteínas Repressoras/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas de Ciclo Celular/metabolismo , NADH Desidrogenase/metabolismo
8.
Mol Ther ; 31(7): 2005-2013, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016579

RESUMO

Lenadogene nolparvovec (GS010) was developed to treat a point mutation in mitochondrial ND4 that causes Leber hereditary optic neuropathy. GS010 delivers human cDNA encoding wild-type ND4 packaged into an rAAV2/2 vector that transduces retinal ganglion cells, to induce allotopic expression of hybrid mitochondrial ND4. GS010 clinical trials improved best-corrected visual acuity (BCVA) up to 5 years after treatment. Interestingly, unilateral treatment improved BCVA bilaterally. Subsequent studies revealed GS010 DNA in visual tissues contralateral to the injected eye, suggesting migration. Here we tested whether unilateral intraocular pressure (IOP) elevation could influence the transfer of viral ND4 RNA in contralateral tissues after GS010 delivery to the IOP-elevated eye and probed a potential mechanism mediating translocation in mice. We found IOP elevation enhanced viral ND4 RNA transcripts in contralateral visual tissues, including retinas. Using conditional transgenic mice, we depleted astrocytic gap junction connexin 43 (Cx43), required for distant redistribution of metabolic resources between astrocytes during stress. After unilateral IOP elevation and GS010 injection, Cx43 knockdown eradicated ND4 RNA transcript detection in contralateral retinal tissues, while transcript was still detectable in optic nerves. Overall, our study indicates long-range migration of GS010 product to contralateral visual tissues is enhanced by Cx43-linked astrocyte networks.


Assuntos
Astrócitos , Conexina 43 , Camundongos , Humanos , Animais , Astrócitos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Vetores Genéticos , Terapia Genética , Camundongos Transgênicos , RNA , DNA Mitocondrial/genética
9.
Biol Chem ; 404(5): 399-415, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36952351

RESUMO

The orchestrated activity of the mitochondrial respiratory or electron transport chain (ETC) and ATP synthase convert reduction power (NADH, FADH2) into ATP, the cell's energy currency in a process named oxidative phosphorylation (OXPHOS). Three out of the four ETC complexes are found in supramolecular assemblies: complex I, III, and IV form the respiratory supercomplexes (SC). The plasticity model suggests that SC formation is a form of adaptation to changing conditions such as energy supply, redox state, and stress. Complex I, the NADH-dehydrogenase, is part of the largest supercomplex (CI + CIII2 + CIVn). Here, we demonstrate the role of NDUFB10, a subunit of the membrane arm of complex I, in complex I and supercomplex assembly on the one hand and bioenergetics function on the other. NDUFB10 knockout was correlated with a decrease of SCAF1, a supercomplex assembly factor, and a reduction of respiration and mitochondrial membrane potential. This likely is due to loss of proton pumping since the CI P P -module is downregulated and the P D -module is completely abolished in NDUFB10 knock outs.


Assuntos
Complexo I de Transporte de Elétrons , NADH Desidrogenase , Trifosfato de Adenosina/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , Fosforilação Oxidativa , NADH Desidrogenase/metabolismo
10.
Cell Death Dis ; 14(1): 44, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36658121

RESUMO

The alteration of cellular energy metabolism is a hallmark of colorectal cancer (CRC). Accumulating evidence has suggested oxidative phosphorylation (OXPHOS) is upregulated to meet the demand for energy in tumor initiation and development. However, the role of OXPHOS and its regulatory mechanism in CRC tumorigenesis and progression remain unclear. Here, we reveal that Prohibitin 2 (PHB2) expression is elevated in precancerous adenomas and CRC, which promotes cell proliferation and tumorigenesis of CRC. Additionally, knockdown of PHB2 significantly reduces mitochondrial OXPHOS levels in CRC cells. Meanwhile, NADH:ubiquinone oxidoreductase core subunit S1 (NDUFS1), as a PHB2 binding partner, is screened and identified by co-immunoprecipitation and mass spectrometry. Furthermore, PHB2 directly interacts with NDUFS1 and they co-localize in mitochondria, which facilitates NDUFS1 binding to NADH:ubiquinone oxidoreductase core subunit V1 (NDUFV1), regulating the activity of complex I. Consistently, partial inhibition of complex I activity also abrogates the increased cell proliferation induced by overexpression of PHB2 in normal human intestinal epithelial cells and CRC cells. Collectively, these results indicate that increased PHB2 directly interacts with NDUFS1 to stabilize mitochondrial complex I and enhance its activity, leading to upregulated OXPHOS levels, thereby promoting cell proliferation and tumorigenesis of CRC. Our findings provide a new perspective for understanding CRC energy metabolism, as well as novel intervention strategies for CRC therapeutics.


Assuntos
Neoplasias Colorretais , NADH Desidrogenase , Fosforilação Oxidativa , Proibitinas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , NAD/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Oxirredutases/metabolismo , Proteínas Repressoras/metabolismo , Ubiquinona/metabolismo , Proibitinas/genética
11.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557887

RESUMO

NADH:ubiquinone oxidoreductase core subunit S8 (NDUFS8) is an essential core subunit and component of the iron-sulfur (FeS) fragment of mitochondrial complex I directly involved in the electron transfer process and energy metabolism. Pathogenic variants of the NDUFS8 are relevant to infantile-onset and severe diseases, including Leigh syndrome, cancer, and diabetes mellitus. With over 1000 nuclear genes potentially causing a mitochondrial disorder, the current diagnostic approach requires targeted molecular analysis, guided by a combination of clinical and biochemical features. Currently, there are only several studies on pathogenic variants of the NDUFS8 in Leigh syndrome, and a lack of literature on its precise mechanism in cancer and diabetes mellitus exists. Therefore, NDUFS8-related diseases should be extensively explored and precisely diagnosed at the molecular level with the application of next-generation sequencing technologies. A more distinct comprehension will be needed to shed light on NDUFS8 and its related diseases for further research. In this review, a comprehensive summary of the current knowledge about NDUFS8 structural function, its pathogenic mutations in Leigh syndrome, as well as its underlying roles in cancer and diabetes mellitus is provided, offering potential pathogenesis, progress, and therapeutic target of different diseases. We also put forward some problems and solutions for the following investigations.


Assuntos
Doença de Leigh , Humanos , Doença de Leigh/genética , Doença de Leigh/patologia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Mutação , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo
12.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077405

RESUMO

Brown adipose tissue (BAT) is functionally linked to skeletal muscle because both tissues originate from a common progenitor cell, but the precise mechanism controlling muscle-to-brown-fat communication is insufficiently understood. This report demonstrates that the immunoglobulin superfamily containing leucine-rich repeat (Islr), a marker of mesenchymal stromal/stem cells, is critical for the control of BAT mitochondrial function and whole-body energy homeostasis. The mice loss of Islr in BAT after cardiotoxin injury resulted in improved mitochondrial function, increased energy expenditure, and enhanced thermogenesis. Importantly, it was found that interleukin-6 (IL-6), as a myokine, participates in this process. Mechanistically, Islr interacts with NADH: Ubiquinone Oxidoreductase Core Subunit S2 (Ndufs2) to regulate IL-6 signaling; consequently, Islr functions as a brake that prevents IL-6 from promoting BAT activity. Together, these findings reveal a previously unrecognized mechanism for muscle-BAT cross talk driven by Islr, Ndufs2, and IL-6 to regulate energy homeostasis, which may be used as a potential therapeutic target in obesity.


Assuntos
Tecido Adiposo Marrom , Interleucina-6 , Tecido Adiposo Marrom/metabolismo , Animais , Diferenciação Celular , Metabolismo Energético , Homeostase , Imunoglobulinas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Leucina/metabolismo , Camundongos , Músculo Esquelético/metabolismo , NADH Desidrogenase/metabolismo , Termogênese
13.
Chemosphere ; 307(Pt 1): 135689, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35839988

RESUMO

Microbial electron output capacity is critical for organic contaminants biodegradation. Herein, original C. freundii JH could oxidate formate in anaerobic respiration, but lack the ability to degrade sulfamethoxazole (SMX). While the incorporation of Pd(0) could effectively improve the electron output via improving the combination between flavins and c-type cytochromes (c-Cyts), increasing the activities of key enzymes (formate dehydrogenase, hydrogenase, F0F1-ATPases), etc. More importantly, the presence of Pd(0) caused the NADH dehydrogenase (complex I) nearly in idle, and triggered the decrease of NADH/NAD+ ratio and increase of H+-efflux transmembrane gradient, eventually resulting in the electrons diverting from CoQ-involved long respiratory chain (decreasing from 91.67% to 36.25%) to FDH/Hases-based hydrogen-producing short chain (increasing from 22.44% to 84.88%), which further intensified the electron output. Above changes effectively launched and guaranteed the high-level SMX degradation by palladized C. freundii JH, alleviating the ecotoxicity of SMX in aquatic and terrestrial environments. These conclusions provided the new view to regulate the microbial electron output behaviors.


Assuntos
Formiato Desidrogenases , Hidrogenase , Adenosina Trifosfatases/metabolismo , Citocromos/metabolismo , Transporte de Elétrons , Elétrons , Flavinas/metabolismo , Formiato Desidrogenases/metabolismo , Formiatos , Hidrogênio/metabolismo , Hidrogenase/metabolismo , NAD/metabolismo , NADH Desidrogenase/metabolismo , Sulfametoxazol/metabolismo
14.
Stem Cell Res Ther ; 13(1): 256, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715829

RESUMO

The most frequent biochemical defect of inherited mitochondrial disease is isolated complex I deficiency. There is no cure for this disorder, and treatment is mainly supportive. In this study, we investigated the effects of human mesenchymal stem cells (MSCs) on skin fibroblast derived from three individuals with complex I deficiency carrying different pathogenic variants in mitochondrial DNA-encoded subunits (MT-ND3, MT-ND6). Complex I-deficient fibroblasts were transiently co-cultured with bone marrow-derived MSCs. Mitochondrial transfer was analysed by fluorescence labelling and validated by Sanger sequencing. Levels of reactive oxygen species (ROS) were measured using MitoSOX Red. Moreover, mitochondrial respiration was analysed by Seahorse XFe96 Extracellular Flux Analyzer. Levels of antioxidant proteins were investigated via immunoblotting. Co-culturing of complex I-deficient fibroblast with MSCs lowered cellular ROS levels. The effect on ROS production was more sustained compared to treatment of patient fibroblasts with culture medium derived from MSC cultures. Investigation of cellular antioxidant defence systems revealed an upregulation of SOD2 (superoxide dismutase 2, mitochondrial) and HO-1 (heme oxygenase 1) in patient-derived cell lines. This adaptive response was normalised upon MSC treatment. Moreover, Seahorse experiments revealed a significant improvement of mitochondrial respiration, indicating a mitigation of the oxidative phosphorylation defect. Experiments with repetitive MSC co-culture at two consecutive time points enhanced this effect. Our study indicates that MSC-based treatment approaches might constitute an interesting option for patients with mitochondrial DNA-encoded mitochondrial diseases. We suggest that this strategy may prove more promising for defects caused by mitochondrial DNA variants compared to nuclear-encoded defects.


Assuntos
Antioxidantes , Células-Tronco Mesenquimais , Antioxidantes/metabolismo , Linhagem Celular , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Homeostase , Humanos , Células-Tronco Mesenquimais/metabolismo , Doenças Mitocondriais , NADH Desidrogenase/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Respiração
15.
Ecotoxicol Environ Saf ; 239: 113593, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35567928

RESUMO

Endosulfan, a neurotoxic, highly persistent organochlorine insecticide, is known for its acute and chronic toxicity. We have shown that a single sublethal dose of endosulfan caused high induction of oxidative stress in the liver and brain by altering the antioxidant status, as shown by reduction in the antioxidant enzymes SOD, GPx, GST, GR along with increased ROS and lipid peroxidation. The cerebral region in the brain showed a higher level of oxidative stress than the cerebellum, revealing differential sensitivity of the brain regions to endosulfan. Depletion of natural antioxidants causes the imbalance of redox status in cells, and the role of mitochondrial distress causally related to the cellular oxidative stress in vivo is not well understood. We have shown that reduction in the mitochondrial NADH dehydrogenase activity in the brain is associated with the induction of ROS in endosulfan-treated rats. Although oxidative stress is induced in both the liver and brain, the oxidative damage to the brain has implications for the toxic outcome in view of the brain's lower antioxidant defenses and high oxygen consumption.


Assuntos
Antioxidantes , Endossulfano , NADH Desidrogenase , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catalase/metabolismo , Endossulfano/toxicidade , Glutationa/metabolismo , Peroxidação de Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mitocôndrias/patologia , NADH Desidrogenase/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
16.
mBio ; 13(3): e0048022, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35575513

RESUMO

Metabolic and growth arrest are primary drivers of antibiotic tolerance and persistence in clinically diverse bacterial pathogens. We recently showed that adenosine (ADO) suppresses bacterial growth under nutrient-limiting conditions. In the current study, we show that despite the growth-suppressive effect of ADO, extracellular ADO enhances antibiotic killing in both Gram-negative and Gram-positive bacteria by up to 5 orders of magnitude. The ADO-potentiated antibiotic activity is dependent on purine salvage and is paralleled with a suppression of guanosine tetraphosphate synthesis and the massive accumulation of ATP and GTP. These changes in nucleoside phosphates coincide with transient increases in rRNA transcription and proton motive force. The potentiation of antibiotic killing by ADO is manifested against bacteria grown under both aerobic and anaerobic conditions, and it is exhibited even in the absence of alternative electron acceptors such as nitrate. ADO potentiates antibiotic killing by generating proton motive force and can occur independently of an ATP synthase. Bacteria treated with an uncoupler of oxidative phosphorylation and NADH dehydrogenase-deficient bacteria are refractory to the ADO-potentiated killing, suggesting that the metabolic awakening induced by this nucleoside is intrinsically dependent on an energized membrane. In conclusion, ADO represents a novel example of metabolite-driven but growth-independent means to reverse antibiotic tolerance. Our investigations identify the purine salvage pathway as a potential target for the development of therapeutics that may improve infection clearance while reducing the emergence of antibiotic resistance. IMPORTANCE Antibiotic tolerance, which is a hallmark of persister bacteria, contributes to treatment-refractory infections and the emergence of heritable antimicrobial resistance. Drugs that reverse tolerance and persistence may become part of the arsenal to combat antimicrobial resistance. Here, we demonstrate that salvage of extracellular ADO reduces antibiotic tolerance in nutritionally stressed Escherichia coli, Salmonella enterica, and Staphylococcus aureus. ADO potentiates bacterial killing under aerobic and anaerobic conditions and takes place in bacteria lacking the ATP synthase. However, the sensitization to antibiotic killing elicited by ADO requires an intact NADH dehydrogenase, suggesting a requirement for an energized electron transport chain. ADO antagonizes antibiotic tolerance by activating ATP and GTP synthesis, promoting proton motive force and cellular respiration while simultaneously suppressing the stringent response. These investigations reveal an unprecedented role for purine salvage stimulation as a countermeasure of antibiotic tolerance and the emergence of antimicrobial resistance.


Assuntos
Antibacterianos , Salmonella enterica , Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , Escherichia coli/genética , Guanosina Trifosfato , Testes de Sensibilidade Microbiana , NADH Desidrogenase/metabolismo , Nucleosídeos/farmacologia , Salmonella enterica/metabolismo
17.
Cell Death Differ ; 29(10): 1996-2008, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35393510

RESUMO

Neurofibromin loss drives neoplastic growth and a rewiring of mitochondrial metabolism. Here we report that neurofibromin ablation dampens expression and activity of NADH dehydrogenase, the respiratory chain complex I, in an ERK-dependent fashion, decreasing both respiration and intracellular NAD+. Expression of the alternative NADH dehydrogenase NDI1 raises NAD+/NADH ratio, enhances the activity of the NAD+-dependent deacetylase SIRT3 and interferes with tumorigenicity in neurofibromin-deficient cells. The antineoplastic effect of NDI1 is mimicked by administration of NAD+ precursors or by rising expression of the NAD+ deacetylase SIRT3 and is synergistic with ablation of the mitochondrial chaperone TRAP1, which augments succinate dehydrogenase activity further contributing to block pro-neoplastic metabolic changes. These findings shed light on bioenergetic adaptations of tumors lacking neurofibromin, linking complex I inhibition to mitochondrial NAD+/NADH unbalance and SIRT3 inhibition, as well as to down-regulation of succinate dehydrogenase. This metabolic rewiring could unveil attractive therapeutic targets for neoplasms related to neurofibromin loss.


Assuntos
Neoplasias , Sirtuína 3 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , NAD/metabolismo , NADH Desidrogenase/metabolismo , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Respiração , Sirtuína 3/genética , Sirtuína 3/metabolismo , Succinato Desidrogenase/metabolismo
18.
Mol Med Rep ; 25(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35425997

RESUMO

Acute myeloid leukemia (AML) is a type of hematological malignancy caused by uncontrolled clonal proliferation of hematopoietic stem cells. The special energy metabolism mode of AML relying on oxidative phosphorylation is different from the traditional 'Warburg effect'. However, its mechanism is not clear. In the present study, it was demonstrated that the mRNA expression levels of NADH dehydrogenase subunit 1, 4 and 5 (ND1, ND4 and ND5) were upregulated in AML samples from The Cancer Genome Atlas database using the limma package in the R programming language. Reverse transcription­quantitative PCR and ELISA were used to verify the upregulation of ND1, ND4 and ND5 in clinical samples. Pan­cancer analysis revealed that the expression of ND1 was upregulated only in AML, ND2 was upregulated only in AML and thymoma, and ND4 was upregulated only in AML and kidney chromophobe. In the present study, it was demonstrated that silencing of ND1/4/5 could inhibit the proliferation of AML cells in transplanted tumor of nude mice. Additionally, it was found that oxidative phosphorylation and energy metabolism of AML cells were decreased after silencing of ND1/4/5. In conclusion, the present study suggested that ND1/4/5 may be involved in the regulation of oxidative phosphorylation metabolism in AML as a potential cancer­promoting factor.


Assuntos
Leucemia Mieloide Aguda , Fosforilação Oxidativa , Animais , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Nus , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Regulação para Cima
19.
Am J Ophthalmol ; 241: 262-271, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35271811

RESUMO

PURPOSE: To assess safety of gene therapy in G11778A Leber hereditary optic neuropathy (LHON). DESIGN: Phase 1 clinical trial. METHODS: Setting: single institution. PARTICIPANTS: Patients with G11778A LHON and chronic bilateral visual loss >12 months (group 1, n = 11), acute bilateral visual loss <12 months (group 2, n = 9), or unilateral visual loss (group 3, n = 8). INTERVENTION: unilateral intravitreal AAV2(Y444,500,730F)-P1ND4v2 injection with low, medium, high, and higher doses to worse eye for groups 1 and 2 and better eye for group 3. OUTCOME MEASURES: Best-corrected visual acuity (BCVA), adverse events, and vector antibody responses. Mean follow-up was 24 months (range, 12-36 months); BCVAs were compared with a published prospective natural history cohort with designated surrogate study and fellow eyes. RESULTS: Incident uveitis (8 of 28, 29%), the only vector-related adverse event, resulted in no attributable vision sequelae and was related to vector dose: 5 of 7 (71%) higher-dose eyes vs 3 of 21 (14%) low-, medium-, or high-dose eyes (P < .001). Incident uveitis requiring treatment was associated with increased serum AAV2 neutralizing antibody titers (p=0.007) but not serum AAV2 polymerase chain reaction. Improvements of ≥15-letter BCVA occurred in some treated and fellow eyes of groups 1 and 2 and some surrogate study and fellow eyes of natural history subjects. All study eyes (BCVA ≥20/40) in group 3 lost ≥15 letters within the first year despite treatment. CONCLUSIONS: G11778A LHON gene therapy has a favorable safety profile. Our results suggest that if there is an efficacy effect, it is likely small and not dose related. Demonstration of efficacy requires randomization of patients to a group not receiving vector in either eye.


Assuntos
Atrofia Óptica Hereditária de Leber , DNA Mitocondrial/genética , Dependovirus/genética , Dependovirus/metabolismo , Eletrorretinografia , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos , Humanos , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia , Estudos Prospectivos , Células Ganglionares da Retina , Tomografia de Coerência Óptica , Transtornos da Visão/etiologia , Acuidade Visual , Campos Visuais
20.
Cell Death Dis ; 12(9): 837, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489398

RESUMO

Mitochondrial retrograde signaling (mito-RTG) triggered by mitochondrial dysfunction plays a potential role in regulating tumor metabolic reprogramming and cellular sensitivity to radiation. Our previous studies showed phos-pyruvate dehydrogenase (p-PDH) and PDK1, which involved in aerobic glycolysis, were positively correlated with radioresistance, but how they initiate and work in the mito-RTG pathway is still unknown. Our further genomics analysis revealed that complex I components were widely downregulated in mitochondrial dysfunction model. In the present study, high expression of p-PDH was found in the complex I deficient cells and induced radioresistance. Mechanistically, complex I defects led to a decreased PDH both in cytoplasm and nucleus through [Ca2+]m-PDP1-PDH axis, and decreased PDH in nucleus promote DNA damage repair (DDR) response via reducing histone acetylation. Meanwhile, NDUFS1 (an important component of the complex I) overexpression could enhance the complex I activity, reverse glycolysis and resensitize cancer cells to radiation in vivo and in vitro. Furthermore, low NDUFS1 and PDH expression were validated to be correlated with poor tumor regression grading (TRG) in local advanced colorectal cancer (CRC) patients underwent neoadjuvant radiotherapy. Here, we propose that the [Ca2+]m-PDP1-PDH-histone acetylation retrograde signaling activated by mitochondrial complex I defects contribute to cancer cell radioresistance, which provides new insight in the understanding of the mito-RTG. For the first time, we reveal that NDUFS1 could be served as a promising predictor of radiosensitivity and modification of complex I function may improve clinical benefits of radiotherapy in CRC.


Assuntos
Cálcio/metabolismo , Neoplasias Colorretais/metabolismo , Histonas/metabolismo , Mitocôndrias/patologia , Proteína Fosfatase 2C/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Tolerância a Radiação , Transdução de Sinais , Acetilação , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Dano ao DNA , Reparo do DNA , Intervalo Livre de Doença , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Rotenona/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA