Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 619
Filtrar
1.
J Neuromuscul Dis ; 11(2): 485-491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217609

RESUMO

Background: The NADH dehydrogenase [ubiquinone] iron-sulfur protein 6 (NDUFS6) gene encodes for an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I). Bi-allelic NDUFS6 variants have been linked with a severe disorder mostly reported as a lethal infantile mitochondrial disease (LMID) or Leigh syndrome (LS). Objective: Here, we identified a homozygous variant (c.309 + 5 G > A) in NDUFS6 in one male patient with axonal neuropathy accompanied by loss of small fibers in skin biopsy and further complicated by optic atrophy and borderline intellectual disability. Methods: To address the pathogenicity of the variant, biochemical studies (mtDNA copy number quantification, ELISA, Proteomic profiling) of patient-derived leukocytes were performed. Results: The analyses revealed loss of NDUFS6 protein associated with a decrease of three further mitochondrial NADH dehydrogenase subunit/assembly proteins (NDUFA12, NDUFS4 and NDUFV1). Mitochondrial copy number is not altered in leukocytes and the mitochondrial biomarker GDF15 is not significantly changed in serum. Conclusions: Hence, our combined clinical and biochemical data strengthen the concept of NDUFS6 being causative for a very rare form of axonal neuropathy associated with optic atrophy and borderline intellectual disability, and thus expand (i) the molecular genetic landscape of neuropathies and (ii) the clinical spectrum of NDUFS6-associated phenotypes.


Assuntos
Deficiência Intelectual , Atrofia Óptica , Humanos , Masculino , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , NADPH Desidrogenase/metabolismo , Atrofia Óptica/genética , Proteômica
2.
Carcinogenesis ; 44(2): 153-165, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-36591938

RESUMO

Pancreatic cancer (PaCa) is one of the most fatal malignancies of the digestive system, and most patients are diagnosed at advanced stages due to the lack of specific and effective tumor-related biomarkers for the early detection of PaCa. miR-492 has been found to be upregulated in PaCa tumor tissue and may serve as a potential therapeutic target. However, the molecular mechanisms by which miR-492 promotes PaCa tumor growth and progression are unclear. In this study, we first found that miR-492 in enhancer loci activated neighboring genes (NR2C1/NDUFA12/TMCC3) and promoted PaCa cell proliferation, migration, and invasion in vitro. We also observed that miR-492-activating genes significantly enriched the TGF-ß/Smad3 signaling pathway in PaCa to promote epithelial-mesenchymal transition (EMT) during tumorigenesis and development. Using CRISPR-Cas9 and ChIP assays, we further observed that miR-492 acted as an enhancer trigger, and that antagomiR-492 repressed PaCa tumorigenesis in vivo, decreased the expression levels of serum TGF-ß, and suppressed the EMT process by downregulating the expression of NR2C1. Our results demonstrate that miR-492, as an enhancer trigger, facilitates PaCa progression via the NR2C1-TGF-ß/Smad3 pathway.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , MicroRNAs/genética , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Neoplasias Pancreáticas/genética , Carcinogênese/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Neoplasias Pancreáticas
3.
Plant Physiol ; 190(3): 1997-2016, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35946757

RESUMO

Exposure of Arabidopsis (Arabidopsis thaliana) to 4°C imprints a cold memory that modulates gene expression in response to a second (triggering) stress stimulus applied several days later. Comparison of plastid transcriptomes of cold-primed and control plants directly before they were exposed to the triggering stimulus showed downregulation of several subunits of chloroplast NADPH dehydrogenase (NDH) and regulatory subunits of ATP synthase. NDH is, like proton gradient 5 (PGR5)-PGR5-like1 (PGRL1), a thylakoid-embedded, ferredoxin-dependent plastoquinone reductase that protects photosystem I and stabilizes ATP synthesis by cyclic electron transport (CET). Like PGRL1A and PGRL1B transcript levels, ndhA and ndhD transcript levels decreased during the 24-h long priming cold treatment. PGRL1 transcript levels were quickly reset in the postcold phase, but expression of ndhA remained low. The transcript abundances of other ndh genes decreased within the next days. Comparison of thylakoid-bound ascorbate peroxidase (tAPX)-free and transiently tAPX-overexpressing or tAPX-downregulating Arabidopsis lines demonstrated that ndh expression is suppressed by postcold induction of tAPX. Four days after cold priming, when tAPX protein accumulation was maximal, NDH activity was almost fully lost. Lack of the NdhH-folding chaperonin Crr27 (Cpn60ß4), but not lack of the NDH activity modulating subunits NdhM, NdhO, or photosynthetic NDH subcomplex B2 (PnsB2), strengthened priming regulation of zinc finger of A. thaliana 10, which is a nuclear-localized target gene of the tAPX-dependent cold-priming pathway. We conclude that cold-priming modifies chloroplast-to-nucleus stress signaling by tAPX-mediated suppression of NDH-dependent CET and that plastid-encoded NdhH, which controls subcomplex A assembly, is of special importance for memory stabilization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Arabidopsis/genética , Arabidopsis/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Cloroplastos/metabolismo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Transporte de Elétrons , Trifosfato de Adenosina/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteínas de Membrana/metabolismo
4.
Sci Rep ; 11(1): 3191, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542431

RESUMO

The Kif26a protein-coding gene has been identified as a negative regulator of the GDNF-Ret signaling pathway in enteric neurons. The aim of this study was to investigate the influence of genetic background on the phenotype of Kif26a-deficient (KO, -/-) mice. KO mice with both C57BL/6 and BALB/c genetic backgrounds were established. Survival rates and megacolon development were compared between these two strains of KO mice. Functional bowel assessments and enteric neuron histopathology were performed in the deficient mice. KO mice with the BALB/c genetic background survived more than 400 days without evidence of megacolon, while all C57BL/6 KO mice developed megacolon and died within 30 days. Local enteric neuron hyperplasia in the colon and functional bowel abnormalities were observed in BALB/c KO mice. These results indicated that megacolon and enteric neuron hyperplasia in KO mice are influenced by the genetic background. BALB/c KO mice may represent a viable model for functional gastrointestinal diseases such as chronic constipation, facilitating studies on the underlying mechanisms and providing a foundation for the development of treatments.


Assuntos
Sistema Nervoso Entérico/metabolismo , Intestino Delgado/metabolismo , Cinesinas/genética , Megacolo/genética , Neurônios/metabolismo , Animais , Sistema Nervoso Entérico/patologia , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Intestino Delgado/inervação , Intestino Delgado/patologia , Cinesinas/deficiência , Megacolo/metabolismo , Megacolo/mortalidade , Megacolo/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Neurônios/patologia , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais , Especificidade da Espécie , Análise de Sobrevida
5.
Blood ; 137(3): 398-409, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33036023

RESUMO

The final stages of mammalian erythropoiesis involve enucleation, membrane and proteome remodeling, and organelle clearance. Concomitantly, the erythroid membrane skeleton establishes a unique pseudohexagonal spectrin meshwork that is connected to the membrane through junctional complexes. The mechanism and signaling pathways involved in the coordination of these processes are unclear. The results of our study revealed an unexpected role of the membrane skeleton in the modulation of proteome remodeling and organelle clearance during the final stages of erythropoiesis. We found that diaphanous-related formin mDia2 is a master regulator of the integrity of the membrane skeleton through polymerization of actin protofilament in the junctional complex. The mDia2-deficient terminal erythroid cell contained a disorganized and rigid membrane skeleton that was ineffective in detaching the extruded nucleus. In addition, the disrupted skeleton failed to activate the endosomal sorting complex required for transport-III (ESCRT-III) complex, which led to a global defect in proteome remodeling, endolysosomal trafficking, and autophagic organelle clearance. Chmp5, a component of the ESCRT-III complex, is regulated by mDia2-dependent activation of the serum response factor and is essential for membrane remodeling and autophagosome-lysosome fusion. Mice with loss of Chmp5 in hematopoietic cells in vivo resembled the phenotypes in mDia2-knockout mice. Furthermore, overexpression of Chmp5 in mDia2-deficient hematopoietic stem and progenitor cells significantly restored terminal erythropoiesis in vivo. These findings reveal a formin-regulated signaling pathway that connects the membrane skeleton to proteome remodeling, enucleation, and organelle clearance during terminal erythropoiesis.


Assuntos
Eritroblastos/metabolismo , Membrana Eritrocítica/metabolismo , Organelas/metabolismo , Proteoma/metabolismo , Animais , Autofagossomos/metabolismo , Sequência de Bases , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Eritroblastos/ultraestrutura , Membrana Eritrocítica/ultraestrutura , Eritropoese , Lisossomos/metabolismo , Fusão de Membrana , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Desidrogenase/deficiência , NADPH Desidrogenase/metabolismo , Organelas/ultraestrutura , Reticulócitos/metabolismo , Reticulócitos/ultraestrutura
6.
Sci Rep ; 10(1): 21088, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273578

RESUMO

NADPH diaphorase is used as a histochemical marker of nitric oxide synthase (NOS) in aldehyde-treated tissues. It is thought that the catalytic activity of NOS promotes NADPH-dependent reduction of nitro-blue tetrazolium (NBT) to diformazan. However, it has been argued that a proteinaceous factor other than NOS is responsible for producing diformazan in aldehyde-treated tissues. We propose this is a NO-containing factor such as an S-nitrosothiol and/or a dinitrosyl-iron (II) cysteine complex or nitrosated proteins including NOS. We now report that (1) S-nitrosothiols covalently modify both NBT and TNBT, but only change the reduction potential of NBT after modification, (2) addition of S-nitrosothiols or ß- or α-NADPH to solutions of NBT did not elicit diformazan, (3) addition of S-nitrosothiols to solutions of NBT plus ß- or α-NADPH elicited rapid formation of diformazan in the absence or presence of paraformaldehyde, (4) addition of S-nitrosothiols to solutions of NBT plus ß- or α-NADP did not produce diformazan, (5) S-nitrosothiols did not promote NADPH-dependent reduction of tetra-nitro-blue tetrazolium (TNBT) in which all four phenolic rings are nitrated, (6) cytoplasmic vesicles in vascular endothelial cells known to stain for NADPH diaphorase were rich in S-nitrosothiols, and (7) procedures that accelerate decomposition of S-nitrosothiols, markedly reduced NADPH diaphorase staining in tissue sections subsequently subjected to paraformaldehyde fixation. Our results suggest that NADPH diaphorase in aldehyde-fixed tissues is not enzymatic but is due to the presence of NO-containing factors (free SNOs or nitrosated proteins such as NOS), which promote NADPH-dependent reduction of NBT to diformazan.


Assuntos
NADPH Desidrogenase/metabolismo , Óxido Nítrico Sintase/metabolismo , S-Nitrosotióis/metabolismo , Animais , Compostos Azo/metabolismo , Tronco Encefálico/química , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Cerebelo/química , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Formaldeído/farmacologia , Masculino , Nitroazul de Tetrazólio/metabolismo , Oxirredução , Polímeros/farmacologia , Ratos , Ratos Sprague-Dawley , Coloração e Rotulagem/métodos , Coloração e Rotulagem/normas
7.
Orthop Surg ; 12(6): 1971-1979, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33078551

RESUMO

OBJECTIVE: To clarify the effects on and the mechanism of salvianic acid A sodium (SAAS) in the recovery of motor function after spinal cord injury. METHODS: In vivo and in vitro experiments were carried out in this research to determine the effects of SAAS on tissue damage, neuron survival, microglia polarization, and inflammation after spinal cord injury (SCI). Differentially expressed genes treated with SAAS were screened by transcriptome sequencing, and the molecular mechanism was investigated simultaneously. RESULTS: The results revealed that SAAS could promote type M2 polarization of microglia and reduce the proportion of type M1. In this way, it reduced the secretion and expression of inflammatory factors. Compared with Lipopolysaccharides(LPS), 345 genes were upregulated and 407 genes were downregulated in the LPS + SAAS treatment group. In the SAAS group, expression levels of Ndufa12, IL-6, TNF-α, and Vdac1 were significantly reduced, while a marked elevation was found in MIP2. In addition, results found in an animal model showed that SAAS could obviously facilitate motor function recovery of mice after spinal cord injury, and it had a good protective effect on spinal cord tissue and neuron cells. CONCLUSION: As a result, the present study clarified both the protective effect of SAAS on neurons after spinal cord injury and the anti-inflammatory effect of microglia, which is expected to serve as a theoretical basis for clinical treatment.


Assuntos
Quimiocina CXCL2/metabolismo , Inflamação/tratamento farmacológico , Lactatos/farmacologia , Microglia/efeitos dos fármacos , NADPH Desidrogenase/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Animais , Modelos Animais de Doenças , Regulação para Baixo , Expressão Gênica/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Regulação para Cima
8.
Nat Commun ; 11(1): 3172, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576838

RESUMO

Bone marrow engraftment of the hematopoietic stem and progenitor cells (HSPCs) involves homing to the vasculatures and lodgment to their niches. How HSPCs transmigrate from the vasculature to the niches is unclear. Here, we show that loss of diaphanous-related formin mDia2 leads to impaired engraftment of long-term hematopoietic stem cells and loss of competitive HSPC repopulation. These defects are likely due to the compromised trans-endothelial migration of HSPCs since their homing to the bone marrow vasculatures remained intact. Mechanistically, loss of mDia2 disrupts HSPC polarization and induced cytoplasmic accumulation of MAL, which deregulates the activity of serum response factor (SRF). We further reveal that beta2 integrins are transcriptional targets of SRF. Knockout of beta2 integrins in HSPCs phenocopies mDia2 deficient mice. Overexpression of SRF or beta2 integrins rescues HSPC engraftment defects associated with mDia2 deficiency. Our findings show that mDia2-SRF-beta2 integrin signaling is critical for HSPC lodgment to the niches.


Assuntos
Antígenos CD18/metabolismo , Forminas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Desidrogenase/metabolismo , Animais , Medula Óssea/metabolismo , Modelos Animais de Doenças , Forminas/genética , Transplante de Células-Tronco Hematopoéticas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , NADPH Desidrogenase/genética , Transdução de Sinais
9.
EMBO Mol Med ; 12(4): e11466, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32150356

RESUMO

Cancer-associated fibroblasts (CAFs) are key regulators of tumorigenesis and promising targets for next-generation therapies. We discovered that cancer cell-derived activin A reprograms fibroblasts into pro-tumorigenic CAFs. Mechanistically, this occurs via Smad2-mediated transcriptional regulation of the formin mDia2, which directly promotes filopodia formation and cell migration. mDia2 also induces expression of CAF marker genes through prevention of p53 nuclear accumulation, resulting in the production of a pro-tumorigenic matrisome and secretome. The translational relevance of this finding is reflected by activin A overexpression in tumor cells and of mDia2 in the stroma of skin cancer and other malignancies and the correlation of high activin A/mDia2 levels with poor patient survival. Blockade of this signaling axis using inhibitors of activin, activin receptors, or mDia2 suppressed cancer cell malignancy and squamous carcinogenesis in 3D organotypic cultures, ex vivo, and in vivo, providing a rationale for pharmacological inhibition of activin A-mDia2 signaling in stratified cancer patients.


Assuntos
Ativinas/metabolismo , Carcinogênese , Carcinoma de Células Escamosas , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Desidrogenase/metabolismo , Animais , Fibroblastos , Forminas , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
10.
Stem Cells ; 38(1): 102-117, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31648392

RESUMO

Nuclear actin plays a critical role in mediating mesenchymal stem cell (MSC) fate commitment. In marrow-derived MSCs, the principal diaphanous-related formin Diaph3 (mDia2) is present in the nucleus and regulates intranuclear actin polymerization, whereas Diaph1 (mDia1) is localized to the cytoplasm and controls cytoplasmic actin polymerization. We here show that mDia2 can be used as a tool to query actin-lamin nucleoskeletal structure. Silencing mDia2 affected the nucleoskeletal lamin scaffold, altering nuclear morphology without affecting cytoplasmic actin cytoskeleton, and promoted MSC differentiation. Attempting to target intranuclear actin polymerization by silencing mDia2 led to a profound loss in lamin B1 nuclear envelope structure and integrity, increased nuclear height, and reduced nuclear stiffness without compensatory changes in other actin nucleation factors. Loss of mDia2 with the associated loss in lamin B1 promoted Runx2 transcription and robust osteogenic differentiation and suppressed adipogenic differentiation. Hence, mDia2 is a potent tool to query intranuclear actin-lamin nucleoskeletal structure, and its presence serves to retain multipotent stromal cells in an undifferentiated state.


Assuntos
Lamina Tipo B/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Desidrogenase/metabolismo , Actinas/metabolismo , Animais , Diferenciação Celular/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Técnicas de Silenciamento de Genes , Camundongos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , NADPH Desidrogenase/deficiência , NADPH Desidrogenase/genética , Membrana Nuclear/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese
11.
Eur J Med Chem ; 180: 213-223, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31306908

RESUMO

Reactions of Ni(II) and Pd(II) precursors with S-benzyl-N-(ferrocenyl)methylenedithiocarbazate (HFedtc) led to the formation of heterobimetallic complexes of the type [MII(Fedtc)2] (M = Ni and Pd). The characterization of the compounds involved the determination of melting point, FTIR, UV-Vis, 1H NMR, elemental analysis and electrochemical experiments. Furthermore, the crystalline structures of HFedtc and [NiII(Fedtc)2] were determined by single crystal X-ray diffraction. The compounds were evaluated against the intracellular form of Trypanosoma cruzi (Tulahuen Lac-Z strain) and the cytotoxicity assays were assessed using LLC-MK2 cells. The results showed that the coordination of HFedtc to Ni(II) or Pd(II) decreases the in vitro trypanocidal activity while the cytotoxicity against LLC-MK2 cells does not change significantly. [PdII(Fedtc)2] showed the greater potential between the two complexes studied, showing an SI value of 8.9. However, this value is not better than that of the free ligand with an SI of 40, a similar value to that of the standard drug benznidazole (SI = 48). Additionally, molecular docking simulations were performed with Trypanosoma cruzi Old Yellow Enzyme (TcOYE), which predicted that HFedtc binds to the protein, almost parallel to the flavin mononucleotide (FMN) prosthetic group, while the [NiII(Fedtc)2] complex was docked into the enzyme binding site in a significantly different manner. In order to confirm the hypothetical interaction, in vitro experiments of fluorescence quenching and enzymatic activity were performed which indicated that, although HFedtc was not processed by the enzyme, it was able to act as a competitive inhibitor, blocking the hydride transfer from the FMN prosthetic group of the enzyme to the menadione substrate.


Assuntos
Compostos de Benzil/farmacologia , Complexos de Coordenação/farmacologia , Inibidores Enzimáticos/farmacologia , Hidrazinas/farmacologia , Metalocenos/farmacologia , NADPH Desidrogenase/antagonistas & inibidores , Níquel/farmacologia , Paládio/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Hidrazinas/química , Macaca mulatta , Metalocenos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , NADPH Desidrogenase/química , NADPH Desidrogenase/metabolismo , Níquel/química , Níquel/metabolismo , Paládio/química , Paládio/metabolismo , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Trypanosoma cruzi/metabolismo
12.
Appl Microbiol Biotechnol ; 103(12): 5015-5022, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31044312

RESUMO

Old Yellow Enzymes play key roles in several cellular processes and have become an important family of enzymes with biotechnological potential. One of the major challenges of biotechnology consists of the bioremediation of co-polluted soils with organic and inorganic compounds. In co-contaminated areas, chromium normally exists in its more toxic and carcinogenic form Cr(VI). Microorganisms can reduce this metal to the insoluble and less toxic Cr(III). Streptomyces sp. M7 is a strain able to efficiently bioremediate polluted soils with γ-hexachlorocyclohexane and Cr(VI). The complete degradation pathway for γ-hexachlorocyclohexane was recently elucidated in this strain. In the present work, we confirmed the ability of Streptomyces sp. M7 to eliminate a high percentage of Cr(VI) from a synthetic culture medium. After a transcriptional study in the presence of Cr(VI), we also report the molecular cloning of a gene coding for an Old Yellow Enzyme with chromate reductase activity. Our results suggest that the elimination of Cr(VI) by Streptomyces sp. M7 is directly related to the activity of this Old Yellow Enzyme. The importance of our work is in identifying for the first time an Old Yellow Enzyme with chromate reductase activity in Streptomyces and Actinobacteria. Finding this enzyme helps understand chromium homeostasis in Streptomyces sp. M7, in addition to opening a new research window related to Old Yellow Enzymes from Actinobacteria.


Assuntos
Biodegradação Ambiental , Cromo/metabolismo , Meios de Cultura/química , NADPH Desidrogenase/metabolismo , Streptomyces/enzimologia , Redes e Vias Metabólicas , NADPH Desidrogenase/genética , Oxirredução , Oxirredutases/metabolismo , Microbiologia do Solo , Streptomyces/genética
13.
Nature ; 566(7744): 411-414, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742075

RESUMO

Cyclic electron flow around photosystem I (PSI) is a mechanism by which photosynthetic organisms balance the levels of ATP and NADPH necessary for efficient photosynthesis1,2. NAD(P)H dehydrogenase-like complex (NDH) is a key component of this pathway in most oxygenic photosynthetic organisms3,4 and is the last large photosynthetic membrane-protein complex for which the structure remains unknown. Related to the respiratory NADH dehydrogenase complex (complex I), NDH transfers electrons originating from PSI to the plastoquinone pool while pumping protons across the thylakoid membrane, thereby increasing the amount of ATP produced per NADP+ molecule reduced4,5. NDH possesses 11 of the 14 core complex I subunits, as well as several oxygenic-photosynthesis-specific (OPS) subunits that are conserved from cyanobacteria to plants3,6. However, the three core complex I subunits that are involved in accepting electrons from NAD(P)H are notably absent in NDH3,5,6, and it is therefore not clear how NDH acquires and transfers electrons to plastoquinone. It is proposed that the OPS subunits-specifically NdhS-enable NDH to accept electrons from its electron donor, ferredoxin3-5,7. Here we report a 3.1 Å structure of the 0.42-MDa NDH complex from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1, obtained by single-particle cryo-electron microscopy. Our maps reveal the structure and arrangement of the principal OPS subunits in the NDH complex, as well as an unexpected cofactor close to the plastoquinone-binding site in the peripheral arm. The location of the OPS subunits supports a role in electron transfer and defines two potential ferredoxin-binding sites at the apex of the peripheral arm. These results suggest that NDH could possess several electron transfer routes, which would serve to maximize plastoquinone reduction and avoid deleterious off-target chemistry of the semi-plastoquinone radical.


Assuntos
Microscopia Crioeletrônica , Cianobactérias/química , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/ultraestrutura , NADPH Desidrogenase/química , NADPH Desidrogenase/ultraestrutura , Oxigênio/metabolismo , Fotossíntese , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Coenzimas/química , Coenzimas/metabolismo , Cianobactérias/enzimologia , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Ferredoxinas/metabolismo , Modelos Biológicos , Modelos Moleculares , NADPH Desidrogenase/metabolismo , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Plastoquinona/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
14.
Behav Pharmacol ; 30(1): 67-78, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29664745

RESUMO

Previous research indicates that the subchronic administration of NG-nitro-L-arginine (L-NOARG) produces tolerance to haloperidol-induced catalepsy in Swiss mice. The present study aimed to further investigate whether intermittent subchronic systemic administration of L-NOARG induces tolerance to the cataleptic effects of haloperidol as well as olanzapine or clozapine (Clz) in C57Bl mice after subchronic administration for 5 consecutive days. Striatal FosB protein expression was measured in an attempt to gain further insights into striatal mechanisms in antipsychotic-induced extrapyramidal symptoms side effects. An nicotinamide-adenine-dinucleotide phosphate-diaphorase histochemical reaction was also used to investigate whether tolerance could induce changes in the number of nitric oxide synthase-active neurons. Subchronic administration of all antipsychotics produced catalepsy, but cross-tolerance was observed only between L-NOARG (15 mg/kg, intraperitoneally) and Clz (20 mg/kg, intraperitoneally). This cross-tolerance effect was accompanied by decreased FosB protein expression in the dorsal striatum and the nucleus accumbens shell region, and reduced icotinamide-adenine-dinucleotide phosphate-diaphorase activity in the dorsal and ventral lateral striatum. Overall, these results suggest that interference with the formation of nitric oxide, mainly in the dorsal and ventral lateral-striatal regions, appears to improve the cataleptic effects induced by antipsychotics acting as antagonists of low-affinity dopamine D2 receptor, such as Clz.


Assuntos
Antipsicóticos/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/enzimologia , Inibidores Enzimáticos/farmacologia , NADPH Desidrogenase/metabolismo , Niacinamida/metabolismo , Análise de Variância , Animais , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Haloperidol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADP/metabolismo , Óxido Nítrico Sintase , Nitroarginina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
15.
Sci Rep ; 8(1): 14364, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254294

RESUMO

Oxaliplatin treatment is associated with the development of a dose-limiting painful neuropathy impairing patient's quality of life. Since oxidative unbalance is a relevant mechanism of oxaliplatin neurotoxicity, we assessed the potential antioxidant properties of Vitis vinifera extract in reducing oxaliplatin-induced neuropathy as a valuable therapeutic opportunity. A hydroalcoholic extract of Vitis vinifera red leaf was characterized and tested in primary rat astrocyte cells treated with oxaliplatin (100 µM). Oxaliplatin lethality in the human adenocarcinoma cell line HT-29 was evaluated in the absence and presence of the extract. In vivo, pain hypersensitivity was measured in a rat model of neuropathy induced by oxaliplatin and ex vivo molecular targets of redox balance were studied. Vitis vinifera extract (50 µg mL-1, 4 h incubation) significantly reduced the oxaliplatin-dependent superoxide anion increase and lipid peroxidation in rat astrocytes but did not interfere with the mortality elicited by oxaliplatin in HT-29 cancer cells. In oxaliplatin-treated rats, a repeated daily administration of the Vitis vinifera extract (300 mg kg-1, p.o.) significantly prevented mechanical and thermal hypersensitivity to noxious and non noxious stimuli. mRNA and protein levels of Nrf2 were normalized in spinal cord and DRGs. Moreover, in the spinal cord, the extract significantly decreased the activation of astrocytes. Vitis vinifera reduced oxidative damages and relieved pain without influencing oxaliplatin anti-cancer activity.


Assuntos
Álcoois/química , Antioxidantes/farmacologia , Neurotoxinas/toxicidade , Oxaliplatina/toxicidade , Extratos Vegetais/farmacologia , Vitis/química , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Células HT29 , Humanos , NAD(P)H Desidrogenase (Quinona)/genética , NADPH Desidrogenase/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Folhas de Planta/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Medula Espinal/citologia
16.
Int J Mol Sci ; 19(5)2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29747392

RESUMO

Environmental stresses, including ammonium (NH4⁺) nourishment, can damage key mitochondrial components through the production of surplus reactive oxygen species (ROS) in the mitochondrial electron transport chain. However, alternative electron pathways are significant for efficient reductant dissipation in mitochondria during ammonium nutrition. The aim of this study was to define the role of external NADPH-dehydrogenase (NDB1) during oxidative metabolism of NH4⁺-fed plants. Most plant species grown with NH4⁺ as the sole nitrogen source experience a condition known as “ammonium toxicity syndrome”. Surprisingly, transgenic Arabidopsis thaliana plants suppressing NDB1 were more resistant to NH4⁺ treatment. The NDB1 knock-down line was characterized by milder oxidative stress symptoms in plant tissues when supplied with NH4⁺. Mitochondrial ROS accumulation, in particular, was attenuated in the NDB1 knock-down plants during NH4⁺ treatment. Enhanced antioxidant defense, primarily concerning the glutathione pool, may prevent ROS accumulation in NH4⁺-grown NDB1-suppressing plants. We found that induction of glutathione peroxidase-like enzymes and peroxiredoxins in the NDB1-surpressing line contributed to lower ammonium-toxicity stress. The major conclusion of this study was that NDB1 suppression in plants confers tolerance to changes in redox homeostasis that occur in response to prolonged ammonium nutrition, causing cross tolerance among plants.


Assuntos
Compostos de Amônio/toxicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Glutationa/metabolismo , NADPH Desidrogenase/metabolismo , Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Ácido Ascórbico/metabolismo , Biomarcadores/metabolismo , Respiração Celular/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Modelos Biológicos , Nitratos/farmacologia , Nucleotídeos/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Fosforilação/efeitos dos fármacos , Plantas Geneticamente Modificadas , Piridinas , Espécies Reativas de Oxigênio/metabolismo
17.
Brain Struct Funct ; 223(6): 2733-2751, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29574585

RESUMO

The acoustic startle reflex (ASR) is a short and intense defensive reaction in response to a loud and unexpected acoustic stimulus. In the rat, a primary startle pathway encompasses three serially connected central structures: the cochlear root neurons, the giant neurons of the nucleus reticularis pontis caudalis (PnC), and the spinal motoneurons. As a sensorimotor interface, the PnC has a central role in the ASR circuitry, especially the integration of different sensory stimuli and brain states into initiation of motor responses. Since the basal ganglia circuits control movement and action selection, we hypothesize that their output via the substantia nigra (SN) may interplay with the ASR primary circuit by providing inputs to PnC. Moreover, the pedunculopontine tegmental nucleus (PPTg) has been proposed as a functional and neural extension of the SN, so it is another goal of this study to describe possible anatomical connections from the PPTg to PnC. Here, we made 6-OHDA neurotoxic lesions of the SN pars compacta (SNc) and submitted the rats to a custom-built ASR measurement session to assess amplitude and latency of motor responses. We found that following lesion of the SNc, ASR amplitude decreased and latency increased compared to those values from the sham-surgery and control groups. The number of dopamine neurons remaining in the SNc after lesion was also estimated using a stereological approach, and it correlated with our behavioral results. Moreover, we employed neural tract-tracing techniques to highlight direct projections from the SN to PnC, and indirect projections through the PPTg. Finally, we also measured levels of excitatory amino acid neurotransmitters in the PnC following lesion of the SN, and found that they change following an ipsi/contralateral pattern. Taken together, our results identify nigrofugal efferents onto the primary ASR circuit that may modulate motor responses.


Assuntos
Vias Auditivas/fisiologia , Movimento/fisiologia , Reflexo de Sobressalto/fisiologia , Formação Reticular/fisiologia , Substância Negra/fisiologia , Estimulação Acústica , Animais , Vias Auditivas/efeitos dos fármacos , Biotina/análogos & derivados , Biotina/metabolismo , Conectoma , Dextranos/metabolismo , Lateralidade Funcional/efeitos dos fármacos , Masculino , NADPH Desidrogenase/metabolismo , Neurotoxinas/toxicidade , Neurotransmissores/metabolismo , Oxidopamina/toxicidade , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Reflexo de Sobressalto/efeitos dos fármacos , Formação Reticular/efeitos dos fármacos , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Estilbamidinas/metabolismo , Substância Negra/lesões , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Exp Eye Res ; 170: 8-12, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29448041

RESUMO

PURPOSE: Ocular autonomic control is mediated by sympathetic and parasympathetic nerve fibres. Their interactions are complemented by primary afferent nerve fibers of and intrinsic choroidal neurons (ICN). As the vasodilatative neuropeptide, vasoactive intestinal peptide (VIP), is expressed in extrinsic and intrinsic ocular neurons, it is of special interest in ophthalmic research. Since circadian changes of ocular blood flow are known in humans and birds, this study aimed at investigating VIP expression at different daytimes in chicken choroid, the preferred model species in ICN research. METHODS: 12 eyes of 12 chickens were retrieved, slaughtered at 8.00-9.30 a.m. (n = 6) and 8.00 p.m. (n = 6), respectively, and choroidal wholemounts were prepared for immunofluorescence of VIP. VIP-positive ICN of both groups were quantified and density of VIP-positive axons assessed semi-quantitatively. In 28 additional eyes retrieved in the morning (n = 14) and evening (n = 14), choroidal VIP content was determined by ELISA. Morning and evening data were analyzed statistically. NADPH-diaphorase (NADPH-d, ICN cell marker) was done at additional 12 whole mount choroids of 12 chicken, retrieved in the morning (n = 6) and evening (n = 6). RESULTS: (1) Numbers of VIP positive neurons differed significantly between morning: (239.17 ±â€¯113.9) and evening: (550.83 ±â€¯245.7; p = 0.018). (2) Numbers of VIP-positive perikarya were significantly more accumulated in the temporal part of the choroid in the evening than in the morning (p = 0.026). (3) VIP positive axon density was found to be similar throughout the choroid in the morning and evening. (4) Number of NADPH-d positive neurons was not significantly different between morning (848.8 ±â€¯399.5) and evening (945.8 ±â€¯622.1, p > 0.05). (5) ELISA demonstrated a significant difference of VIP content (p = 0.012) in tissues harvested in the morning (145.41 ±â€¯43.3 pg/ml) compared to evening (221.44 ±â€¯106.3 pg/ml). CONCLUSIONS: As VIP positive axon density was similar in the morning and the evening throughout the choroid, PPG and ICN seemed to contribute equally to the axon network. Yet, changes in the total choroidal VIP content, the numbers of VIP positive perikarya, reflecting the intracellular VIP content, and their topographical distribution at two different days-times argue for a different status of activation of both neuronal sources in contrast to the equal amount of NADPHD-d positive neurons. The higher VIP content in the evening, compared to the morning, correlates with a known circadian rhythm of a lower IOP and a higher choroidal thickness at night. Thus, these changes may argue for a potential role of ICN in the regulation of ocular homeostasis and integrity.


Assuntos
Corioide/inervação , Neurônios/metabolismo , Fotoperíodo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Biomarcadores/metabolismo , Contagem de Células , Galinhas , Ritmo Circadiano/fisiologia , Ensaio de Imunoadsorção Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Modelos Animais , NADPH Desidrogenase/metabolismo
19.
Int J Neuropsychopharmacol ; 20(10): 833-843, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28977524

RESUMO

Background: To determine brain areas involved in the antidepressant-related behavioral effects of the selective neuronal nitric oxide synthase inhibitor 1-(2-Trifluoro-methyl-phenyl) imidazole (TRIM) and experimental test compound 4-((3,5-dichloro-2-hydroxybenzyl)amino)-2-hydroxybenzoic acid (ZL006), an inhibitor of the PSD of 95 kDa/neuronal nitric oxide synthase interaction in the N-methyl-D-aspartic acid receptor signalling pathway, regional specific expression of the neuronal activation marker c-FOS was assessed following exposure to the forced swimming test in the Wistar Kyoto rat. Methods: Wistar Kyoto rats were subjected to a 15-minute swim pretest (pre-forced swimming test) period on day 1. At 24, 5, and 1 hour prior to the 5-minute test, which took place 24 hours following the pre-forced swimming test, animals were treated with TRIM (50 mg/kg; i.p.), ZL006 (10 mg/kg; i.p.), or saline vehicle (1 mL/kg i.p). Behavior was recorded during both pretest and test periods. Results: Both TRIM and ZL006 decreased immobility time in Wistar Kyoto rats in the forced swimming test. Exposure to the forced swimming test increased c-FOS immunoreactivity in the lateral septum, paraventricular nucleus of the hypothalamus, periaqueductal grey, dentate gyrus, and ventral CA1 of the hippocampus compared with non-forced swimming test-exposed controls. Forced swimming test-induced c-FOS immunoreactivity was further increased in the lateral septum, periaqueductal gray, and paraventricular nucleus of the hypothalamus following treatment with TRIM or ZL006. By contrast, forced swimming test-induced c-FOS immunoreactivity was reduced in dorsal dentate gyrus and ventral CA1 following treatment with TRIM or ZL006. Exposure to the forced swimming test resulted in an increase in NADPH diaphorase staining in the paraventricular nucleus of the hypothalamus. This forced swimming test-induced increase was attenuated following treatment with ZL006 and points to the paraventricular nucleus as a brain region where ZL006 acts to attenuate forced swimming test-induced neuronal nitric oxide synthase activity while concomitantly regulating region specific neuronal activation associated with an antidepressant-related response. Conclusions: This study identified a pattern of enhanced and reduced forced swimming test-related c-FOS immunoreactivity indicative of a regulated network where inhibition of nitric oxide coupled to the N-methyl-D-aspartic acid receptor leads to activation of the lateral septum, periaqueductal gray, and paraventricular nucleus of the hypothalamus with concomitant inhibition of the hippocampus.


Assuntos
Ácidos Aminossalicílicos/farmacologia , Antidepressivos/farmacologia , Benzilaminas/farmacologia , Encéfalo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteína 4 Homóloga a Disks-Large/antagonistas & inibidores , Proteína 4 Homóloga a Disks-Large/metabolismo , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , NADPH Desidrogenase/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Endogâmicos WKY , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
20.
J Biol Chem ; 292(28): 11850-11860, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28559282

RESUMO

Cyclic electron flow around photosystem I (CEF) is critical for balancing the photosynthetic energy budget of the chloroplast by generating ATP without net production of NADPH. We demonstrate that the chloroplast NADPH dehydrogenase complex, a homolog to respiratory Complex I, pumps approximately two protons from the chloroplast stroma to the lumen per electron transferred from ferredoxin to plastoquinone, effectively increasing the efficiency of ATP production via CEF by 2-fold compared with CEF pathways involving non-proton-pumping plastoquinone reductases. By virtue of this proton-pumping stoichiometry, we hypothesize that NADPH dehydrogenase not only efficiently contributes to ATP production but operates near thermodynamic reversibility, with potentially important consequences for remediating mismatches in the thylakoid energy budget.


Assuntos
Arabidopsis/enzimologia , Cloroplastos/enzimologia , Modelos Moleculares , NADPH Desidrogenase/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/enzimologia , Spinacia oleracea/enzimologia , Trifosfato de Adenosina/metabolismo , Algoritmos , Biocatálise , Domínio Catalítico , Transporte de Elétrons , Ferredoxinas/química , Ferredoxinas/metabolismo , Cinética , NADPH Desidrogenase/química , NADPH Desidrogenase/isolamento & purificação , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/isolamento & purificação , Plastoquinona/química , Plastoquinona/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Especificidade da Espécie , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA