Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.315
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Clin Immunol ; 44(5): 125, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760640

RESUMO

BACKGROUND: Chronic Granulomatous Disease (CGD) is a rare immunodeficiency disorder characterized by impaired phagocytic function, leading to recurrent infections and granuloma formation. Genetic mutations in NADPH oxidase complex components, such as CYBB, NCF1, NCF2, and CYBA genes, contribute to the pathogenesis. This case report explores the possible ocular and hematologic complications associated with CGD. CASE PRESENTATION: A 6-year-old girl with a history of vitrectomy, membranotomy, and laser therapy due to congenital blindness (diagnosed with chorioretinopathy) was referred to the hospital with generalized ecchymosis and thrombocytopenia. Diagnostic workup initially suggested chronic immune thrombocytopenic purpura (ITP). Subsequent admissions revealed necrotic wounds, urinary tract infections, and recurrent thrombocytopenia. Suspecting immunodeficiency, tests for CGD, Nitroblue tetrazolium (NBT) and dihydrorhodamine (DHR) were performed. She had a low DHR (6.7), and her NBT test was negative (0.0%). Her whole exome sequencing results confirmed autosomal recessive CGD with a homozygous NCF1 mutation. CONCLUSION: This case underscores the diverse clinical manifestations of CGD, including recurrent thrombocytopenia and possible early-onset ocular involvement. The diagnostic challenges highlight the importance of a multidisciplinary approach involving hematologists, immunologists, and ophthalmologists for accurate diagnosis and management. The rare coexistence of ITP in CGD emphasizes the intricate link between immunodeficiency and autoimmunity, requiring tailored therapeutic strategies.


Assuntos
Doença Granulomatosa Crônica , Púrpura Trombocitopênica Idiopática , Humanos , Feminino , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/complicações , Criança , Púrpura Trombocitopênica Idiopática/diagnóstico , Púrpura Trombocitopênica Idiopática/genética , Púrpura Trombocitopênica Idiopática/complicações , NADPH Oxidases/genética , Mutação , Sequenciamento do Exoma
2.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720270

RESUMO

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Fibrose Pulmonar , Dióxido de Silício , Sinvastatina , Animais , Masculino , Ratos , Acetofenonas/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Silicose/tratamento farmacológico , Silicose/patologia , Silicose/metabolismo , Sinvastatina/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
3.
PLoS One ; 19(5): e0303010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748682

RESUMO

Diabetic Retinopathy (DR) is the leading cause of vision loss in working-age adults. The hallmark features of DR include vascular leakage, capillary loss, retinal ischemia, and aberrant neovascularization. Although the pathophysiology is not fully understood, accumulating evidence supports elevated reactive oxygen species associated with increased activity of NADPH oxidase 4 (Nox4) as major drivers of disease progression. Previously, we have shown that Nox4 upregulation in retinal endothelial cells by diabetes leads to increased vascular leakage by an unknown mechanism. Platelet endothelial cell adhesion molecule 1 (PECAM-1) is a cell surface molecule that is highly expressed in endothelial cells and regulates endothelial barrier function. In the present study, using endothelial cell-specific human Nox4 transgenic (TG) mice and endothelial cell-specific Nox4 conditional knockout (cKO) mice, we investigated the impact of Nox4 upregulation on PECAM-1 expression in mouse retinas and brain microvascular endothelial cells (BMECs). Additionally, cultured human retinal endothelial cells (HRECs) transduced with adenovirus overexpressing human Nox4 were used in the study. We found that overexpression of Nox4 increases PECAM-1 mRNA but has no effect on its protein expression in the mouse retina, BMECs, or HRECs. Furthermore, PECAM-1 mRNA and protein expression was unchanged in BMECs isolated from cKO mice compared to wild type (WT) mice with or without 2 months of diabetes. Together, these findings do not support a significant role of Nox4 in the regulation of PECAM-1 expression in the diabetic retina and endothelial cells. Further studies are warranted to elucidate the mechanism of Nox4-induced vascular leakage by investigating other intercellular junctional proteins in endothelial cells and their implications in the pathophysiology of diabetic retinopathy.


Assuntos
Retinopatia Diabética , Células Endoteliais , NADPH Oxidase 4 , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Regulação para Cima , Animais , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Camundongos , Humanos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Células Endoteliais/metabolismo , Camundongos Knockout , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Retina/metabolismo , Retina/patologia , Modelos Animais de Doenças , Camundongos Transgênicos
4.
Artigo em Chinês | MEDLINE | ID: mdl-38563173

RESUMO

Objective:After selecting NCF2 based on bioinformatics, clinical experiments were conducted to verify the expression of NCF2 in chronic rhinosinusitis with nasal polyps to study its correlation. Methods:The differentially expressed genes(DEGs) between CRSwNP and non-CRS patients were explored using the CRS-related dataset from the gene expression omnibus GEO database. The weighted gene co-expression network(WGCNA) was used for cluster analysis. The expression and cell distribution of NCF2 in the tissues were determined by single gene enrichment analysis(GSEA), immune inflammatory infiltration analysis, and principal component(PCA) analysis. The expression degree of NCF2 in the tissues of the subjects was determined by immunohistochemistry, and the percentage of EOS in the peripheral blood of the subjects was detected and the correlation was analyzed. EOS in the tissues of the subjects were counted under a microscope and compared. Results:①The Venn diagram was obtained by crossing the module with the highest correlation between DEGs and WGCNA to determine the core gene NCF2. ②GSEA analysis showed that NCF2 was significantly related to the immunological processes such as allogeneic rejection and asthma. ③The area under the ROC curve was 1, indicating that NCF2 had diagnostic value for CRSwNP. ④NCF2 was highly expressed in nasal polyps, mainly distributed in monocytes and eosinophils. ⑤HE staining showed that the number of EOS in ECRSwNP tissues and the percentage of eosinophils in peripheral blood were higher than those in nonECRSwNP and control groups. ⑥The immunohistochemistry results showed that NCF2 was significantly expressed in the nasal polyps of ECRSwNP patients, which was higher than that in the nasal mucosa of nonECRSwNP group and control group. ⑦The expression of NCF2 in tissues was positively correlated with EOS count in ECRSwNP group and EOS expression in peripheral blood. Conclusion:The expression of NCF2 is increased in eosinophilic chronic rhinosinusitis with nasal polyps, and it is significantly correlated with the expression of eosinophils in peripheral blood and tissues, suggesting that NCF2 may be used as a basis for the intrinsic classification of ECRSwNP and a reference index for clinical diagnosis and treatment.


Assuntos
Pólipos Nasais , Rinite , Rinossinusite , Sinusite , Humanos , Pólipos Nasais/metabolismo , Rinite/cirurgia , Correlação de Dados , Sinusite/cirurgia , Eosinófilos/metabolismo , Doença Crônica , NADPH Oxidases
5.
An Acad Bras Cienc ; 96(1): e20230971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597493

RESUMO

Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.


Assuntos
Paraquat , Sistema Renina-Angiotensina , Ratos , Animais , Masculino , Espécies Reativas de Oxigênio/metabolismo , Paraquat/metabolismo , Paraquat/farmacologia , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Creatinina/metabolismo , Creatinina/urina , Interleucina-6 , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar , Rim , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Sódio/metabolismo , Sódio/farmacologia , NADPH Oxidases/metabolismo , NADPH Oxidases/farmacologia
6.
Biochemistry ; 63(9): 1097-1106, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38669178

RESUMO

As a key component for NADPH oxidase 2 (NOX2) activation, the peripheral membrane protein p47phox translocates a cytosolic activating complex to the membrane through its PX domain. This study elucidates a potential regulatory mechanism of p47phox recruitment and NOX2 activation by inositol hexaphosphate (IP6). Through NMR, fluorescence polarization, and FRET experimental results, IP6 is shown to be capable of breaking the lipid binding and membrane anchoring events of p47phox-PX with low micromolar potency. Other phosphorylated inositol species such as IP5(1,3,4,5,6), IP4(1,3,4,5), and IP3(1,3,4) show weaker binding and no ability to inhibit lipid interactions in physiological concentration ranges. The low micromolar potency of IP6 inhibition of the p47phox membrane anchoring suggests that physiologically relevant concentrations of IP6 serve as regulators, as seen in other membrane anchoring domains. The PX domain of p47phox is known to be promiscuous to a variety of phosphatidylinositol phosphate (PIP) lipids, and this regulation may help target the domain only to the membranes most highly enriched with the highest affinity PIPs, such as the phagosomal membrane, while preventing aberrant binding to other membranes with high and heterogeneous PIP content, such as the plasma membrane. This study provides insight into a potential novel regulatory mechanism behind NOX2 activation and reveals a role for small-molecule regulation in this important NOX2 activator.


Assuntos
NADPH Oxidases , Ácido Fítico , Ácido Fítico/metabolismo , Ácido Fítico/química , NADPH Oxidases/metabolismo , NADPH Oxidases/antagonistas & inibidores , Humanos , Membrana Celular/metabolismo , NADPH Oxidase 2/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
7.
Biomolecules ; 14(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38672433

RESUMO

Neutrophil extracellular traps (NETs) are intricate fibrous structures released by neutrophils in response to specific stimuli. These structures are composed of depolymerized chromatin adorned with histones, granule proteins, and cytosolic proteins. NETs are formed via two distinct pathways known as suicidal NETosis, which involves NADPH oxidase (NOX), and vital NETosis, which is independent of NOX. Certain proteins found within NETs exhibit strong cytotoxic effects against both pathogens and nearby host cells. While NETs play a defensive role against pathogens, they can also contribute to tissue damage and worsen inflammation. Despite extensive research on the pathophysiological role of NETs, less attention has been paid to their components, which form a unique structure containing various proteins that have significant implications in a wide range of diseases. This review aims to elucidate the components of NETs and provide an overview of their impact on host defense against invasive pathogens, autoimmune diseases, and cancer.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Humanos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Animais , NADPH Oxidases/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Inflamação/metabolismo , Inflamação/imunologia , Inflamação/patologia
8.
J Pharmacol Sci ; 155(2): 52-62, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677786

RESUMO

The ubiquitin-proteasome system (UPS) is a major proteolytic system that plays an important role in the regulation of various cell processes, such as cell cycle, stress response, and transcriptional regulation, especially in neurons, and dysfunction of UPS is considered to be a cause of neuronal cell death in neurodegenerative diseases. However, the mechanism of neuronal cell death caused by UPS dysfunction has not yet been fully elucidated. In this study, we investigated the mechanism of neuronal cell death induced by proteasome inhibitors using human neuroblastoma SH-SY5Y cells. Z-Leu-D-Leu-Leu-al (MG132), a proteasome inhibitor, induced apoptosis in SH-SY5Y cells in a concentration- and time-dependent manner. Antioxidants N-acetylcysteine and EUK-8 attenuated MG132-induced apoptosis. Apocynin and diphenyleneiodonium, inhibitors of NADPH oxidase (NOX), an enzyme that produces superoxide anions, also attenuated MG132-induced apoptosis. It was also found that MG132 treatment increased the expression of NOX5, a NOX family member, and that siRNA-mediated silencing of NOX5 and BAPTA-AM, which inhibits NOX5 by chelating calcium, suppressed MG132-induced apoptosis and production of reactive oxygen species in SH-SY5Y cells. These results suggest that MG132 induces apoptosis in SH-SY5Y cells through the production of superoxide anion by NOX5.


Assuntos
Apoptose , Leupeptinas , NADPH Oxidase 5 , NADPH Oxidases , Neuroblastoma , Inibidores de Proteassoma , Superóxidos , Humanos , Apoptose/efeitos dos fármacos , Apoptose/genética , Inibidores de Proteassoma/farmacologia , Superóxidos/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Leupeptinas/farmacologia , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , NADPH Oxidase 5/genética , NADPH Oxidase 5/metabolismo , Antioxidantes/farmacologia , Relação Dose-Resposta a Droga , Acetilcisteína/farmacologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
9.
Redox Biol ; 72: 103151, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593631

RESUMO

Salmonella infection entails a cascade of attacks and defence measures. After breaching the intestinal epithelial barrier, Salmonella is phagocytosed by macrophages, where the bacteria encounter multiple stresses, to which it employs relevant countermeasures. Our study shows that, in Salmonella, the polyamine spermidine activates a stress response mechanism by regulating critical antioxidant genes. Salmonella Typhimurium mutants for spermidine transport and synthesis cannot mount an antioxidative response, resulting in high intracellular ROS levels. These mutants are also compromised in their ability to be phagocytosed by macrophages. Furthermore, it regulates a novel enzyme in Salmonella, Glutathionyl-spermidine synthetase (GspSA), which prevents the oxidation of proteins in E. coli. Moreover, the spermidine mutants and the GspSA mutant show significantly reduced survival in the presence of hydrogen peroxide in vitro and reduced organ burden in the mouse model of Salmonella infection. Conversely, in macrophages isolated from gp91phox-/- mice, we observed a rescue in the attenuated fold proliferation previously observed upon infection. We found that Salmonella upregulates polyamine biosynthesis in the host through its effectors from SPI-1 and SPI-2, which addresses the attenuated proliferation observed in spermidine transport mutants. Thus, inhibition of this pathway in the host abrogates the proliferation of Salmonella Typhimurium in macrophages. From a therapeutic perspective, inhibiting host polyamine biosynthesis using an FDA-approved chemopreventive drug, D, L-α-difluoromethylornithine (DFMO), reduces Salmonella colonisation and tissue damage in the mouse model of infection while enhancing the survival of infected mice. Therefore, our work provides a mechanistic insight into the critical role of spermidine in stress resistance of Salmonella. It also reveals a bacterial strategy in modulating host metabolism to promote their intracellular survival and shows the potential of DFMO to curb Salmonella infection.


Assuntos
Proteínas de Bactérias , Macrófagos , Proteínas de Membrana , NADPH Oxidase 2 , Espécies Reativas de Oxigênio , Salmonella typhimurium , Espermidina , Animais , Salmonella typhimurium/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Espermidina/metabolismo , Camundongos , Macrófagos/microbiologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Poliaminas/metabolismo , Fagocitose/efeitos dos fármacos , Infecções por Salmonella/microbiologia , Infecções por Salmonella/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Interações Hospedeiro-Patógeno , Espermidina Sintase/metabolismo , Espermidina Sintase/genética , Estresse Oxidativo/efeitos dos fármacos
10.
Cell Immunol ; 399-400: 104811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38518686

RESUMO

Helicobacter pylori-associated stomach infection is a leading cause of gastric ulcer and related cancer. H. pylori modulates the functions of infiltrated immune cells to survive the killing by reactive oxygen and nitrogen species (ROS and RNS) produced by these cells. Uncontrolled immune responses further produce excess ROS and RNS which lead to mucosal damage. The persistent oxidative stress is a major cause of gastric cancer. H. pylori regulates nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs), nitric oxide synthase 2 (NOS2), and polyamines to control ROS and RNS release through lesser-known mechanisms. ROS and RNS produced by these pathways differentiate macrophages and T cells from protective to inflammatory phenotype. Pathogens-associated molecular patterns (PAMPs) induced ROS activates nuclear oligomerization domain (NOD), leucine rich repeats (LRR) and pyrin domain-containing protein 3 (NLRP3) inflammasome for the release of pro-inflammatory cytokines. This study evaluates the role of H. pylori secreted concentrated proteins (HPSCP) related oxidative stress role in NLRP3 inflammasome activation and macrophage differentiation. To perceive the role of ROS/RNS, THP-1 and AGS cells were treated with 10 µM diphenyleneiodonium (DPI), 50 µM salicyl hydroxamic acid (SHX), 5 µM Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP), which are specific inhibitors of NADPH oxidase (NOX), Myeloperoxidase (MPO), and mitochondrial oxidative phosphorylation respectively. Cells were also treated with 10 µM of NOS2 inhibitor l-NMMA and 10 µM of N-acetyl cysteine (NAC), a free radical scavenger·H2O2 (100 µM) treated and untreated cells were used as positive controls and negative control respectively. The expression of gp91phox (NOX2), NOS2, NLRP3, CD86 and CD163 was analyzed through fluorescent microscopy. THP-1 macrophages growth was unaffected whereas the gastric epithelial AGS cells proliferated in response to higher concentration of HPSCP. ROS and myeloperoxidase (MPO) level increased in THP-1 cells and nitric oxide (NO) and lipid peroxidation significantly decreased in AGS cells. gp91phox expression was unchanged, whereas NOS2 and NLRP3 downregulated in response to HPSCP, but increased after inhibition of NO, ROS and MPO in THP-1 cells. HPSCP upregulated the expression of M1 and M2 macrophage markers, CD86 and CD163 respectively, which was decreased after the inhibition of ROS. This study concludes that there are multiple pathways which are generating ROS during H. pylori infection which further regulates other cellular processes. NO is closely associated with MPO and inhibition of NLRP3 inflammasome. The low levels of NO and MPO regulates gastrointestinal tract homeostasis and overcomes the inflammatory response of NLRP3. The ROS also plays crucial role in macrophage polarization hence alter the immune responses duing H. pylori pathogenesis.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Inflamassomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Helicobacter pylori/imunologia , Espécies Reativas de Oxigênio/metabolismo , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/metabolismo , Inflamassomos/metabolismo , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Proteínas de Bactérias/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Células THP-1 , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Diferenciação Celular/imunologia
11.
Nanoscale ; 16(13): 6585-6595, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38465774

RESUMO

Nicotinamide adenine dinucleotide (NADH) and its phosphorylated form, NADPH, are essential cofactors that play critical roles in cell functions, influencing antioxidation, reductive biosynthesis, and cellular pathways involved in tumor cell apoptosis and tumorigenesis. However, the use of nanomaterials to consume NAD(P)H and thus bring an impact on signaling pathways in cancer treatment remains understudied. In this study, we employed a salt template method to synthesize a carbon-coated-cobalt composite (C@Co) nanozyme, which exhibited excellent NAD(P)H oxidase (NOX)-like activity and mimicked the reaction mechanism of natural NOX. The C@Co nanozyme efficiently consumed NAD(P)H within cancer cells, leading to increased production of reactive oxygen species (ROS) and a reduction in mitochondrial membrane potential. Meanwhile, the generation of the biologically active cofactor NAD(P)+ promoted the expression of the deacetylase SIRT7, which in turn inhibited the serine/threonine kinase AKT signaling pathway, ultimately promoting apoptosis. This work sheds light on the influence of nanozymes with NOX-like activity on cellular signaling pathways in tumor therapy and demonstrates their promising antitumor effects in a tumor xenograft mouse model. These findings contribute to a better understanding of NAD(P)H manipulation in cancer treatment and suggest the potential of nanozymes as a therapeutic strategy for cancer therapy.


Assuntos
NADPH Oxidases , Nanoestruturas , Sirtuínas , Animais , Humanos , Camundongos , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , NAD/metabolismo , NADPH Oxidases/farmacologia , NADPH Oxidases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas/efeitos dos fármacos , Sirtuínas/metabolismo , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/terapia
12.
J Biol Chem ; 300(4): 107130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432630

RESUMO

The actin cytoskeleton and reactive oxygen species (ROS) both play crucial roles in various cellular processes. Previous research indicated a direct interaction between two key components of these systems: the WAVE1 subunit of the WAVE regulatory complex (WRC), which promotes actin polymerization and the p47phox subunit of the NADPH oxidase 2 complex (NOX2), which produces ROS. Here, using carefully characterized recombinant proteins, we find that activated p47phox uses its dual Src homology 3 domains to bind to multiple regions within the WAVE1 and Abi2 subunits of the WRC, without altering WRC's activity in promoting Arp2/3-mediated actin polymerization. Notably, contrary to previous findings, p47phox uses the same binding pocket to interact with both the WRC and the p22phox subunit of NOX2, albeit in a mutually exclusive manner. This observation suggests that when activated, p47phox may separately participate in two distinct processes: assembling into NOX2 to promote ROS production and engaging with WRC to regulate the actin cytoskeleton.


Assuntos
NADPH Oxidase 2 , Família de Proteínas da Síndrome de Wiskott-Aldrich , Humanos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Sítios de Ligação
13.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542437

RESUMO

NADPH oxidase enzymes (NOX) are involved in all stages of carcinogenesis, but their expression levels and prognostic value in breast cancer (BC) remain unclear. Thus, we aimed to assess the expression and prognostic value of NOX enzymes in BC samples using online databases. For this, mRNA expression from 290 normal breast tissue samples and 1904 BC samples obtained from studies on cBioPortal, Kaplan-Meier Plotter, and The Human Protein Atlas were analyzed. We found higher levels of NOX2, NOX4, and Dual oxidase 1 (DUOX1) in normal breast tissue. NOX1, NOX2, and NOX4 exhibited higher expression in BC, except for the basal subtype, where NOX4 expression was lower. DUOX1 mRNA levels were lower in all BC subtypes. NOX2, NOX4, and NOX5 mRNA levels increased with tumor progression stages, while NOX1 and DUOX1 expression decreased in more advanced stages. Moreover, patients with low expression of NOX1, NOX4, and DUOX1 had lower survival rates than those with high expression of these enzymes. In conclusion, our data suggest an overexpression of NOX enzymes in breast cancer, with certain isoforms showing a positive correlation with tumor progression.


Assuntos
Neoplasias da Mama , NADPH Oxidases , Humanos , Feminino , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oxidases Duais/genética , Neoplasias da Mama/genética , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro/genética , Expressão Gênica , NADPH Oxidase 4/genética , NADPH Oxidase 1/genética
14.
Redox Biol ; 72: 103132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547647

RESUMO

Autoimmune diseases, such as rheumatoid arthritis (RA) and systemic lupus erythematous, are regulated by polymorphisms in genes contributing to the NOX2 complex. Mutations in both Ncf1 and Ncf4 affect development of arthritis in experimental models of RA, but the different regulatory pathways mediated by NOX2-derived reactive oxygen species (ROS) have not yet been clarified. Here we address the possibility that intracellular ROS, regulated by the NCF4 protein (earlier often denoted p40phox) which interacts with endosomal membranes, could play an important role in the oxidation of cysteine peptides in mononuclear phagocytic cells, thereby regulating antigen presentation and activation of arthritogenic T cells. To study the role of NCF4 we used mice with an amino acid replacing mutation (NCF4R58A), which is known to affect interaction with endosomal membranes, leading to decreased intracellular ROS production. To study the impact of NCF4 on T cell activation, we used the glucose phosphate isomerase peptide GPI325-339, which contains two cysteine residues (325-339c-c). Macrophages from mice with the NCF458A mutation efficiently presented the peptide when the two cysteines were intact and not crosslinked, leading to a strong arthritogenic T cell response. T cell priming occurred in the draining lymph nodes (LNs) within 8 days after immunization. Clodronate treatment, which depletes antigen-presenting mononuclear phagocytes, ameliorated arthritis severity, whereas treatment with FYT720, which traps activated T cells in LNs, prohibited arthritis. We conclude that NCF4-dependent intracellular ROS maintains cysteine peptides in an oxidized crosslinked state, which prevents presentation of peptides recognized by non-tolerized T cells and thereby protects against autoimmune arthritis.


Assuntos
Apresentação de Antígeno , Cisteína , Ativação Linfocitária , Oxirredução , Espécies Reativas de Oxigênio , Linfócitos T , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Cisteína/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Apresentação de Antígeno/imunologia , Ativação Linfocitária/imunologia , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Peptídeos/farmacologia , Peptídeos/imunologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Macrófagos/imunologia , Macrófagos/metabolismo
15.
J Neurochem ; 168(5): 899-909, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299375

RESUMO

Cofilactin rods (CARs), which are 1:1 aggregates of cofilin-1 and actin, lead to neurite loss in ischemic stroke and other disorders. The biochemical pathways driving CAR formation are well-established, but how these pathways are engaged under ischemic conditions is less clear. Brain ischemia produces both ATP depletion and glutamate excitotoxicity, both of which have been shown to drive CAR formation in other settings. Here, we show that CARs are formed in cultured neurons exposed to ischemia-like conditions: oxygen-glucose deprivation (OGD), glutamate, or oxidative stress. Of these conditions, only OGD produced significant ATP depletion, showing that ATP depletion is not required for CAR formation. Moreover, the OGD-induced CAR formation was blocked by the glutamate receptor antagonists MK-801 and kynurenic acid; the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors GSK2795039 and apocynin; as well as an ROS scavenger. The findings identify a biochemical pathway leading from OGD to CAR formation in which the glutamate release induced by energy failure leads to activation of neuronal glutamate receptors, which in turn activates NADPH oxidase to generate oxidative stress and CARs.


Assuntos
Metabolismo Energético , Ácido Glutâmico , Neurônios , Animais , Células Cultivadas , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Ácido Glutâmico/metabolismo , Ratos , Trifosfato de Adenosina/metabolismo , Glucose/metabolismo , Glucose/deficiência , Actinas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , NADPH Oxidases/metabolismo , Acetofenonas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Maleato de Dizocilpina/farmacologia , Ácido Cinurênico/farmacologia , Ácido Cinurênico/metabolismo , Ratos Sprague-Dawley
16.
Immunol Lett ; 266: 106839, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309375

RESUMO

The X-linked chronic granulomatous disease (X-CGD), a rare genetic disease characterised by recurrent infections, is caused by mutations of NOX2. Significant proportions of X-CGD patients display signs of immune dysregulation. Regulatory T cells (Tregs) are CD4+T lymphocytes that expand in active inflammation and prevent autoimmune disorders. Here we asked whether X-CGD is associated to Treg dysfunctions in adult patients. To this aim, the frequency of Tregs was analysed through intracellular flow cytometry in a cohort of adult X-CGD patients, carriers and controls. We found that Tregs were significantly expanded and activated in blood of adult X-CGD patients, and this was associated with activation of conventional CD4+T cells (Tconvs). T cell activation was characterised by accumulation of intracellular ROS, not derived from NOX2 but likely produced by cellular metabolism. The higher TNF production by Tconvs in X-CGD patients might contribute to the expansion of Tregs through the TNFR2 receptor. In summary, our data indicate that Tregs expand in adult X-CGD in response to immune activation, and that the increase of NOX2-independent ROS content is a feature of activated T cells.


Assuntos
Doença Granulomatosa Crônica , Adulto , Humanos , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/metabolismo , Linfócitos T Reguladores , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mutação
17.
Cell Host Microbe ; 32(3): 411-424.e10, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38307020

RESUMO

Intracellular Salmonella experiencing oxidative stress downregulates aerobic respiration. To maintain cellular energetics during periods of oxidative stress, intracellular Salmonella must utilize terminal electron acceptors of lower energetic value than molecular oxygen. We show here that intracellular Salmonella undergoes anaerobic respiration during adaptation to the respiratory burst of the phagocyte NADPH oxidase in macrophages and in mice. Reactive oxygen species generated by phagocytes oxidize methionine, generating methionine sulfoxide. Anaerobic Salmonella uses the molybdenum cofactor-containing DmsABC enzymatic complex to reduce methionine sulfoxide. The enzymatic activity of the methionine sulfoxide reductase DmsABC helps Salmonella maintain an alkaline cytoplasm that supports the synthesis of the antioxidant hydrogen sulfide via cysteine desulfuration while providing a source of methionine and fostering redox balancing by associated dehydrogenases. Our investigations demonstrate that nontyphoidal Salmonella responding to oxidative stress exploits the anaerobic metabolism associated with dmsABC gene products, a pathway that has accrued inactivating mutations in human-adapted typhoidal serovars.


Assuntos
Metionina/análogos & derivados , NADPH Oxidases , Fagócitos , Animais , Camundongos , Humanos , Anaerobiose , Fagócitos/metabolismo , Metionina/metabolismo , Salmonella typhimurium/metabolismo , Respiração
18.
Front Immunol ; 15: 1354836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404573

RESUMO

Introduction: Loss of NADPH oxidase activity results in proinflammatory macrophages that contribute to hyperinflammation in Chronic Granulomatous Disease (CGD). Previously, it was shown in a zymosan-induced peritonitis model that gp91phox-/- (CGD) monocyte-derived macrophages (MoMacs) fail to phenotypically mature into pro-resolving MoMacs characteristic of wild type (WT) but retain the ability to do so when placed in the WT milieu. Accordingly, it was hypothesized that soluble factor(s) in the CGD milieu thwart appropriate programming. Methods: We sought to identify key constituents using ex vivo culture of peritoneal inflammatory leukocytes and their conditioned media. MoMac phenotyping was performed via flow cytometry, measurement of efferocytic capacity and multiplex analysis of secreted cytokines. Addition of exogenous TNFα, TNFα neutralizing antibody and TNFR1-/- MoMacs were used to study the role of TNFα: TNFR1 signaling in MoMac maturation. Results: More extensive phenotyping defined normal MoMac maturation and demonstrated failure of maturation of CGD MoMacs both ex vivo and in vivo. Protein components, and specifically TNFα, produced and released by CGD neutrophils and MoMacs into conditioned media was identified as critical to preventing maturation. Exogenous addition of TNFα inhibited WT MoMac maturation, and its neutralization allowed maturation of cultured CGD MoMacs. TNFα neutralization also reduced production of IL-1ß, IL-6 and CXCL1 by CGD cells though these cytokines played no role in MoMac programming. MoMacs lacking TNFR1 matured more normally in the CGD milieu both ex vivo and following adoptive transfer in vivo. Discussion: These data lend mechanistic insights into the utility of TNFα blockade in CGD and to other diseases where such therapy has been shown to be beneficial.


Assuntos
Doença Granulomatosa Crônica , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Animais , Camundongos , Meios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Doença Granulomatosa Crônica/terapia , Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Biochem Pharmacol ; 222: 116049, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342347

RESUMO

We previously showed that digitoxin inhibits angiogenesis and cancer cell proliferation and migration and these effects were associated to protein tyrosine kinase 2 (FAK) inhibition. Considering the interactions between FAK and Rho GTPases regulating cell cytoskeleton and movement, we investigated the involvement of RhoA and Rac1 in the antiangiogenic effect of digitoxin. Phalloidin staining of human umbilical vein endothelial cells (HUVECs) showed the formation of stress fibers in cells treated with 10 nM digitoxin. By Rhotekin- and Pak1- pull down assays, detecting the GTP-bound form of GTPases, we observed that digitoxin (10-25 nM) induced sustained (0.5-6 h) RhoA activation with no effect on Rac1. Furthermore, inhibition of HUVEC migration and capillary-like tube formation by digitoxin was counteracted by hindering RhoA-ROCK axis with RhoA silencing or Y-27632 treatment. Digitoxin did not decrease p190RhoGAP phosphorylation at Tyr1105 (a site targeted by FAK), suggesting that RhoA activation was independent from FAK inhibition. Because increasing evidence points to a redox regulation of RhoA, we measured intracellular ROS and found that digitoxin treatment enhanced ROS levels in a concentration-dependent manner (1-25 nM). Notably, the flavoprotein inhibitor DPI or the pan-NADPH oxidase (NOX) inhibitor VAS-2870 antagonized both ROS increase and RhoA activation by digitoxin. Our results provide evidence that inhibition of HUVEC migration and tube formation by digitoxin is dependent on ROS production by endothelial NOX, which leads to the activation of RhoA/ROCK pathway. Digitoxin effects on proteins regulating cytoskeletal organization and cell motility could have a wider impact on cancer progression, beyond the antiangiogenic activity.


Assuntos
Digitoxina , NADPH Oxidases , Humanos , Espécies Reativas de Oxigênio/metabolismo , Digitoxina/farmacologia , Células Endoteliais da Veia Umbilical Humana , Quinase 1 de Adesão Focal/metabolismo , Fosforilação , Movimento Celular , NADPH Oxidases/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
20.
FEBS J ; 291(9): 1944-1957, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38335056

RESUMO

The transmembrane receptor for advanced glycation end products (RAGE) is a signaling receptor for many damage- and pathogen-associated molecules. Activation of RAGE is associated with inflammation and an increase in reactive oxygen species (ROS) production. Although several sources of ROS have been previously suggested, how RAGE induces ROS production is still unclear, considering the multiple targets of pathogen-associated molecules. Here, using acute brain slices and primary co-culture of cortical neurons and astrocytes, we investigated the effects of a range of synthetic peptides corresponding to the fragments of the RAGE V-domain on redox signaling. We found that the synthetic fragment (60-76) of the RAGE V-domain induces activation of ROS production in astrocytes and neurons from the primary co-culture and acute brain slices. This effect occurred through activation of RAGE and could be blocked by a RAGE inhibitor. Activation of RAGE by the synthetic fragment stimulates ROS production in NADPH oxidase (NOX). This RAGE-induced NOX activation produced only minor decreases in glutathione levels and increased the rate of lipid peroxidation, although it also reduced basal and ß-amyloid induced cell death in neurons and astrocytes. Thus, specific activation of RAGE induces redox signaling through NOX, which can be a part of a cell protective mechanism.


Assuntos
Astrócitos , Técnicas de Cocultura , NADPH Oxidases , Neurônios , Espécies Reativas de Oxigênio , Receptor para Produtos Finais de Glicação Avançada , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Animais , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Neuroproteção , Células Cultivadas , Oxirredução , Transdução de Sinais , Camundongos , Peroxidação de Lipídeos/efeitos dos fármacos , Ratos , Ativação Enzimática/efeitos dos fármacos , Glutationa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA