Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dis Markers ; 2022: 8567642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265227

RESUMO

Background: Recent studies have shown that nicotinamide adenosine dinucleotide phosphate oxidase 4 (NOX4) is related to cancer development, proliferation, invasion, epithelial-to-mesenchymal transition, and metastasis. The prognostic value of NOX4 expression although has been reported in various cancers, it remains unclear as several studies have reported conflicting results. Therefore, the purpose of this study was to systematically investigate the prognostic value of NOX4 expression in cancer patients. Method: Appropriate studies were collected by searching the PubMed, EMBASE, and Cochrane library databases, and the prognostic value of NOX4 expression in cancer patients was assessed through a meta-analysis. Results: Nine eligible studies involving 2675 cancer patients were included in this meta-analysis. We found that NOX4 expression is related to prognosis in cancer patients. In particular, high expression of NOX4 was significantly associated with overall survival in patients with gastrointestinal cancer (hazard ratio [HR]: 1.83, 95% confidence interval [CI]: 1.39-2.42, p < 0.001). Conclusion: NOX4 expression is significantly correlated with overall survival in patients with gastrointestinal cancer, indicating that it could be a potential prognostic marker.


Assuntos
Biomarcadores Tumorais/biossíntese , NADPH Oxidase 4/biossíntese , Neoplasias/metabolismo , Humanos , Neoplasias/mortalidade , Prognóstico , Taxa de Sobrevida
2.
Invest Ophthalmol Vis Sci ; 62(4): 4, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33821883

RESUMO

Purpose: The multifunctional profibrotic cytokine TGF-ß2 is implicated in the pathophysiology of primary open angle glaucoma (POAG). While the underlying cause of POAG remains unclear, TGF-ß2 dependent remodeling of the extracellular matrix (ECM) within the trabecular meshwork (TM) microenvironment is considered an early pathologic consequence associated with impaired aqueous humor (AH) outflow and elevated IOP. Mitochondrial-targeted antioxidants have been recently shown by our group to markedly attenuate TGF-ß2 profibrotic responses, strongly implicating oxidative stress as a key facilitator of TGF-ß2 signaling in human TM cells. In this study, we determined the mechanism by which oxidative stress facilitates TGF-ß2 profibrotic responses in cultured primary human TM cells. Methods: Semiconfluent cultures of primary or transformed human TM cells were conditioned overnight in serum-free media and subsequently challenged without or with TGF-ß2 (5 ng/mL). Relative changes in the mRNA content of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) isoforms, connective tissue growth factor (CTGF), collagen 1α1 and 4α1 isoforms or relative changes in the protein content of Nox4, phospho- and total-Smad2 and -Smad3, collagens I and IV were determined in the absence or presence of GKT137831, a Nox1-Nox4 dual enzyme inhibitor, and quantified by real-time qPCR or by immunoblot, respectively. Relative in situ changes in collagens I and IV and in alpha smooth muscle actin (αSMA) were semiquantified by immunocytochemistry, whereas relative changes in filamentous actin stress fiber formation was semiquantified by phalloidin staining. Results: Quiescent primary human TM cells cultured in the presence of TGF-ß2 exhibited a marked selective increase in endogenous Nox4 mRNA and Nox4 protein expression. Actinomycin D prevented TGF-ß2 mediated increases in Nox4 mRNA expression. TM cells reverse transfected with siRNA against Smad3 prevented TGF-ß2 mediated increases in Nox4 mRNA expression. Pre-incubating TM cells with GKT137831 attenuated TGF-ß2 mediated increases in intracellular reactive oxygen species (ROS), in COL1A1, COL4A1, and CTGF mRNA expression, in Smad3 protein phosphorylation, in collagens I, collagens IV, and αSMA protein expression, and in filamentous actin stress fiber formation. Conclusions: TGF-ß2 promotes oxidative stress in primary human TM cells by selectively increasing expression of NADPH oxidase 4. Dysregulation of redox equilibrium by induction of NADPH oxidase 4 expression appears to be a key early event involved in the pathologic profibrotic responses elicited by TGF-ß2 canonical signaling, including ECM remodeling, filamentous actin stress fiber formation, and αSMA expression. Selective inhibition of Nox4 expression/activation, in combination with mitochondrial-targeted antioxidants, represents a novel strategy by which to slow the progression of TGF-ß2 elicited profibrotic responses within the TM.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Glaucoma de Ângulo Aberto/genética , NADPH Oxidase 4/genética , Estresse Oxidativo/genética , RNA Mensageiro/genética , Malha Trabecular/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Humor Aquoso/metabolismo , Western Blotting , Células Cultivadas , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glaucoma de Ângulo Aberto/metabolismo , Humanos , NADPH Oxidase 4/biossíntese , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Malha Trabecular/patologia
3.
Cancer Lett ; 508: 59-72, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-33771684

RESUMO

The loss of cell-matrix interactions induces apoptosis, known as anoikis. For successful distant metastasis, circulating tumor cells (CTCs) that have lost matrix attachment need to acquire anoikis resistance in order to survive. Cell aggregate formation confers anoikis resistance, and CTC clusters are more highly metastatic compared to single cells; however, the molecular mechanisms underlying this aggregation are not well understood. In this study, we demonstrated that cell detachment increased cell aggregation and upregulated fibronectin (FN) levels in lung and breast cancer cells, but not in their normal counterparts. FN knockdown decreased cell aggregation and increased anoikis. In addition, cell detachment induced cell-cell adhesion proteins, including E-cadherin, desmoglein-2, desmocollin-2/3, and plakoglobin. Interestingly, FN knockdown decreased the levels of desmoglein-2, desmocollin-2/3, and plakoglobin, but not E-cadherin, suggesting the involvement of desmosomal junction in cell aggregation. Accordingly, knockdown of desmoglein-2, desmocollin-2, or plakoglobin reduced cell aggregation and increased cell sensitivity to anoikis. Previously, we reported that NADPH oxidase 4 (Nox4) upregulation is important for anoikis resistance. Nox4 inhibition by siRNA or apocynin decreased cell aggregation and increased anoikis with the downregulation of FN, and, consequently, decreased desmoglein-2, desmocollin-2/3, or plakoglobin. The coexpression of Nox4 and FN was found to be significant in lung and breast cancer patients, based on cBioPortal data. In vivo mouse lung metastasis model showed that FN knockdown suppressed lung metastasis and thus enhanced survival. FN staining of micro tissue array revealed that FN expression was positive for human lung cancer (61%) and breast cancer (58%) patients. Furthermore, the expression levels of FN, desmoglein-2, desmocollin-2, and plakoglobin were significantly correlated with the poor survival of lung and breast cancer patients, as per the Kaplan-Meier plotter analysis. Altogether, our data suggest that FN upregulation and enhanced desmosomal interactions are critical for cell aggregation and anoikis resistance upon cell detachment.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fibronectinas/biossíntese , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células A549 , Animais , Anoikis/fisiologia , Neoplasias da Mama/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Agregação Celular/fisiologia , Linhagem Celular Tumoral , Fibronectinas/genética , Fibronectinas/metabolismo , Xenoenxertos , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , NADPH Oxidase 4/biossíntese , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Metástase Neoplásica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise Serial de Tecidos , Regulação para Cima
4.
Eur J Pharmacol ; 888: 173414, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32828742

RESUMO

Oxidative stress is the key factor of myocardial ischemia-reperfusion injury (MIRI). Anthocyanins are considered to be effective anti-oxidants. In this study, we observed the anti-MIRI effect of petunidin, one member of anthocyanins, and further explored its mechanism. In present study, anoxia/reoxygenation (A/R) models were replicated on Langendorff-perfused heart and neonatal rat primary cardiomyocytes by A/R treatment. The hemodynamic parameters of isolated hearts were monitored. The levels of oxidative stress and apoptosis in isolated heart and neonatal rat primary cardiomyocytes were evaluated. The expression levels of NADPH oxidase 2 (NOX 2), NOX 4, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X (Bax) and cytochrome c were detected by Western Blot. The results showed that petunidin could significantly improve isolated heart function, reduce oxidative stress, inhibit cardiomyocyte apoptosis, up-regulate Bcl-2 protein expression, down-regulate NOX4 and Bax expression, and reduce the level of cytoplasmic cytochrome c after A/R. However, it has no significant effect on NOX 2 protein expression, suggesting that NOX 4 may be the molecular target of petunidin. In vitro, petunidin had shown a consistent effect with that in isolated hearts. It also showed a significant inhibitory effect on reactive oxygen species (ROS) generation. However, the protective effects of petunidin on A/R injury were attenuated by over-expression of NOX 4 in neonatal rat primary cardiomyocytes. These data suggested that the protective effects of petunidin on MIRI may be achieved through targeting NOX 4, thus inhibiting the production of ROS, reducing oxidative stress, and regulating the Bcl-2 pathway to prevent cardiomyocytes apoptosis.


Assuntos
Antocianinas/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Hipóxia/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , NADPH Oxidase 4/antagonistas & inibidores , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Hipóxia/metabolismo , Preparação de Coração Isolado/métodos , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , NADPH Oxidase 4/biossíntese , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
5.
CNS Neurosci Ther ; 26(9): 902-912, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32329577

RESUMO

AIMS: Failure of neural tube closure resulting from excessive apoptosis leads to neural tube defects (NTDs). NADPH oxidase 4 (NOX4) is a critical mediator of cell growth and death, yet its role in NTDs has never been characterized. NOX4 is a potential target of miR-322, and we have previously demonstrated that miR-322 was involved in high glucose-induced NTDs. In this study, we investigated the effect of NOX4 on the embryonic neuroepithelium in NTDs and reveal a new regulatory mechanism for miR-322 that disrupts neurulation by ameliorating cell apoptosis. METHODS: All-trans-retinoic acid (ATRA)-induced mouse model was utilized to study NTDs. RNA pull-down and dual-luciferase reporter assays were used to confirm the interaction between NOX4 and miR-322. In mouse neural stem cells and whole-embryo culture, Western blot and TUNEL were carried out to investigate the effects of miR-322 and NOX4 on neuroepithelium apoptosis in NTD formation. RESULTS: NOX4, as a novel target of miR-322, was upregulated in ATRA-induced mouse model of NTDs. In mouse neural stem cells, the expression of NOX4 was inhibited by miR-322; still further, NOX4-triggered apoptosis was also suppressed by miR-322. Moreover, in whole-embryo culture, injection of the miR-322 mimic into the amniotic cavity attenuated cell apoptosis in NTD formation by silencing NOX4. CONCLUSION: miR-322/NOX4 plays a crucial role in apoptosis-induced NTD formation, which may provide a new understanding of the mechanism of embryonic NTDs and a basis for potential therapeutic target against NTDs.


Assuntos
Apoptose/fisiologia , Inativação Gênica/fisiologia , MicroRNAs/administração & dosagem , NADPH Oxidase 4/antagonistas & inibidores , NADPH Oxidase 4/biossíntese , Defeitos do Tubo Neural/enzimologia , Animais , Células Cultivadas , Desenvolvimento Embrionário/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , NADPH Oxidase 4/genética , Defeitos do Tubo Neural/diagnóstico por imagem , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/terapia , Resultado do Tratamento
6.
J Hepatol ; 73(4): 882-895, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32330605

RESUMO

BACKGROUND & AIMS: Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species. The molecular role of CYGB in human hepatic stellate cell (HSC) activation and human liver disease remains uncharacterised. The aim of this study was to reveal the mechanism by which the TGF-ß1/SMAD2 pathway regulates the human CYGB promoter and the pathophysiological function of CYGB in human non-alcoholic steatohepatitis (NASH). METHODS: Immunohistochemical staining was performed using human NASH biopsy specimens. Molecular and biochemical analyses were performed by western blotting, quantitative PCR, and luciferase and immunoprecipitation assays. Hydroxyl radicals (•OH) and oxidative DNA damage were measured using an •OH-detectable probe and 8-hydroxy-2'-deoxyguanosine (8-OHdG) ELISA. RESULTS: In culture, TGF-ß1-pretreated human HSCs exhibited lower CYGB levels - together with increased NADPH oxidase 4 (NOX4) expression - and were primed for H2O2-triggered •OH production and 8-OHdG generation; overexpression of human CYGB in human HSCs reversed these effects. Electron spin resonance demonstrated the direct •OH scavenging activity of recombinant human CYGB. Mechanistically, pSMAD2 reduced CYGB transcription by recruiting the M1 repressor isoform of SP3 to the human CYGB promoter at nucleotide positions +2-+13 from the transcription start site. The same repression did not occur on the mouse Cygb promoter. TGF-ß1/SMAD3 mediated αSMA and collagen expression. Consistent with observations in cultured human HSCs, CYGB expression was negligible, but 8-OHdG was abundant, in activated αSMA+pSMAD2+- and αSMA+NOX4+-positive hepatic stellate cells from patients with NASH and advanced fibrosis. CONCLUSIONS: Downregulation of CYGB by the TGF-ß1/pSMAD2/SP3-M1 pathway brings about •OH-dependent oxidative DNA damage in activated hepatic stellate cells from patients with NASH. LAY SUMMARY: Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species and protects cells from oxidative DNA damage. Herein, we show that the cytokine TGF-ß1 downregulates human CYGB expression. This leads to oxidative DNA damage in activated hepatic stellate cells. Our findings provide new insights into the relationship between CYGB expression and the pathophysiology of fibrosis in patients with non-alcoholic steatohepatitis.


Assuntos
Citoglobina/genética , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , NADPH Oxidase 4/genética , Hepatopatia Gordurosa não Alcoólica/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta1/metabolismo , Biópsia , Células Cultivadas , Citoglobina/biossíntese , Regulação para Baixo , Feminino , Células Estreladas do Fígado/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , NADPH Oxidase 4/biossíntese , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/genética , Proteína Smad3/biossíntese
7.
Biomolecules ; 10(3)2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182821

RESUMO

Exposure of neural cells to harmful and toxic factors promotes oxidative stress, resulting in disorders of metabolism, cell differentiation, and maturation. The study examined the brains of rats pre- and postnatally exposed to sodium fluoride (NaF 50 mg/L) and activity of NADPH oxidase 4 (NOX4), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), concentration of glutathione (GSH), and total antioxidant capacity (TAC) in the cerebellum, prefrontal cortex, hippocampus, and striatum were measured. Additionally, NOX4 expression was determined by qRT-PCR. Rats exposed to fluorides (F-) showed an increase in NOX4 activity in the cerebellum and hippocampus, a decrease in its activity in the prefrontal cortex and hippocampus, and upregulation of NOX4 expression in hippocampus and its downregulation in other brain structures. Analysis also showed significant changes in the activity of all antioxidant enzymes and a decrease in TAC in brain structures. NOX4 induction and decreased antioxidant activity in central nervous system (CNS) cells may be central mechanisms of fluoride neurotoxicity. NOX4 contributes to blood-brain barrier damage, microglial activation, and neuronal loss, leading to impairment of brain function. Fluoride-induced oxidative stress involves increased reactive oxygen speciaes (ROS) production, which in turn increases the expression of genes encoding pro-inflammatory cytokines.


Assuntos
Encéfalo/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , NADPH Oxidase 4/biossíntese , Síndromes Neurotóxicas/enzimologia , Efeitos Tardios da Exposição Pré-Natal/enzimologia , Fluoreto de Sódio/toxicidade , Regulação para Cima/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
8.
Oxid Med Cell Longev ; 2019: 7853492, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781350

RESUMO

BACKGROUND: Oxidized human DNA or plasmid DNAs containing human ribosomal genes can easily penetrate into the breast cancer cells MCF7 and stimulate the adaptive response induction. Plasmid DNA containing a CMV promoter, gene EGFP, and the insertion of the human ribosomal genes can be expressed. A hypothesis is proposed: these features of the ribosomal DNA are due to the presence of dGn motifs that are prone to oxidize. METHODS: Cells of MCF7 line were cultured with plasmids which contained a CMV promoter and gene of fluorescent protein EGFP. Genetic construction pEGFP-Gn contains pEGFP vector and a small insertion with dG11 and dG13 motifs that are inclined to oxidation. The accumulation of pEGFP and pEGFP-Gn in MCF7 (qPCR), the levels of ROS in the cells, the content of 8-oxodG in plasmids and cellular DNA (flow cytometry, immunoassay, and fluorescent microscopy), the expression of NOX4 and EGFP, the localization of NOX4 and EGFP in MCF7 (qPCR, flow cytometry, and fluorescent microscopy), and the levels of the cell DNA damage (comet assay) were analyzed. RESULTS: (dG)n insertions in the plasmid pEGFP increase the levels of ROS, the cell DNA oxidation and DNA damage, and the level of transfection of plasmid into the MCF7 cells. NOX4 participates in the oxidation of pEGFP-Gn and pEGFP. The expression of EGFP gene in MCF7 is significantly increased in case of pEGFP-Gn. Stimulation of ROS synthesis (H2O2 40 µM or 10 cGy IR) increases the level of expression of EGFP. CONCLUSIONS: GC-rich DNA fragments containing dGn motifs that are inclined to oxidation penetrate into MCF7 cancer cells, stimulate the adaptive response, and can be expressed. This property of GC-rich cell-free DNA should be considered and/or could potentially be used in therapy of tumors.


Assuntos
Neoplasias da Mama/metabolismo , DNA Ribossômico , Motivos de Nucleotídeos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Dano ao DNA , DNA Ribossômico/farmacocinética , DNA Ribossômico/farmacologia , Feminino , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Células MCF-7 , NADPH Oxidase 4/biossíntese , NADPH Oxidase 4/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Espécies Reativas de Oxigênio/metabolismo
9.
Sci Rep ; 9(1): 7679, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118506

RESUMO

MYH9, a widely expressed gene encoding nonmuscle myosin heavy chain, is also expressed in podocytes and is associated with glomerular pathophysiology. However, the mechanisms underlying MYH9-related glomerular diseases associated with proteinuria are poorly understood. Therefore, we investigated the role and mechanism of MYH9 in diabetic kidney injury. MYH9 expression was decreased in glomeruli from diabetic patients and animals and in podocytes treated with Ang II in vitro. Ang II treatment and siRNA-mediated MYH9 knockdown in podocytes resulted in actin cytoskeleton reorganization, reduced cell adhesion, actin-associated protein downregulation, and increased albumin permeability. Ang II treatment increased NOX4 expression and ROS generation. The Ang II receptor blocker losartan and the ROS scavenger NAC restored MYH9 expression in Ang II-treated podocytes, attenuated disrupted actin cytoskeleton and decreased albumin permeability. Furthermore, MYH9 overexpression in podocytes restored the effects of Ang II on the actin cytoskeleton and actin-associated proteins. Ang II-mediated TRPC6 activation reduced MYH9 expression. These results suggest that Ang II-mediated MYH9 depletion in diabetic nephropathy may increase filtration barrier permeability by inducing structural and functional podocyte injury through TRPC6-mediated Ca2+ influx by NOX4-mediated ROS generation. These findings reveal a novel MYH9 function in maintaining urinary filtration barrier integrity. MYH9 may be a potential target for treating diabetic nephropathy.


Assuntos
Angiotensina II/fisiologia , Nefropatias Diabéticas/patologia , Proteínas Motores Moleculares/fisiologia , Cadeias Pesadas de Miosina/fisiologia , Podócitos/metabolismo , Acetilcisteína/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/ultraestrutura , Angiotensina II/farmacologia , Animais , Cálcio/metabolismo , Adesão Celular , Linhagem Celular Transformada , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/metabolismo , Regulação para Baixo , Humanos , Losartan/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Proteínas Motores Moleculares/biossíntese , Proteínas Motores Moleculares/genética , Cadeias Pesadas de Miosina/biossíntese , Cadeias Pesadas de Miosina/genética , NADPH Oxidase 4/biossíntese , NADPH Oxidase 4/genética , Podócitos/efeitos dos fármacos , Podócitos/ultraestrutura , Interferência de RNA , Ratos , Ratos Endogâmicos , Espécies Reativas de Oxigênio/metabolismo , Receptores para Leptina/deficiência , Canal de Cátion TRPC6/fisiologia
10.
J Cereb Blood Flow Metab ; 39(2): 332-341, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-28840777

RESUMO

Our goal was to examine whether in utero exposure to alcohol impaired reactivity of cerebral arterioles during development. We fed Sprague-Dawley dams a liquid diet with or without alcohol (3% ethanol) for the duration of pregnancy (21-23 days). Around 4-6 weeks after birth, we examined reactivity of cerebral arterioles to eNOS- (ADP) and nNOS-dependent (NMDA) agonists in the offspring. We found that in utero exposure to alcohol attenuated responses of cerebral arterioles to ADP and NMDA, but not to nitroglycerin in rats exposed to alcohol in utero. L-NMMA reduced responses to agonists in control rats, but not in rats exposed to alcohol in utero. Treatment of dams with apocynin for the duration of pregnancy rescued the impairment in reactivity to ADP and NMDA in the offspring. Protein expression of NOX-2 and NOX-4 was increased in alcohol rats compared to control rats. We also found an increase in superoxide levels in the cortex of rats exposed to alcohol in utero. Our findings suggest that in utero exposure to alcohol impairs eNOS and nNOS reactivity of cerebral arterioles via a chronic increase in oxidative stress.


Assuntos
Arteríolas , Córtex Cerebral , Etanol/efeitos adversos , Exposição Materna/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Acetofenonas/farmacologia , Difosfato de Adenosina/farmacologia , Animais , Arteríolas/metabolismo , Arteríolas/patologia , Arteríolas/fisiopatologia , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Doença Crônica , Etanol/farmacologia , Feminino , Masculino , NADPH Oxidase 2/biossíntese , NADPH Oxidase 4/biossíntese , Óxido Nítrico Sintase Tipo I/biossíntese , Óxido Nítrico Sintase Tipo III/biossíntese , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Superóxidos/metabolismo , ômega-N-Metilarginina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA