Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Physiol Plant ; 176(4): e14420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38956780

RESUMO

This study explores the impact of juglone on cucumber (Cucumis sativus cv. Beith Alpha), scrutinizing its effects on seed germination, growth, and the polyphenol oxidase (PPO) enzyme's activity and gene expression. Employing concentrations ranging from 0.01 to 0.5 mM, we found juglone's effects to be concentration-dependent. At lower concentrations (0.01 and 0.1 mM), juglone promoted root and shoot growth along with germination, whereas higher concentrations (0.25 and 0.5 mM) exerted inhibitory effects, delineating a threshold for its allelopathic influence. Notably, PPO activity surged, especially at 0.5 mM in roots, hinting at oxidative stress involvement. Real-time PCR unveiled that juglone modulates PPO gene expression in cotyledons, peaking at 0.1 mM and diminishing at elevated levels. Correlation analyses elucidated a positive link between juglone-induced root growth and cotyledon PPO gene expression but a negative correlation with heightened root enzyme activity. Additionally, germination percentage inversely correlated with root PPO activity, while PPO activities positively associated with dopa and catechol substrates in both roots and cotyledons. Molecular docking studies revealed juglone's selective interactions with PPO's B chain, suggesting regulatory impacts. Protein interaction assessments highlighted juglone's influence on amino acid metabolism, and molecular dynamics indicated juglone's stronger, more stable binding to PPO, inferring potential alterations in enzyme function and stability. Conclusively, our findings elucidate juglone's dose-dependent physiological and biochemical shifts in cucumber plants, offering insights into its role in plant growth, stress response, and metabolic modulation.


Assuntos
Catecol Oxidase , Cucumis sativus , Germinação , Simulação de Acoplamento Molecular , Naftoquinonas , Raízes de Plantas , Catecol Oxidase/metabolismo , Catecol Oxidase/genética , Cucumis sativus/genética , Cucumis sativus/enzimologia , Cucumis sativus/efeitos dos fármacos , Naftoquinonas/farmacologia , Naftoquinonas/metabolismo , Germinação/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/enzimologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cotilédone/genética , Cotilédone/efeitos dos fármacos , Cotilédone/enzimologia
2.
Plant Cell Physiol ; 65(3): 362-371, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38181221

RESUMO

Shikonin and its enantiomer, alkannin, are bioactive naphthoquinones produced in several plants of the family Boraginaceae. The structures of these acylated derivatives, which have various short-chain acyl moieties, differ among plant species. The acylation of shikonin and alkannin in Lithospermum erythrorhizon was previously reported to be catalyzed by two enantioselective BAHD acyltransferases, shikonin O-acyltransferase (LeSAT1) and alkannin O-acyltransferase (LeAAT1). However, the mechanisms by which various shikonin and alkannin derivatives are produced in Boraginaceae plants remain to be determined. In the present study, evaluation of six Boraginaceae plants identified 23 homologs of LeSAT1 and LeAAT1, with 15 of these enzymes found to catalyze the acylation of shikonin or alkannin, utilizing acetyl-CoA, isobutyryl-CoA or isovaleryl-CoA as an acyl donor. Analyses of substrate specificities of these enzymes for both acyl donors and acyl acceptors and determination of their subcellular localization using Nicotiana benthamiana revealed a distinct functional differentiation of BAHD acyltransferases in Boraginaceae plants. Gene expression of these acyltransferases correlated with the enantiomeric ratio of produced shikonin/alkannin derivatives in L. erythrorhizon and Echium plantagineum. These enzymes showed conserved substrate specificities for acyl donors among plant species, indicating that the diversity in acyl moieties of shikonin/alkannin derivatives involved factors other than the differentiation of acyltransferases. These findings provide insight into the chemical diversification and evolutionary processes of shikonin/alkannin derivatives.


Assuntos
Boraginaceae , Naftoquinonas , Boraginaceae/genética , Boraginaceae/química , Boraginaceae/metabolismo , Aciltransferases/genética , Naftoquinonas/metabolismo
3.
Cell Biochem Funct ; 41(7): 833-844, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37814478

RESUMO

Diabetes is one of the major health issues globally. Type 1 diabetes mellitus develops due to the destruction of pancreatic ß cells. Mesenchymal stem cells (MSCs) having remarkable self-renewal and differentiation potential, can regenerate ß cells. MSCs preconditioned with bioactive small molecules possess enhanced biological features and therapeutic potential under in vivo environment. Interestingly, compounds of naphthoquinone class possess antidiabetic and anti-inflammatory properties, and can be explored as potential candidates for preconditioning MSCs. This study analyzed the effect of lawsone-preconditioned human umbilical cord MSCs (hUMSCs) on the regeneration of ß cells in the streptozotocin (STZ)-induced Type 1 diabetes (T1D) rats. hUMSCs were isolated and characterized for the presence of surface markers. MSCs were preconditioned with optimized concentration of lawsone. T1D rat model was established by injecting 50 mg/kg of STZ intraperitoneally. Untreated and lawsone-preconditioned hUMSCs were transplanted into the diabetic rats via tail vein. Fasting blood sugar and body weight were monitored regularly for 4 weeks. Pancreas was harvested and ß cell regeneration was evaluated by hematoxylin and eosin staining, and gene expression analysis. Immunohistochemistry was also done to assess the insulin expression. Lawsone-preconditioned hUMSCs showed better anti-hyperglycemic effect in comparison with untreated hUMSCs. Histological analysis presented the regeneration of islets of Langerhans with upregulated expression of ßcell genes and reduced expression of inflammatory markers. Immunohistochemistry revealed strong insulin expression in the preconditioned hUMSCs compared with the untreated hUMSCs. It is concluded from the present study that lawsone-preconditioned hMSCs were able to exhibit pronounced anti-hyperglycemic effect in vivo compared with hUMSCs alone.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Naftoquinonas , Ratos , Humanos , Animais , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Naftoquinonas/farmacologia , Naftoquinonas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Insulina/metabolismo , Hipoglicemiantes/farmacologia
4.
Toxins (Basel) ; 15(5)2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37235382

RESUMO

Naphthoquinones are a valuable source of secondary metabolites that are well known for their dye properties since ancient times. A wide range of biological activities have been described highlighting their cytotoxic activity, gaining the attention of researchers in recent years. In addition, it is also worth mentioning that many anticancer drugs possess a naphthoquinone backbone in their structure. Considering this background, the work described herein reports the evaluation of the cytotoxicity of different acyl and alkyl derivatives from juglone and lawsone that showed the best activity results from a etiolated wheat coleoptile bioassay. This bioassay is rapid, highly sensitive to a wide spectrum of activities, and is a powerful tool for detecting biologically active natural products. A preliminary cell viability bioassay was performed on cervix carcinoma (HeLa) cells for 24 h. The most promising compounds were further tested for apoptosis on different tumoral (IGROV-1 and SK-MEL-28) and non-tumoral (HEK-293) cell lines by flow cytometry. Results reveal that derivatives from lawsone (particularly derivative 4) were more cytotoxic on tumoral than in non-tumoral cells, showing similar results to those obtained with of etoposide, which is used as a positive control for apoptotic cell death. These findings encourage further studies on the development of new anticancer drugs for more directed therapies and reduced side effects with naphthoquinone skeleton.


Assuntos
Antineoplásicos , Naftoquinonas , Feminino , Humanos , Células HEK293 , Naftoquinonas/farmacologia , Naftoquinonas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Etoposídeo , Linhagem Celular Tumoral
5.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108682

RESUMO

Naphthoquinone (1,4-NQ) and its derivatives (NQs, juglone, plumbagin, 2-methoxy-1,4-NQ, and menadione) have a variety of therapeutic applications, many of which are attributed to redox cycling and the production of reactive oxygen species (ROS). We previously demonstrated that NQs also oxidize hydrogen sulfide (H2S) to reactive sulfur species (RSS), potentially conveying identical benefits. Here we use RSS-specific fluorophores, mass spectroscopy, EPR and UV-Vis spectrometry, and oxygen-sensitive optodes to examine the effects of thiols and thiol-NQ adducts on H2S-NQ reactions. In the presence of glutathione (GSH) and cysteine (Cys), 1,4-NQ oxidizes H2S to both inorganic and organic hydroper-/hydropolysulfides (R2Sn, R=H, Cys, GSH; n = 2-4) and organic sulfoxides (GSnOH, n = 1, 2). These reactions reduce NQs and consume oxygen via a semiquinone intermediate. NQs are also reduced as they form adducts with GSH, Cys, protein thiols, and amines. Thiol, but not amine, adducts may increase or decrease H2S oxidation in reactions that are both NQ- and thiol-specific. Amine adducts also inhibit the formation of thiol adducts. These results suggest that NQs may react with endogenous thiols, including GSH, Cys, and protein Cys, and that these adducts may affect both thiol reactions as well as RSS production from H2S.


Assuntos
Sulfeto de Hidrogênio , Naftoquinonas , Compostos de Sulfidrila/química , Tiossulfatos , Cisteína/metabolismo , Sulfeto de Hidrogênio/química , Oxirredução , Glutationa/metabolismo , Proteínas/metabolismo , Oxigênio , Naftoquinonas/metabolismo
6.
J Nat Prod ; 85(11): 2626-2640, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36346625

RESUMO

Escherichia coli isolates commonly inhabit the human microbiota, yet the majority of E. coli's small-molecule repertoire remains uncharacterized. We previously employed erythromycin-induced translational stress to facilitate the characterization of autoinducer-3 (AI-3) and structurally related pyrazinones derived from "abortive" tRNA synthetase reactions in pathogenic, commensal, and probiotic E. coli isolates. In this study, we explored the "missing" tryptophan-derived pyrazinone reaction and characterized two other families of metabolites that were similarly upregulated under erythromycin stress. Strikingly, the abortive tryptophanyl-tRNA synthetase reaction leads to a tetracyclic indole alkaloid metabolite (1) rather than a pyrazinone. Furthermore, erythromycin induced two naphthoquinone-functionalized metabolites (MK-hCys, 2; and MK-Cys, 3) and four lumazines (7-10). Using genetic and metabolite analyses coupled with biomimetic synthesis, we provide support that the naphthoquinones are derived from 4-dihydroxy-2-naphthoic acid (DHNA), an intermediate in the menaquinone biosynthetic pathway, and the amino acids homocysteine and cysteine. In contrast, the lumazines are dependent on a flavin intermediate and α-ketoacids from the aminotransferases AspC and TyrB. We show that one of the lumazine members (9), an indole-functionalized analogue, possesses antioxidant properties, modulates the anti-inflammatory fate of isolated TH17 cells, and serves as an aryl-hydrocarbon receptor (AhR) agonist. These three systems described here serve to illustrate that new metabolic branches could be more commonly derived from well-established primary metabolic pathways.


Assuntos
Escherichia coli , Naftoquinonas , Estresse Fisiológico , Humanos , Eritromicina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Naftoquinonas/metabolismo , Triptofano/metabolismo , Triptofano-tRNA Ligase/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos
7.
Planta ; 256(6): 102, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36282353

RESUMO

MAIN CONCLUSION: Novel cytochrome P450s, CYP81B140 and CYP81B141 from Plumbago zeylanica were functionally characterized to understand their involvement in polyketide plumbagin biosynthesis. Further, we propose 3-methyl-1-8-naphthalenediol and isoshinanolone as intermediates for plumbagin biosynthesis. Plumbago zeylanica L. (P. zeylanica) is a medicinally important plant belonging to the family Plumbaginaceae. It comprises the most abundant naphthoquinone plumbagin having anti-cancer activity. Only the polyketide synthase (PKS) enzyme has been identified from the biosynthetic pathway which catalyzes iterative condensation of acetyl-CoA and malonyl-CoA molecules. The plumbagin biosynthesis involves hydroxylation, oxidation, hydration and dehydration of intermediate compounds which are expected to be catalyzed by cytochrome P450s (CYPs). To identify the CYPs, co-expression analysis was carried out using PKS as a candidate gene. Out of the eight identified CYPs, CYP81B140 and CYP81B141 have similar expression with PKS and belong to the CYP81 family. Phylogenetic analysis suggested that CYP81B140 and CYP81B141 cluster with CYPs from CYP81B, CYP81D, CYP81E and CYP81AA subfamilies which are known to be involved in the hydroxylation and oxidation reactions. Moreover, artificial microRNA-mediated transient individual silencing and co-silencing of CYP81B140 and CYP81B141 significantly reduced plumbagin and increased the 3-methyl-1-8-naphthalenediol and isoshinanolone content. Based on metabolite analysis, we proposed that 3-methyl-1-8-naphthalenediol and isoshinanolone function as intermediates for plumbagin biosynthesis. Transient silencing, over-expression and docking analysis revealed that CYP81B140 is involved in C-1 oxidation, C-4 hydroxylation and [C2-C3] hydration of 3-methyl-1-8-naphthalenediol to form isoshinanolone, whereas CYP81B141 is catalyzing [C2-C3] dehydration and C-4 oxidation of isoshinanolone to form plumbagin. Our results indicated that both CYP81B140 and CYP81B141 are promiscuous and necessary for plumbagin biosynthesis. This is the first report of identification and functional characterization of P. zeylanica-specific CYPs involved in plumbagin biosynthetic pathway and in general hexaketide synthesis in plants.


Assuntos
MicroRNAs , Naftoquinonas , Plumbaginaceae , Policetídeos , Plumbaginaceae/genética , Plumbaginaceae/metabolismo , Policetídeo Sintases/genética , Filogenia , Acetilcoenzima A , Desidratação , Raízes de Plantas/metabolismo , Naftoquinonas/metabolismo , Genômica , Citocromos
8.
Molecules ; 27(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080409

RESUMO

A series of naphthoquinones, namely, 1,4-naphthoquinone, menadione, plumbagin, juglone, naphthazarin, and lawsone, were reacted with N-acetyl-L-cysteine, and except for lawsone, which did not react, the related adducts were obtained. After the tuning of the solvent and reaction conditions, the reaction products were isolated as almost pure from the complex reaction mixture via simple filtration and were fully characterized. Therefore, the aim of this work was to evaluate whether the antitumor activity of new compounds of 1,4-naphthoquinone derivatives leads to an increase in ROS in tumor cell lines of cervical carcinoma (HeLa), neuroblastoma (SH-SY5Y), and osteosarcoma (SaOS2, U2OS) and in normal dermal fibroblast (HDFa). The MTT assay was used to assay cell viability, the DCF-DA fluorescent probe to evaluate ROS induction, and cell-cycle analysis to measure the antiproliferative effect. Compounds 8, 9, and 12 showed a certain degree of cytotoxicity towards all the malignant cell lines tested, while compound 11 showed biological activity at higher IC50 values. Compounds 8 and 11 induced increases in ROS generation after 1 h of exposure, while after 48 h of treatment, only 8 induced an increase in ROS formation in HeLa cells. Cell-cycle analysis showed that compound 8 caused an increase in the number of G0/G1-phase cells in the HeLa experiment, while for the U2OS and SH-SY5Y cell lines, it led to an accumulation of S-phase cells. Therefore, these novel 1,4-naphthoquinone derivatives may be useful as antitumoral agents in the treatment of different cancers.


Assuntos
Naftoquinonas , Neuroblastoma , Acetilcisteína/farmacologia , Linhagem Celular Tumoral , Células HeLa , Humanos , Naftoquinonas/metabolismo , Naftoquinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
9.
Comput Biol Med ; 147: 105789, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35797892

RESUMO

Shikonin (SK), a naphthoquinone compound from the purple gromwell, Lithospermum erythrorhizon, possesses a considerable antiproliferative potential. By using a combination of biophysical techniques, cellular assays, immunofluorescence imaging, and molecular dynamic simulation, we identified a possible mechanism of action of SK. SK inhibited the viability of the triple negative breast cancer cells MDA-MB-231 (IC50 of 1 ± 0.1 µM), and its inhibitory effect was irreversible. It strongly suppressed the clonogenic and migratory potential of the cells. Although SK did not show any phase-specific inhibition of cell cycle progression, it induced apoptosis as confirmed by annexin-V-based flow cytometry and Western immunoblotting of PARP1. Probing further into its mechanism using a tryptophan-quenching assay, it was found that SK binds the microtubule-building protein tubulin with a dissociation constant (Kd) of 8 ± 2.7 µM, without grossly damaging the tertiary structure of the protein. The drug-bound tubulin could not assemble microtubules properly in vitro as confirmed by polymer mass analysis, turbidimetry analysis, and transmission electron microscopy, and in cells, as visualized by immunofluorescence imaging. In cells, SK also suppressed the dynamicity of microtubules as indicated by considerable acetylation of the cellular microtubules. The fine details of tubulin-SK interactions were then elucidated using molecular docking and molecular dynamic simulation. The free energy change of the interaction (ΔGbind,pred) was found to be -14.60 kcal/mol and the binding involved both the intermolecular van der Waals (ΔEvdw) and the electrostatic (ΔEele) interactions. Taken together, our data provide evidence for a possible mechanism of action of SK as a tubulin-targeted anticancer agent.


Assuntos
Antineoplásicos , Naftoquinonas , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Naftoquinonas/metabolismo , Naftoquinonas/farmacologia , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
10.
Bioorg Med Chem Lett ; 57: 128503, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34922028

RESUMO

In this study, a series of novel shikonin N-benzyl matrinic acid ester derivatives (PMMB-299-PMMB-310) were synthesized and tested for their ability to inhibit the proliferation of cancer cells. Compared with shikonin and matrine, some of the ester derivatives were found to exhibit better anti-proliferative activity against seven different cancer cell lines, with less cytotoxicity toward non-cancerous cells. The strongest anti-proliferative activity was exhibited by PMMB-302, which had an IC50 value of 2.71 µM against A549 cells. The compound caused cell cycle arrest in the G2/M phase and induced apoptosis. Effects on the expression of apoptosis-related molecules such as Bcl2, Bcl-XL, caspase-3, caspase-9 and FADD suggested that PMMB-302 has tumor suppressive roles in lung cancer cells. In addition, PMMB-302 inhibited expression of telomerase core proteins, dyskerin and NHP2, and telomerase reverse transcriptase RNA. Moreover, molecular docking of PMMB-302 was subsequently conducted to determine the probable binding mode with telomerase. Taken together, the results indicate that PMMB-302 acts as a tumor suppressor in lung cancer cells by negatively regulating telomerase expression.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Naftoquinonas/farmacologia , Quinolizinas/farmacologia , Telomerase/antagonistas & inibidores , Alcaloides/síntese química , Alcaloides/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Naftoquinonas/síntese química , Naftoquinonas/metabolismo , Ligação Proteica , Quinolizinas/síntese química , Quinolizinas/metabolismo , Telomerase/metabolismo , Matrinas
11.
Oxid Med Cell Longev ; 2022: 1837278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589679

RESUMO

A naphthoquinone molecule known as plumbagin (PL), which has a wide range of pharmacological properties including antitumor, antioxidation, anti-inflammation, and neuroprotective effects, is extracted from the roots of the medicinal herb Plumbago zeylanica L. Plumbagin has been studied for its potential to treat Parkinson's disease (PD). However, its effectiveness and mechanism are still unknown. This study intends to evaluate plumbagin's effectiveness against PD in vitro and in vivo. Plumbagin partially repaired the loss of dopaminergic neurons in the nigral substantia nigra and the resulting behavioural impairment caused by MPTP or MPTP/probenecid in mice. Furthermore, plumbagin treatment significantly inhibited the TLR/NF-κB pathways. It reduced the TNF-α, IL-6, and IL-1ß mRNA expression in PD mice induced by MPTP or MPTP/probenecid, which was consistent with the findings in the inflammatory model of BV2 cells induced by MPP+ or LPS. In addition, plumbagin treatment enhanced the microtubule-associated protein 1 light chain 3 beta (LC3) LC3-II/LC3-I levels while decreasing the p-mTOR and p62 protein accumulation in PD mice induced by MPTP or MPTP/probenecid, which was similar to the results obtained from the experiments in SH-SY5Y and PC12 cells induced by MPP+. Consequently, our results support the hypothesis that plumbagin, by promoting autophagy and inhibiting the activation of the TLR/NF-κB signaling pathway, is a promising treatment agent for treating Parkinson's disease (PD). However, to confirm plumbagin's anti-PD action more thoroughly, other animal and cell PD models must be used in future studies.


Assuntos
Naftoquinonas , Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Humanos , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Probenecid/metabolismo , Probenecid/farmacologia , Neuroblastoma/metabolismo , Transdução de Sinais , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Naftoquinonas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Autofagia , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Modelos Animais de Doenças
12.
BMC Cancer ; 21(1): 1234, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789190

RESUMO

BACKGROUND: ß-lapachone (ß-lap), the NQO1 bioactivatable drug, is thought to be a promising anticancer agent. However, the toxic side effects of ß-lap limit the drug use, highlighting the need for a thorough understanding of ß-lap's mechanism of action. ß-lap undergoes NQO1-dependent futile redox cycling, generating massive ROS and oxidative DNA lesions, leading to cell death. Thus, base excision repair (BER) pathway is an important resistance factor. XRCC1, a scaffolding component, plays a critical role in BER. METHODS: We knocked down XRCC1 expression by using pLVX-shXRCC1 in the MiaPaCa2 cells and BxPC3 cells and evaluated ß-lap-induced DNA lesions by γH2AX foci formation and alkaline comet assay. The cell death induced by XRCC1 knockdown + ß-lap treatment was analysed by relative survival, flow cytometry and Western blotting analysis. RESULTS: We found that knockdown of XRCC1 significantly increased ß-lap-induced DNA double-strand breaks, comet tail lengths and cell death in PDA cells. Furthermore, we observed combining XRCC1 knockdown with ß-lap treatment switched programmed necrosis with ß-lap monotherapy to caspase-dependent apoptosis. CONCLUSIONS: These results indicate that XRCC1 is involved in the repair of ß-lap-induced DNA damage, and XRCC1 loss amplifies sensitivity to ß-lap, suggesting targeting key components in BER pathways may have the potential to expand use and efficacy of ß-lap for gene-based therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Quebras de DNA de Cadeia Dupla , Naftoquinonas/farmacologia , Neoplasias Pancreáticas/terapia , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/deficiência , Antineoplásicos/efeitos adversos , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Sobrevivência Celular , Ensaio Cometa , Reparo do DNA , DNA de Neoplasias/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular , Histonas/metabolismo , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftoquinonas/efeitos adversos , Naftoquinonas/metabolismo , Necroptose/efeitos dos fármacos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Poli(ADP-Ribose) Polimerase-1/biossíntese , Pontos de Checagem da Fase S do Ciclo Celular
13.
Molecules ; 26(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770989

RESUMO

Streptomyces are well-known producers of a range of different secondary metabolites, including antibiotics and other bioactive compounds. Recently, it has been demonstrated that "silent" biosynthetic gene clusters (BGCs) can be activated by heterologously expressing transcriptional regulators from other BGCs. Here, we have activated a silent BGC in Streptomyces sp. CA-256286 by overexpression of a set of SARP family transcriptional regulators. The structure of the produced compound was elucidated by NMR and found to be an N-acetyl cysteine adduct of the pyranonaphtoquinone polyketide 3'-O-α-d-forosaminyl-(+)-griseusin A. Employing a combination of multi-omics and metabolic engineering techniques, we identified the responsible BGC. These methods include genome mining, proteomics and transcriptomics analyses, in combination with CRISPR induced gene inactivations and expression of the BGC in a heterologous host strain. This work demonstrates an easy-to-implement workflow of how silent BGCs can be activated, followed by the identification and characterization of the produced compound, the responsible BGC, and hints of its biosynthetic pathway.


Assuntos
Biologia Computacional , Streptomyces/química , Fatores de Transcrição/metabolismo , Estrutura Molecular , Naftoquinonas/análise , Naftoquinonas/metabolismo , Streptomyces/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/genética
14.
Theranostics ; 11(20): 9752-9771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815782

RESUMO

Background: The most commonly preferred chemotherapeutic agents to treat cancers are small-molecule drugs. However, the differential sensitivity of various cancer cells to small molecules and untargeted delivery narrow the range of potential therapeutic applications. The mechanisms responsible for drug resistance in a variety of cancer cells are also largely unknown. Several deubiquitinating enzymes (DUBs) are the main determinants of drug resistance in cancer cells. Methods: We used CRISPR-Cas9 to perform genome-scale knockout of the entire set of genes encoding ubiquitin-specific proteases (USPs) and systematically screened for DUBs resistant to the clinically evaluated anticancer compound YM155. A series of in vitro and in vivo experiments were conducted to reveal the relationship between USP32 and SLC35F2 on YM155-mediated DNA damage in cancer cells. Results: CRISPR-based dual-screening method identified USP32 as a novel DUB that governs resistance for uptake of YM155 by destabilizing protein levels of SLC35F2, a solute-carrier protein essential for the uptake of YM155. The expression of USP32 and SLC35F2 was negatively correlated across a panel of tested cancer cell lines. YM155-resistant cancer cells in particular exhibited elevated expression of USP32 and low expression of SLC35F2. Conclusion: Collectively, our DUB-screening strategy revealed a resistance mechanism governed by USP32 associated with YM155 resistance in breast cancers, one that presents an attractive molecular target for anti-cancer therapies. Targeted genome knockout verified that USP32 is the main determinant of SLC35F2 protein stability in vitro and in vivo, suggesting a novel way to treat tumors resistant to small-molecule drugs.


Assuntos
Imidazóis/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Naftoquinonas/farmacologia , Ubiquitina Tiolesterase/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imidazóis/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas de Membrana Transportadoras/genética , Naftoquinonas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Carreadoras de Solutos/metabolismo , Ubiquitina Tiolesterase/genética , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
15.
J Photochem Photobiol B ; 224: 112308, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34543848

RESUMO

The most abundant active compound in Droseraceae is plumbagin, a naphthoquinone widely used for medical purposes due to its antimicrobial, antitussive, antimalarial and anticancer properties. In this work, we created a light-emitting diode (LED) based culture illumination setup as an alternative to fluorescent lamps traditionally used as a light source in plant in vitro cultures. The plants of Drosera binata and Drosera peltata cultured under LED illumination grew equally well and produced similar amounts of biologically active compounds as plants grown under fluorescent lamps. The plants were cultured on two media differing in mineral composition, sucrose content and pH. Secondary metabolites were extracted with ethanol from the plants after harvesting. The extracts were subjected to HPLC and microbiological analyses. We observed differences in morphology and secondary metabolism between plants of the same species grown on different media. However, we did not note significant changes in secondary metabolite yield under assessed lighting conditions. We propose LEDs as a more efficient, eco-friendly and economically reasonable source of light for big scale in vitro production of plumbagin in Drosera species than fluorescent lamps.


Assuntos
Droseraceae/efeitos da radiação , Luz , Iluminação/instrumentação , Naftoquinonas/metabolismo , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Candida albicans/efeitos dos fármacos , Meios de Cultura , Droseraceae/crescimento & desenvolvimento , Droseraceae/metabolismo , Testes de Sensibilidade Microbiana , Salmonella enterica/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
16.
Chem Phys Lipids ; 239: 105123, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403685

RESUMO

Lawsone (LWS) is a naphthoquinone-type dye with potential antitumor activity. LWS is used in cosmetics for coloring hair, skin, and nails. In this study, solid lipid nanoparticles (SLNs) containing LWS were prepared using a hot homogenization technique. Physicochemical properties of LWS-SLNs including encapsulation efficiency (EE), drug loading (DL), size, zeta potential, homogeneity, in vitro release, and kinetics of release were determined. The potential cytotoxic properties of LWS-SLNs were investigated. Comet assay was done to assess the genotoxicity of LWS-SLNs. The scanning electron microscopy (SEM) images revealed that LWS-SLNs were spherical and homogeneously dispersed. The average diameter of free SLNs and LWS-SLNs were 97 ± 1.4 and 127 ± 3.1 nm, respectively with high EE% (95.88 ± 3.29) and a DL of 22.72 ± 1.39 mg/mL of LWS-SLNs. The plain LWS could induce growth inhibition of A549 cells with IC50 of 17.99 ± 1.11, 13.37 ± 1.22, and 9.21 ± 1.15 µg/mL after 24, 48, and 72 h, respectively, while LWS-SLNs had more cytotoxic effects after 48 h (9.81 ± 1.3 µg/mL). Comet assay represented clear fragmentation in the chromatin of the treated cells. Besides, LWS-SLNs (13.37 ± 1.22 µg/mL) induced ∼52 % apoptosis and even necrosis after 48 h. The qPCR results showed an enhanced downregulation of Bcl-2 and upregulation of Casp 9 due to the treatment of A549 cells with LSW-SLNs. In conclusion, a stable formulation of LWS-SLN was prepared with good physicochemical features and long-term biological effects that candidate it for in vivo trials.


Assuntos
Antineoplásicos/química , Lipossomos/química , Nanopartículas/química , Naftoquinonas/química , Células A549 , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Cinética , Naftoquinonas/metabolismo , Naftoquinonas/farmacologia , Tamanho da Partícula
17.
Eur J Med Chem ; 225: 113789, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34438124

RESUMO

SARS-CoV-2 as a positive-sense single-stranded RNA coronavirus caused the global outbreak of COVID-19. The main protease (Mpro) of the virus as the major enzyme processing viral polyproteins contributed to the replication and transcription of SARS-CoV-2 in host cells, and has been characterized as an attractive target in drug discovery. Herein, a set of 1,4-naphthoquinones with juglone skeleton were prepared and evaluated for the inhibitory efficacy against SARS-CoV-2 Mpro. More than half of the tested naphthoquinones could effectively inhibit the target enzyme with an inhibition rate of more than 90% at the concentration of 10 µM. In the structure-activity relationships (SARs) analysis, the characteristics of substituents and their position on juglone core scaffold were recognized as key ingredients for enzyme inhibitory activity. The most active compound, 2-acetyl-8-methoxy-1,4-naphthoquinone (15), which exhibited much higher potency in enzyme inhibitions than shikonin as the positive control, displayed an IC50 value of 72.07 ± 4.84 nM towards Mpro-mediated hydrolysis of the fluorescently labeled peptide. It fit well into the active site cavity of the enzyme by forming hydrogen bonds with adjacent amino acid residues in molecular docking studies. The results from in vitro antiviral activity evaluation demonstrated that the most potent Mpro inhibitor could significantly suppress the replication of SARS-CoV-2 in Vero E6 cells within the low micromolar concentrations, with its EC50 value of about 4.55 µM. It was non-toxic towards the host Vero E6 cells under tested concentrations. The present research work implied that juglone skeleton could be a primary template for the development of potent Mpro inhibitors.


Assuntos
Tratamento Farmacológico da COVID-19 , Naftoquinonas/química , Inibidores de Proteases/uso terapêutico , SARS-CoV-2/enzimologia , Proteínas da Matriz Viral/antagonistas & inibidores , Animais , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Naftoquinonas/metabolismo , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , SARS-CoV-2/isolamento & purificação , Relação Estrutura-Atividade , Células Vero , Proteínas da Matriz Viral/metabolismo
18.
Food Funct ; 12(11): 4947-4959, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34100505

RESUMO

Ferroptosis is a novel iron-dependent cell death pathway mainly caused by an abnormal redox state and associated with various diseases including cancer. Recently, much attention has been paid to natural compounds that are involved in its activation and inhibition. This is the first ever study to demonstrate the role of juglone isolated from Carya cathayensis green peel in inducing autophagy and inhibiting endometrial cancer (EC) cell migration. Subsequently, Fe2+ accumulation, lipid peroxidation, GSH depletion, the upregulation of HMOX1, and heme degradation to Fe2+ were reported. Juglone was involved in inducing autophagy and inhibiting cell migration and endoplasmic reticulum stress, which are the new hallmarks of cancer treatment. Collectively, our data indicate that juglone as a functional food ingredient induces the programmed cell death of EC cells by activating oxidative stress and suggest a novel therapeutic approach for the treatment and prevention of EC.


Assuntos
Morte Celular/efeitos dos fármacos , Neoplasias do Endométrio/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Naftoquinonas/metabolismo , Naftoquinonas/farmacologia , Apoptose , Autofagia/efeitos dos fármacos , Carya/química , Linhagem Celular Tumoral , Movimento Celular , Neoplasias do Endométrio/patologia , Feminino , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos , Oxirredução , Estresse Oxidativo , Fagocitose
19.
ACS Chem Biol ; 16(6): 1059-1069, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34080843

RESUMO

C-Glycosylation in the biosynthesis of bioactive natural products is quite unique, which has not been studied well. Medermycin, as an antitumor agent in the family of pyranonaphthoquinone antibiotics, is featured with unique C-glycosylation. Here, a new C-glycosyltransferase (C-GT) Med-8 was identified to be essential for the biosynthesis of medermycin, as the first example of C-GT to recognize a rare deoxyaminosugar (angolosamine). med-8 and six genes (med-14, -15, -16, -17, -18, and -20 located in the medermycin biosynthetic gene cluster) predicted for the biosynthesis of angolosamine were proved to be functional and sufficient for C-glycosylation. A C-glycosylation cassette composed of these seven genes could convert a proposed substrate into a C-glycosylated product. In conclusion, these genes involved in the C-glycosylation of medermycin were functionally identified and biosynthetically engineered, and they provided the possibility of producing new C-glycosylated compounds.


Assuntos
Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Glicosiltransferases/metabolismo , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Genes Bacterianos , Glicosiltransferases/genética , Modelos Moleculares , Família Multigênica , Naftoquinonas/metabolismo , Filogenia , Streptomyces/genética
20.
Front Endocrinol (Lausanne) ; 12: 642676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935967

RESUMO

Objective: Osteoporosis is a common metabolic bone disease mainly involving bone remodeling and blood vessels. The current study aimed to explore the suppressive role of interleukin (IL)-35 in nuclear factor kappa-B ligand receptor activator (RANKL) and macrophage colony stimulating factor (M-CSF)-induced osteoclastogenesis and angiogenesis in osteoclasts. Methods: Osteoclasts differentiation were induced by incubation of mouse leukemic monocyte/macrophage cell line RAW264.7 cells in the presence of RANKL and M-CSF and was assessed with tartrate-resistant acid phosphatase (TRAP) staining assay. The viability and apoptosis of RAW264.7 was measured using CCK-8 assay and flow cytometry, respectively. The expression of angiogenic genes and proteins were measured using RT-PCR, Western blots and ELISA. The inhibition of Th17/IL-17 axis was examined using plumbagin, which was demonstrated as an IL-17A related signaling pathway inhibitor. Results: IL-35 inhibited the viability of RAW264.7 cells and promoted the apoptosis of RAW264.7 cells in a dose-dependent manner. Furthermore, IL-35 dose-dependently suppressed the expression of angiogenic markers including VEGF and its receptor. The suppressive effect of IL-35 was confirmed through the activation of Th17/IL-17 axis. Conclusions: We demonstrated for the first time the immuno-suppressive function of IL-35 on RANKL and M-CSF-induced osteoclastogenesis and angiogenesis through Th17/IL-17 axis. Therapeutic approach involving augmentation of IL-35 regulatory response may serve as a novel treatment option for osteoporosis, especially by suppressing bone resorption and angiogenesis.


Assuntos
Remodelação Óssea , Interleucina-17/metabolismo , Interleucinas/metabolismo , Neovascularização Fisiológica , Osteoclastos/metabolismo , Osteogênese , Células Th17/citologia , Animais , Apoptose , Reabsorção Óssea , Osso e Ossos/metabolismo , Sobrevivência Celular , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Naftoquinonas/metabolismo , Osteoporose/metabolismo , Ligante RANK/metabolismo , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA