Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Carcinogenesis ; 44(2): 153-165, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-36591938

RESUMO

Pancreatic cancer (PaCa) is one of the most fatal malignancies of the digestive system, and most patients are diagnosed at advanced stages due to the lack of specific and effective tumor-related biomarkers for the early detection of PaCa. miR-492 has been found to be upregulated in PaCa tumor tissue and may serve as a potential therapeutic target. However, the molecular mechanisms by which miR-492 promotes PaCa tumor growth and progression are unclear. In this study, we first found that miR-492 in enhancer loci activated neighboring genes (NR2C1/NDUFA12/TMCC3) and promoted PaCa cell proliferation, migration, and invasion in vitro. We also observed that miR-492-activating genes significantly enriched the TGF-ß/Smad3 signaling pathway in PaCa to promote epithelial-mesenchymal transition (EMT) during tumorigenesis and development. Using CRISPR-Cas9 and ChIP assays, we further observed that miR-492 acted as an enhancer trigger, and that antagomiR-492 repressed PaCa tumorigenesis in vivo, decreased the expression levels of serum TGF-ß, and suppressed the EMT process by downregulating the expression of NR2C1. Our results demonstrate that miR-492, as an enhancer trigger, facilitates PaCa progression via the NR2C1-TGF-ß/Smad3 pathway.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , MicroRNAs/genética , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Neoplasias Pancreáticas/genética , Carcinogênese/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Neoplasias Pancreáticas
2.
Plant Physiol ; 190(3): 1997-2016, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35946757

RESUMO

Exposure of Arabidopsis (Arabidopsis thaliana) to 4°C imprints a cold memory that modulates gene expression in response to a second (triggering) stress stimulus applied several days later. Comparison of plastid transcriptomes of cold-primed and control plants directly before they were exposed to the triggering stimulus showed downregulation of several subunits of chloroplast NADPH dehydrogenase (NDH) and regulatory subunits of ATP synthase. NDH is, like proton gradient 5 (PGR5)-PGR5-like1 (PGRL1), a thylakoid-embedded, ferredoxin-dependent plastoquinone reductase that protects photosystem I and stabilizes ATP synthesis by cyclic electron transport (CET). Like PGRL1A and PGRL1B transcript levels, ndhA and ndhD transcript levels decreased during the 24-h long priming cold treatment. PGRL1 transcript levels were quickly reset in the postcold phase, but expression of ndhA remained low. The transcript abundances of other ndh genes decreased within the next days. Comparison of thylakoid-bound ascorbate peroxidase (tAPX)-free and transiently tAPX-overexpressing or tAPX-downregulating Arabidopsis lines demonstrated that ndh expression is suppressed by postcold induction of tAPX. Four days after cold priming, when tAPX protein accumulation was maximal, NDH activity was almost fully lost. Lack of the NdhH-folding chaperonin Crr27 (Cpn60ß4), but not lack of the NDH activity modulating subunits NdhM, NdhO, or photosynthetic NDH subcomplex B2 (PnsB2), strengthened priming regulation of zinc finger of A. thaliana 10, which is a nuclear-localized target gene of the tAPX-dependent cold-priming pathway. We conclude that cold-priming modifies chloroplast-to-nucleus stress signaling by tAPX-mediated suppression of NDH-dependent CET and that plastid-encoded NdhH, which controls subcomplex A assembly, is of special importance for memory stabilization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Arabidopsis/genética , Arabidopsis/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Cloroplastos/metabolismo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Transporte de Elétrons , Trifosfato de Adenosina/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteínas de Membrana/metabolismo
3.
Sci Rep ; 11(1): 3191, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542431

RESUMO

The Kif26a protein-coding gene has been identified as a negative regulator of the GDNF-Ret signaling pathway in enteric neurons. The aim of this study was to investigate the influence of genetic background on the phenotype of Kif26a-deficient (KO, -/-) mice. KO mice with both C57BL/6 and BALB/c genetic backgrounds were established. Survival rates and megacolon development were compared between these two strains of KO mice. Functional bowel assessments and enteric neuron histopathology were performed in the deficient mice. KO mice with the BALB/c genetic background survived more than 400 days without evidence of megacolon, while all C57BL/6 KO mice developed megacolon and died within 30 days. Local enteric neuron hyperplasia in the colon and functional bowel abnormalities were observed in BALB/c KO mice. These results indicated that megacolon and enteric neuron hyperplasia in KO mice are influenced by the genetic background. BALB/c KO mice may represent a viable model for functional gastrointestinal diseases such as chronic constipation, facilitating studies on the underlying mechanisms and providing a foundation for the development of treatments.


Assuntos
Sistema Nervoso Entérico/metabolismo , Intestino Delgado/metabolismo , Cinesinas/genética , Megacolo/genética , Neurônios/metabolismo , Animais , Sistema Nervoso Entérico/patologia , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Intestino Delgado/inervação , Intestino Delgado/patologia , Cinesinas/deficiência , Megacolo/metabolismo , Megacolo/mortalidade , Megacolo/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Neurônios/patologia , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais , Especificidade da Espécie , Análise de Sobrevida
4.
Nat Commun ; 11(1): 3172, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576838

RESUMO

Bone marrow engraftment of the hematopoietic stem and progenitor cells (HSPCs) involves homing to the vasculatures and lodgment to their niches. How HSPCs transmigrate from the vasculature to the niches is unclear. Here, we show that loss of diaphanous-related formin mDia2 leads to impaired engraftment of long-term hematopoietic stem cells and loss of competitive HSPC repopulation. These defects are likely due to the compromised trans-endothelial migration of HSPCs since their homing to the bone marrow vasculatures remained intact. Mechanistically, loss of mDia2 disrupts HSPC polarization and induced cytoplasmic accumulation of MAL, which deregulates the activity of serum response factor (SRF). We further reveal that beta2 integrins are transcriptional targets of SRF. Knockout of beta2 integrins in HSPCs phenocopies mDia2 deficient mice. Overexpression of SRF or beta2 integrins rescues HSPC engraftment defects associated with mDia2 deficiency. Our findings show that mDia2-SRF-beta2 integrin signaling is critical for HSPC lodgment to the niches.


Assuntos
Antígenos CD18/metabolismo , Forminas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Desidrogenase/metabolismo , Animais , Medula Óssea/metabolismo , Modelos Animais de Doenças , Forminas/genética , Transplante de Células-Tronco Hematopoéticas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , NADPH Desidrogenase/genética , Transdução de Sinais
5.
Stem Cells ; 38(1): 102-117, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31648392

RESUMO

Nuclear actin plays a critical role in mediating mesenchymal stem cell (MSC) fate commitment. In marrow-derived MSCs, the principal diaphanous-related formin Diaph3 (mDia2) is present in the nucleus and regulates intranuclear actin polymerization, whereas Diaph1 (mDia1) is localized to the cytoplasm and controls cytoplasmic actin polymerization. We here show that mDia2 can be used as a tool to query actin-lamin nucleoskeletal structure. Silencing mDia2 affected the nucleoskeletal lamin scaffold, altering nuclear morphology without affecting cytoplasmic actin cytoskeleton, and promoted MSC differentiation. Attempting to target intranuclear actin polymerization by silencing mDia2 led to a profound loss in lamin B1 nuclear envelope structure and integrity, increased nuclear height, and reduced nuclear stiffness without compensatory changes in other actin nucleation factors. Loss of mDia2 with the associated loss in lamin B1 promoted Runx2 transcription and robust osteogenic differentiation and suppressed adipogenic differentiation. Hence, mDia2 is a potent tool to query intranuclear actin-lamin nucleoskeletal structure, and its presence serves to retain multipotent stromal cells in an undifferentiated state.


Assuntos
Lamina Tipo B/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Desidrogenase/metabolismo , Actinas/metabolismo , Animais , Diferenciação Celular/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Técnicas de Silenciamento de Genes , Camundongos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , NADPH Desidrogenase/deficiência , NADPH Desidrogenase/genética , Membrana Nuclear/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese
6.
Bull Exp Biol Med ; 167(5): 694-697, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31630304

RESUMO

Reaction of mast cells of adult male Wistar rats (n=15) in the zone of polypropylene mesh fixation was studied by histochemical, immunohistochemical, and traditional morphological methods on days 1, 5, 10, and 30 after implantation. Immediately after the intervention, mast cells stimulated the processes aimed at wound healing. Secretion of mast cells was clearly regulatory. These cells migrated to the zone of injury for subsequent activation of their function. The number of cNOS+ mast cells near the polypropylene mesh was maximum on day 1 and the number of iNOS+ mast cells peaked on day 5 of the experiment, which probably represented a compensatory reaction. Presumably, stimulation of fibrillogenesis was largely due to the activatory effect of mast cells on the fibroblast function, but not to collagen production by these mast cells.


Assuntos
Materiais Biocompatíveis/farmacologia , Expressão Gênica/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Polipropilenos/farmacologia , Telas Cirúrgicas , Parede Abdominal/cirurgia , Animais , Catecolaminas/imunologia , Catecolaminas/metabolismo , Movimento Celular/efeitos dos fármacos , Colágeno/genética , Colágeno/imunologia , Inflamação , Masculino , Mastócitos/imunologia , NADPH Desidrogenase/genética , NADPH Desidrogenase/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/imunologia , Ratos , Ratos Wistar , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia
7.
Appl Microbiol Biotechnol ; 103(12): 5015-5022, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31044312

RESUMO

Old Yellow Enzymes play key roles in several cellular processes and have become an important family of enzymes with biotechnological potential. One of the major challenges of biotechnology consists of the bioremediation of co-polluted soils with organic and inorganic compounds. In co-contaminated areas, chromium normally exists in its more toxic and carcinogenic form Cr(VI). Microorganisms can reduce this metal to the insoluble and less toxic Cr(III). Streptomyces sp. M7 is a strain able to efficiently bioremediate polluted soils with γ-hexachlorocyclohexane and Cr(VI). The complete degradation pathway for γ-hexachlorocyclohexane was recently elucidated in this strain. In the present work, we confirmed the ability of Streptomyces sp. M7 to eliminate a high percentage of Cr(VI) from a synthetic culture medium. After a transcriptional study in the presence of Cr(VI), we also report the molecular cloning of a gene coding for an Old Yellow Enzyme with chromate reductase activity. Our results suggest that the elimination of Cr(VI) by Streptomyces sp. M7 is directly related to the activity of this Old Yellow Enzyme. The importance of our work is in identifying for the first time an Old Yellow Enzyme with chromate reductase activity in Streptomyces and Actinobacteria. Finding this enzyme helps understand chromium homeostasis in Streptomyces sp. M7, in addition to opening a new research window related to Old Yellow Enzymes from Actinobacteria.


Assuntos
Biodegradação Ambiental , Cromo/metabolismo , Meios de Cultura/química , NADPH Desidrogenase/metabolismo , Streptomyces/enzimologia , Redes e Vias Metabólicas , NADPH Desidrogenase/genética , Oxirredução , Oxirredutases/metabolismo , Microbiologia do Solo , Streptomyces/genética
8.
Plant Physiol ; 172(2): 1259-1272, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27550998

RESUMO

Systemic signaling of upper leaves promotes the induction of photosynthesis in lower leaves, allowing more efficient use of light flecks. However, the nature of the systemic signals has remained elusive. Here, we show that preillumination of the tomato (Solanum lycopersicum) shoot apex alone can accelerate photosynthetic induction in distal leaves and that this process is light quality dependent, where red light promotes and far-red light delays photosynthetic induction. Grafting the wild-type rootstock with a phytochome B (phyB) mutant scion compromised light-induced photosynthetic induction as well as auxin biosynthesis in the shoot apex, auxin signaling, and RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1)-dependent hydrogen peroxide (H2O2) production in the systemic leaves. Light-induced systemic H2O2 production in the leaves of the rootstock also was absent in plants grafted with an auxin-resistant diageotropica (dgt) mutant scion. Cyclic electron flow around photosystem I and associated ATP production were increased in the systemic leaves by exposure of the apex to red light. This enhancement was compromised in the systemic leaves of the wild-type rootstock with phyB and dgt mutant scions and also in RBOH1-RNA interference leaves with the wild type as scion. Silencing of ORANGE RIPENING, which encodes NAD(P)H dehydrogenase, compromised the systemic induction of photosynthesis. Taken together, these results demonstrate that exposure to red light triggers phyB-mediated auxin synthesis in the apex, leading to H2O2 generation in systemic leaves. Enhanced H2O2 levels in turn activate cyclic electron flow and ATP production, leading to a faster induction of photosynthetic CO2 assimilation in the systemic leaves, allowing plants better adaptation to the changing light environment.


Assuntos
Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Fotossíntese/efeitos da radiação , Fitocromo B/metabolismo , Brotos de Planta/efeitos da radiação , Solanum lycopersicum/efeitos da radiação , Trifosfato de Adenosina/biossíntese , Transporte de Elétrons/genética , Transporte de Elétrons/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mutação , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , NADPH Oxidases , Fotossíntese/genética , Fitocromo B/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Plant Physiol ; 171(1): 125-38, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27002061

RESUMO

Prior studies with Nicotiana and Arabidopsis described failed assembly of the chloroplastic NDH [NAD(P)H dehydrogenase] supercomplex by serial mutation of several subunit genes. We examined the properties of Zea mays leaves containing Mu and Ds insertions into nuclear gene exons encoding the critical o- and n-subunits of NDH, respectively. In vivo reduction of plastoquinone in the dark was sharply diminished in maize homozygous mutant compared to normal leaves but not to the extreme degree observed for the corresponding lesions in Arabidopsis. The net carbon assimilation rate (A) at high irradiance and saturating CO2 levels was reduced by one-half due to NDH mutation in maize although no genotypic effect was evident at very low CO2 levels. Simultaneous assessment of chlorophyll fluorescence and A in maize at low (2% by volume) and high (21%) O2 levels indicated the presence of a small, yet detectable, O2-dependent component of total linear photosynthetic electron transport in 21% O2 This O2-dependent component decreased with increasing CO2 level indicative of photorespiration. Photorespiration was generally elevated in maize mutant compared to normal leaves. Quantification of the proportion of total electron transport supporting photorespiration enabled estimation of the bundle sheath cell CO2 concentration (Cb) using a simple kinetic model of ribulose bisphosphate carboxylase/oxygenase function. The A versus Cb relationships overlapped for normal and mutant lines consistent with occurrence of strictly CO2-limited photosynthesis in the mutant bundle sheath cell. The results are discussed in terms of a previously reported CO2 concentration model [Laisk A, Edwards GE (2000) Photosynth Res 66: 199-224].


Assuntos
Dióxido de Carbono/metabolismo , NADPH Desidrogenase/metabolismo , NADPH Desidrogenase/fisiologia , NAD/metabolismo , Zea mays/metabolismo , Alelos , Arabidopsis/metabolismo , Carbono/metabolismo , Dióxido de Carbono/análise , Núcleo Celular , Clorofila , Cloroplastos/metabolismo , Escuridão , Transporte de Elétrons , Éxons , Genótipo , Mutação , NAD/genética , NADPH Desidrogenase/genética , Oxirredução , Oxigênio/análise , Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/análise , Folhas de Planta/metabolismo , Plastoquinona/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Nicotiana/metabolismo , Zea mays/genética , Zea mays/efeitos da radiação
10.
J Exp Bot ; 66(21): 6877-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26276865

RESUMO

In land plants, the NAD(P)H dehydrogenase (NDH) complex reduces plastoquinones and drives cyclic electron flow (CEF) around PSI. It also produces extra ATP for photosynthesis and improves plant fitness under conditions of abiotic environmental stress. To elucidate the role of CEF in salt tolerance of the photosynthetic apparatus, Na(+) concentration, chlorophyll fluorescence, and expression of NDH B and H subunits, as well as of genes related to cellular and vacuolar Na(+) transport, were monitored. The salt-tolerant Glycine max (soybean) variety S111-9 exhibited much higher CEF activity and ATP accumulation in light than did the salt-sensitive variety Melrose, but similar leaf Na(+) concentrations under salt stress. In S111-9 plants, ndhB and ndhH were highly up-regulated under salt stress and their corresponding proteins were maintained at high levels or increased significantly. Under salt stress, S111-9 plants accumulated Na(+) in the vacuole, but Melrose plants accumulated Na(+) in the chloroplast. Compared with Melrose, S111-9 plants also showed higher expression of some genes associated with Na(+) transport into the vacuole and/or cell, such as genes encoding components of the CBL10 (calcineurin B-like protein 10)-CIPK24 (CBL-interacting protein kinase 24)-NHX (Na(+)/H(+) antiporter) and CBL4 (calcineurin B-like protein 4)-CIPK24-SOS1 (salt overly sensitive 1) complexes. Based on the findings, it is proposed that enhanced NDH-dependent CEF supplies extra ATP used to sequester Na(+) in the vacuole. This reveals an important mechanism for salt tolerance in soybean and provides new insights into plant resistance to salt stress.


Assuntos
Trifosfato de Adenosina/biossíntese , Glycine max/fisiologia , Tolerância ao Sal , Sódio/metabolismo , Transporte de Elétrons , Células do Mesofilo/metabolismo , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Estresse Fisiológico , Vacúolos/metabolismo
11.
Am J Physiol Heart Circ Physiol ; 307(3): H379-90, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24906914

RESUMO

We have previously shown that RhoA-mediated actin polymerization stimulates smooth muscle cell (SMC)-specific transcription by regulating the nuclear localization of the myocardin-related transcription factors (MRTFs). On the basis of the recent demonstration that nuclear G-actin regulates MRTF nuclear export and observations from our laboratory and others that the RhoA effector, mDia2, shuttles between the nucleus and cytoplasm, we investigated whether nuclear RhoA signaling plays a role in regulating MRTF activity. We identified sequences that control mDia2 nuclear-cytoplasmic shuttling and used mDia2 variants to demonstrate that the ability of mDia2 to fully stimulate MRTF nuclear accumulation and SMC-specific gene transcription was dependent on its localization to the nucleus. To test whether RhoA signaling promotes nuclear actin polymerization, we established a fluorescence recovery after photobleaching (FRAP)-based assay to measure green fluorescent protein-actin diffusion in the nuclear compartment. Nuclear actin FRAP was delayed in cells expressing nuclear-targeted constitutively active mDia1 and mDia2 variants and in cells treated with the polymerization inducer, jasplakinolide. In contrast, FRAP was enhanced in cells expressing a nuclear-targeted variant of mDia that inhibits both mDia1 and mDia2. Treatment of 10T1/2 cells with sphingosine 1-phosphate induced RhoA activity in the nucleus and forced nuclear localization of RhoA or the Rho-specific guanine nucleotide exchange factor (GEF), leukemia-associated RhoGEF, enhanced the ability of these proteins to stimulate MRTF activity. Taken together, these data support the emerging idea that RhoA-dependent nuclear actin polymerization has important effects on transcription and nuclear structure.


Assuntos
Núcleo Celular/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/genética , Actinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Aorta Torácica/enzimologia , Células COS , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular , Chlorocebus aethiops , Recuperação de Fluorescência Após Fotodegradação , Forminas , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Interferência de RNA , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Tempo , Transativadores/genética , Fatores de Transcrição/genética , Transfecção , Proteína rhoA de Ligação ao GTP
12.
PLoS One ; 9(2): e90018, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587191

RESUMO

BACKGROUND: Fractional exhaled nitric oxide is elevated in allergen-provoked asthma. The cellular and molecular source of the elevated fractional exhaled nitric oxide is, however, uncertain. OBJECTIVE: To investigate whether fractional exhaled nitric oxide is associated with increased airway epithelial inducible nitric oxide synthase (iNOS) in allergen-provoked asthma. METHODS: Fractional exhaled nitric oxide was measured in healthy controls (n = 14) and allergic asthmatics (n = 12), before and after bronchial provocation to birch pollen out of season. Bronchoscopy was performed before and 24 hours after allergen provocation. Bronchial biopsies and brush biopsies were processed for nitric oxide synthase activity staining with nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), iNOS immunostaining, or gene expression analysis of iNOS by real-time PCR. NADPH-d and iNOS staining were quantified using automated morphometric analysis. RESULTS: Fractional exhaled nitric oxide and expression of iNOS mRNA were significantly higher in un-provoked asthmatics, compared to healthy controls. Allergic asthmatics exhibited a significant elevation of fractional exhaled nitric oxide after allergen provocation, as well as an accumulation of airway eosinophils. Moreover, nitric oxide synthase activity and expression of iNOS was significantly increased in the bronchial epithelium of asthmatics following allergen provocation. Fractional exhaled nitric oxide correlated with eosinophils and iNOS expression. CONCLUSION: Higher fractional exhaled nitric oxide concentration among asthmatics is associated with elevated iNOS mRNA in the bronchial epithelium. Furthermore, our data demonstrates for the first time increased expression and activity of iNOS in the bronchial epithelium after allergen provocation, and thus provide a mechanistic explanation for elevated fractional exhaled nitric oxide in allergen-provoked asthma.


Assuntos
Alérgenos , Asma/enzimologia , Brônquios/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/biossíntese , Pólen , RNA Mensageiro/metabolismo , Adulto , Asma/patologia , Brônquios/patologia , Testes de Provocação Brônquica , Estudos de Casos e Controles , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Expiração , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Óxido Nítrico Sintase Tipo II/genética , RNA Mensageiro/genética , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia
13.
Proc Natl Acad Sci U S A ; 110(14): 5701-6, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23509265

RESUMO

The chloroplast NAD(P)H dehydrogenase (NDH) C (ndhC) and ndhK genes partially overlap and are cotranscribed in many plants. We previously reported that the tobacco ndhC/K genes are translationally coupled but produce NdhC and NdhK, subunits of the NDH complex, in similar amounts. Generally, translation of the downstream cistron in overlapping mRNAs is very low. Hence, these findings suggested that the ndhK cistron is translated not only from the ndhC 5'UTR but also by an additional pathway. Using an in vitro translation system from tobacco chloroplasts, we report here that free ribosomes enter, with formylmethionyl-tRNA(fMet), at an internal AUG start codon that is located in frame in the middle of the upstream ndhC cistron, translate the 3' half of the ndhC cistron, reach the ndhK start codon, and that, at that point, some ribosomes resume ndhK translation. We detected a peptide corresponding to a 57-amino-acid product encoded by the sequence from the internal AUG to the ndhC stop codon. We propose a model in which the internal initiation site AUG is not designed for synthesizing a functional isoform but for delivering additional ribosomes to the ndhK cistron to produce NdhK in the amount required for the assembly of the NDH complex. This pathway is a unique type of translation to produce protein in the needed amount with the cost of peptide synthesis.


Assuntos
Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , NADPH Desidrogenase/genética , Nicotiana/genética , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/genética , Códon de Iniciação/genética , Eletroforese em Gel de Poliacrilamida , Fluorescência , Regulação da Expressão Gênica de Plantas/genética , Genes/genética , Modelos Genéticos , NADPH Desidrogenase/metabolismo , Biossíntese de Proteínas/genética , RNA Mensageiro/metabolismo
14.
Fiziol Zh (1994) ; 58(5): 44-55, 2012.
Artigo em Ucraniano | MEDLINE | ID: mdl-23233946

RESUMO

The distribution of Fos-immunoreactive (Fos-ir) and NADPH Diaphorase reactive (NADPH-dr-) neurons in the different subnuclei of amygdala and insular cortex (on the level -2,12 to -3,14 mm from bregma), and the associated changes of heart rate (HR) in intact, food-deprivated and executed food-procuring movements of rats were studied. In comparison with other groups of animals, the mean number of the Fos-ir neurons in the central nucleus of amygdala (Ce) and the insular cortex (GI/DI) at all studied levels was significantly greater in the executed food-procuring movements in rats. The main focus of localization of the Fos-ir neurons was found in lateral part of the Ce (58.5 +/- 1.9 units in 40-microm-thick section) at the level -2.56 mm. The mean number of Fos-ir neurons was significantly greater also in the lateral and capsular parts of the Ce. The mean number of Fos-ir neurons in the GI/DI was 165.5 +/- 3.2 cells in section. The number and density of NADPH-d reactive neurons was not significantly different in the brain structures of all animal groups studied. The double stained neurons (Fos-ir + NADPH-dr) were registered in medial, basolateral, anterior cortical amygdaloid nuclei and substantia innominata (SI) in rats after realization food-procuring movements. It was found that realization of food-procuring movements by the forelimb during repeated sessions was accompanied with the gradual decline of mean values of the HR (from 5% to 12% of control level) with subsequent renewal of them to the initial values (tonic component). The analysis of dynamics of the HR changes during realization of separate purposeful motion has shown the transient period of the HR suppression (500 ms), which coincided with the terminal phase of grasping of food pellet (phasic component). We suggest that the revealed focuses of localization of Fos-ir neurons in the lateral and medial subregions of amigdaloid Ce and also GI/DI, and SI testified that these structures of brain are involved in generation of the goal-directed motions. Direct projections of these subnuclei (and hypothalamus) to the cardiovascular centers of the medulla determine the associated regulation of the cardiovascular system function in the period of realization of the goal-directed motions in animals.


Assuntos
Tonsila do Cerebelo/fisiologia , Comportamento Apetitivo/fisiologia , Frequência Cardíaca/fisiologia , NADPH Desidrogenase/genética , Proteínas Proto-Oncogênicas c-fos/genética , Tonsila do Cerebelo/citologia , Animais , Contagem de Células , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Privação de Alimentos , Expressão Gênica , Coração/fisiologia , Masculino , Bulbo/citologia , Bulbo/fisiologia , Motivação/fisiologia , Movimento/fisiologia , NADPH Desidrogenase/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Substância Inominada/citologia , Substância Inominada/fisiologia
15.
Fiziol Zh (1994) ; 56(4): 86-95, 2010.
Artigo em Ucraniano | MEDLINE | ID: mdl-20968041

RESUMO

The comparative study of expression of early c-fos-gene (marker of neuronal activation) and NADPH-diaphorase reactivity (NADPH-dr) was performed in the cervical spinal cord of rats in the control (intact) animal, in the state of starvation and after realization of long-lasting (repeated 4 to 12 times per minute for 30 min) motivated stereotyped food-procuring forelimb movements. In comparison with control rats; in the starving rats or rats showed forelimb movement to reach-to-grasp the food, the number of Fos-immunoreactive (Fos-ir) cells in the dorsal and ventral horns of a 40-microm-thick slice was significantly greater (P < 0.05). The number of Fosir neurons in the starving state clearly exceeded that in the most layers after realization of movements. Increase of Fos immunoreactivity in the superficial (2i, 3) and deeper (4, 5) layers of the dorsal horn was initiated, evidently, by signals from peripheral and supraspinal structures. We also found labelled cells within layers 6-8, and 9 demonstrating the activity of interneurons and motoneurons directly involved into generation of operant forelimb movements. According to our data, high density of NADPH-dr/NO-generating neurons in the C6/C7 segments are observed in the substance gelatinosa (layer 2i) and layers 7 and 10. NADPH-dr cells and Fos-ir neurons were intermixed within the layers but did not demonstrate double-labelling. It is possible to suggest that NADPH-dr/NO-generating cells of the spinal cord did not operate under realization of the studied operant reflexes, which did not include nociceptive component.


Assuntos
Comportamento Alimentar/fisiologia , Atividade Motora/fisiologia , Neurônios/fisiologia , Medula Espinal/fisiologia , Comportamento Estereotipado/fisiologia , Animais , Condicionamento Operante , Privação de Alimentos/fisiologia , Interneurônios/enzimologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Atividade Motora/genética , Neurônios Motores/enzimologia , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , NADPH Desidrogenase/genética , Neurônios/enzimologia , Neurônios/metabolismo , Óxido Nítrico/biossíntese , Proteínas Proto-Oncogênicas c-fos/genética , Ratos , Ratos Wistar , Medula Espinal/enzimologia , Medula Espinal/metabolismo
16.
Radiat Res ; 174(2): 177-84, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20681784

RESUMO

NFE2-related factor 2 (Nrf2), which belongs to the cap "n" collar family of basic region leucine zipper transcription factors, is a key protein in the coordinated transcriptional induction of expression of various antioxidant genes. The purpose of this study was to analyze the expression of Nrf2 target genes, such as heme oxygenase 1 (HO-1), ferritin heavy polypeptide 1 (FTH1), NAD(P)H dehydrogenase, quinone 1 (NQO1), glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, glutathione reductase (GSR) and thioredoxin reductase 1 (TXNRD1), after X irradiation of CD34(+) cells that were prepared from human placental/umbilical cord blood hematopoietic stem cells (HSCs). We evaluated the relationship between radiosensitivity and expression of Nrf2 target genes in HSCs. The number of colony-forming cells derived from 2-Gy-irradiated HSCs decreased to approximately 20% of the nonirradiated control. At the same time, the mRNA expression of HO-1, FTH1, NQO1, GSR and TXNRD1 was significantly increased after X irradiation. A statistically significant negative correlation was observed between the surviving fraction of HSCs and the intrinsic NQO1 mRNA expression, indicating that HSCs in which NQO1 mRNA levels are low may also be radioresistant. The present results suggest that the antioxidant system associated with Nrf2 is involved in the radiosensitivity of HSCs.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Fator 2 Relacionado a NF-E2/genética , Apoferritinas/genética , Apoferritinas/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/efeitos da radiação , Glutationa Redutase/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/enzimologia , Células-Tronco Hematopoéticas/efeitos da radiação , Heme Oxigenase-1/genética , Heme Oxigenase-1/efeitos da radiação , Humanos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/efeitos da radiação , NADPH Desidrogenase/genética , NADPH Desidrogenase/efeitos da radiação , RNA Mensageiro/genética , Tolerância a Radiação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tiorredoxina Redutase 1/genética , Raios X
17.
J Vet Diagn Invest ; 22(3): 458-62, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20453228

RESUMO

In Europe, cystic echinococcosis is rare in horses and is mostly diagnosed at slaughter or postmortem examination. Equine cystic echinococcosis can be caused by various Echinococcus taxa, but only Echinococcus equinus (the "horse strain") is known to produce fertile cysts. In Europe, E. equinus appears to be endemic in Great Britain, Ireland, Spain, and Italy and has sporadically been reported in Belgium and Switzerland. The present report describes the first case of a molecularly confirmed E. equinus infection in a horse foaled and raised in Germany. The 19-year-old mare was presented for examination of inappetence, emaciation, and respiratory symptoms. X-ray radiographs of the thorax showed 2 well-circumscribed tumor-like masses, each approximately 10 cm in diameter in the caudal lung field. The horse was euthanized as its condition rapidly deteriorated. Necropsy revealed 2 thick-walled hydatid cysts, each 7-8 cm in diameter in the lung. The tri-layered cyst walls consisted of an outer adventitial layer, a laminated acellular intermediate layer, and an inner germinal membrane. Grossly, the cysts contained a clear, amber liquid with hydatid sand. Light microscopy of the hydatid sand revealed free protoscoleces, intact and ruptured brood capsules, calcareous corpuscles, and debris. Samples of protoscoleces underwent molecular characterization, and the diagnosis of E. equinus was confirmed by restriction fragment length polymorphism-polymerase chain reaction and sequence analysis of the complete mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 1 gene.


Assuntos
Equinococose/veterinária , Echinococcus/isolamento & purificação , Doenças dos Cavalos/parasitologia , Animais , DNA de Helmintos/genética , Equinococose/diagnóstico , Equinococose/diagnóstico por imagem , Echinococcus/enzimologia , Echinococcus/genética , Eutanásia Animal , Feminino , Alemanha , Doenças dos Cavalos/diagnóstico por imagem , Cavalos , NADPH Desidrogenase/genética , Polimorfismo de Fragmento de Restrição , Radiografia Torácica
18.
Plant Cell ; 22(1): 221-33, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20081115

RESUMO

Cyclic electron flow (CEFI) has been proposed to balance the chloroplast energy budget, but the pathway, mechanism, and physiological role remain unclear. We isolated a new class of mutant in Arabidopsis thaliana, hcef for high CEF1, which shows constitutively elevated CEF1. The first of these, hcef1, was mapped to chloroplast fructose-1,6-bisphosphatase. Crossing hcef1 with pgr5, which is deficient in the antimycin A-sensitive pathway for plastoquinone reduction, resulted in a double mutant that maintained the high CEF1 phenotype, implying that the PGR5-dependent pathway is not involved. By contrast, crossing hcef1 with crr2-2, deficient in thylakoid NADPH dehydrogenase (NDH) complex, results in a double mutant that is highly light sensitive and lacks elevated CEF1, suggesting that NDH plays a direct role in catalyzing or regulating CEF1. Additionally, the NdhI component of the NDH complex was highly expressed in hcef1, whereas other photosynthetic complexes, as well as PGR5, decreased. We propose that (1) NDH is specifically upregulated in hcef1, allowing for increased CEF1; (2) the hcef1 mutation imposes an elevated ATP demand that may trigger CEF1; and (3) alternative mechanisms for augmenting ATP cannot compensate for the loss of CEF1 through NDH.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , NADPH Desidrogenase/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Clonagem Molecular , Transporte de Elétrons , Teste de Complementação Genética , Luz , Mutagênese , Mutação , NADPH Desidrogenase/genética , Oxirredução , Complexo de Proteína do Fotossistema I/genética , Tilacoides/genética , Tilacoides/metabolismo
19.
Microbiology (Reading) ; 156(Pt 5): 1335-1341, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20110293

RESUMO

Corynebacterium glutamicum cgR_2930 (cyeR) encodes a transcriptional regulator of the ArsR family. Its gene product, CyeR, was shown here to repress the expression of cyeR and the cgR_2931 (cye1)-cgR_2932 operon, which is located upstream of cyeR in the opposite orientation. The cye1 gene encodes an Old Yellow Enzyme family protein, members of which have been implicated in the oxidative stress response. CyeR binds to the intergenic region between cyeR and cye1. Expression of cyeR and cye1 is induced by oxidative stress, and the DNA-binding activity of CyeR is impaired by oxidants such as diamide and H(2)O(2). CyeR contains two cysteine residues, Cys-36 and Cys-43. Whereas mutation of the former (C36A) has no effect on the redox regulation of CyeR activity, mutating the latter (C43A, C43S) abolishes the DNA-binding activity of CyeR. Cys-43 of CyeR and its C36A derivative are modified upon treatment with diamide, suggesting an important role for Cys-43 in the redox regulation of CyeR activity. It is concluded that CyeR is a redox-sensing transcriptional regulator that controls cye1 expression.


Assuntos
Proteínas de Bactérias/fisiologia , Corynebacterium glutamicum/genética , Regulação Bacteriana da Expressão Gênica , NADPH Desidrogenase/genética , Proteínas Repressoras/fisiologia , Proteínas de Bactérias/genética , Sítios de Ligação , Corynebacterium glutamicum/metabolismo , Cisteína/metabolismo , DNA Bacteriano/metabolismo , Regulação Enzimológica da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , NADPH Desidrogenase/metabolismo , Óperon , Oxirredução , Estresse Oxidativo
20.
Physiol Behav ; 99(1): 67-77, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-19857504

RESUMO

Olfactory information modulates innate and social behaviors in rodents and other species. Studies have shown that the medial nucleus of the amygdala (MEA) and the ventral premammillary nucleus (PMV) are recruited by conspecific odor stimulation. However, the chemical identity of these neurons is not determined. We exposed sexually inexperienced male rats to female or male odors and assessed Fos immunoreactivity (Fos-ir) in neurons expressing NADPH diaphorase activity (NADPHd, a nitric oxide synthase), neuropeptide urocortin 3, or glutamic acid decarboxylase mRNA (GAD-67, a GABA-synthesizing enzyme) in the MEA and PMV. Male and female odors elicited Fos-ir in the MEA and PMV neurons, but the number of Fos-immunoreactive neurons was higher following female odor exposure, in both nuclei. We found no difference in odor induced Fos-ir in the MEA and PMV comparing fed and fasted animals. In the MEA, NADPHd neurons colocalized Fos-ir only in response to female odors. In addition, urocortin 3 neurons comprise a distinct population and they do not express Fos-ir after conspecific odor stimulation. We found that 80% of neurons activated by male odors coexpressed GAD-67 mRNA. Following female odor, 50% of Fos neurons coexpressed GAD-67 mRNA. The PMV expresses very little GAD-67, and virtually no colocalization with Fos was observed. We found intense NADPHd activity in PMV neurons, some of which coexpressed Fos-ir after exposure to both odors. The majority of the PMV neurons expressing NADPHd colocalized cocaine- and amphetamine-regulated transcript (CART). Our findings suggest that female and male odors engage distinct neuronal populations in the MEA, thereby inducing contextualized behavioral responses according to olfactory cues. In the PMV, NADPHd/CART neurons respond to male and female odors, suggesting a role in neuroendocrine regulation in response to olfactory cues.


Assuntos
Tonsila do Cerebelo/citologia , Hipotálamo Posterior/citologia , Neurônios/fisiologia , Odorantes , Proteínas Oncogênicas v-fos/metabolismo , Caracteres Sexuais , Animais , Jejum/fisiologia , Feminino , Regulação da Expressão Gênica/fisiologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hipotálamo Posterior/anormalidades , Masculino , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Condutos Olfatórios/metabolismo , RNA Mensageiro/metabolismo , Ratos , Urocortinas/genética , Urocortinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA