Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36767885

RESUMO

The benefits of metal 3D printing seem unquestionable. However, this additive manufacturing technology brings concerns to occupational safety and health professionals, since recent studies show the existence of airborne nanomaterials in these workplaces. This article explores different approaches to manage the risk of exposure to these incidental nanomaterials, on a case study conducted in a Portuguese organization using Selective Laser Melting (SLM) technology. A monitoring campaign was performed using a condensation particle counter, a canning mobility particle sizer and air sampling for later scanning electron microscopy and energy dispersive X-ray analysis, proving the emission of nano-scale particles and providing insights on number particle concentration, size, shape and chemical composition of airborne matter. Additionally, Control Banding Nanotool v2.0 and Stoffenmanager Nano v1.0 were applied in this case study as qualitative tools, although designed for engineered nanomaterials. This article highlights the limitations of using these quantitative and qualitative approaches when studying metal 3D Printing workstations. As a result, this article proposes the IN Nanotool, a risk management method for incidental nanomaterials designed to overcome the limitations of other existing approaches and to allow non-experts to manage this risk and act preventively to guarantee the safety and health conditions of exposed workers.


Assuntos
Poluentes Ocupacionais do Ar , Nanoestruturas , Exposição Ocupacional , Humanos , Poluentes Ocupacionais do Ar/análise , Tamanho da Partícula , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise , Nanoestruturas/análise , Metais/análise , Gestão de Riscos , Exposição por Inalação/análise , Monitoramento Ambiental/métodos
2.
BMC Complement Med Ther ; 21(1): 159, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051782

RESUMO

BACKGROUND: Safrole is a natural compound extracted from various plants, and has shown various biological activities. The current study aimed to investigate the antioxidant, antidiabetic, antimicrobial, and anticancer activity of safrole oil and to study the influence of safrole nanoemulgel on these activities. METHODS: The antioxidant and antidiabetic in-vitro assays were conducted using standard biomedical methods. The safrole oil nanoemulgel was developed using a self-emulsifying technique. Then the antimicrobial activity of the safrole oil and safrole nanoemulgel were performed on different microbial species, and cytotoxicity was determined against Hep3B cancer cell lines using the MTS assay. RESULTS: Safrole oil showed moderate antioxidant activity compared with standard Trolox, with IC50 value 50.28 ± 0.44 and 1.55 ± 0.32 µg/ml, respectively. Moreover, it had potent α-amylase inhibitory activity (IC50 11.36 ± 0.67 µg/ml) compared with Acarbose (IC50 value 5.88 ± 0.63). The safrole nanoemulgel had pseudo-plastic behaviour, droplet sizes below 200 nm, a polydispersity index (PDI) below 0.3, and a zeta potential of less than - 30 mV. Safrole oil has potential antimicrobial and anticancer activities, and these activities were improved with safrole nanoemulgel. CONCLUSION: The safrole oil may be applied for the prevention and treatment of oxidative stress, diabetes, different microbial species and cancer, and these activities could be improved by nano-carriers.


Assuntos
Antineoplásicos , Antioxidantes , Nanoestruturas , Óleos Voláteis , Safrol , Anti-Infecciosos/análise , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/análise , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Compostos de Bifenilo/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hipoglicemiantes/análise , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Nanoestruturas/análise , Nanoestruturas/química , Óleos Voláteis/análise , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Tamanho da Partícula , Picratos/química , Picratos/metabolismo , Safrol/análise , Safrol/química , Safrol/farmacologia
3.
Nucleic Acids Res ; 48(11): 6081-6091, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32402089

RESUMO

Herein, we characterize the cellular uptake of a DNA structure generated by rolling circle DNA amplification. The structure, termed nanoflower, was fluorescently labeled by incorporation of ATTO488-dUTP allowing the intracellular localization to be followed. The nanoflower had a hydrodynamic diameter of approximately 300 nanometer and was non-toxic for all mammalian cell lines tested. It was internalized specifically by mammalian macrophages by phagocytosis within a few hours resulting in specific compartmentalization in phagolysosomes. Maximum uptake was observed after eight hours and the nanoflower remained stable in the phagolysosomes with a half-life of 12 h. Interestingly, the nanoflower co-localized with both Mycobacterium tuberculosis and Leishmania infantum within infected macrophages although these pathogens escape lysosomal degradation by affecting the phagocytotic pathway in very different manners. These results suggest an intriguing and overlooked potential application of DNA structures in targeted treatment of infectious diseases such as tuberculosis and leishmaniasis that are caused by pathogens that escape the human immune system by modifying macrophage biology.


Assuntos
DNA/química , DNA/metabolismo , Leishmania infantum/metabolismo , Macrófagos/microbiologia , Macrófagos/parasitologia , Mycobacterium tuberculosis/metabolismo , Fagossomos/metabolismo , DNA/análise , Replicação do DNA , Fluorescência , Meia-Vida , Humanos , Leishmaniose/terapia , Macrófagos/citologia , Macrófagos/imunologia , Nanoestruturas/análise , Nanoestruturas/química , Técnicas de Amplificação de Ácido Nucleico , Fagocitose , Fagossomos/química , Fagossomos/microbiologia , Fagossomos/parasitologia , Tuberculose/terapia
4.
Nano Lett ; 20(4): 2522-2529, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32208714

RESUMO

Photothermal therapy (PTT) is an efficient approach for cancer treatment. However, accurately monitoring the spatial distribution of photothermal transducing agents (PTAs) and mapping the real-time temperature change in tumor and peritumoral normal tissue remain a huge challenge. Here, we propose an innovative strategy to integrate T1-MRI for precisely tracking PTAs with magnetic resonance temperature imaging (MRTI) for real-time monitoring temperature change in vivo during PTT. NaBiF4: Gd@PDA@PEG nanomaterials were synthesized with favorable T1-weighted performance to target tumor and localize PTAs. The extremely weak susceptibility (1.04 × 10-6 emu g-1 Oe1-) of NaBiF4: Gd@PDA@PEG interferes with the local phase marginally, which maintains the capability of MRTI to dynamically record real-time temperature change in tumor and peritumoral normal tissue. The time resolution is 19 s per frame, and the detection precision of temperature change is approximately 0.1 K. The approach achieving PTT guided by multimode MRI holds significant potential for the clinical application.


Assuntos
Imageamento por Ressonância Magnética/métodos , Nanoestruturas/análise , Neoplasias/terapia , Terapia Fototérmica/métodos , Termografia/métodos , Animais , Bismuto/análise , Gadolínio/análise , Camundongos , Neoplasias/diagnóstico por imagem , Fluoreto de Sódio/análise , Temperatura
5.
Proc Natl Acad Sci U S A ; 116(39): 19362-19367, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501320

RESUMO

Circulating exosomal microRNA (miR) represents a new class of blood-based biomarkers for cancer liquid biopsy. The detection of miR at a very low concentration and with single-base discrimination without the need for sophisticated equipment, large volumes, or elaborate sample processing is a challenge. To address this, we present an approach that is highly specific for a target miR sequence and has the ability to provide "digital" resolution of individual target molecules with high signal-to-noise ratio. Gold nanoparticle tags are prepared with thermodynamically optimized nucleic acid toehold probes that, when binding to a target miR sequence, displace a probe-protecting oligonucleotide and reveal a capture sequence that is used to selectively pull down the target-probe-nanoparticle complex to a photonic crystal (PC) biosensor surface. By matching the surface plasmon-resonant wavelength of the nanoparticle tag to the resonant wavelength of the PC nanostructure, the reflected light intensity from the PC is dramatically and locally quenched by the presence of each individual nanoparticle, enabling a form of biosensor microscopy that we call Photonic Resonator Absorption Microscopy (PRAM). Dynamic PRAM imaging of nanoparticle tag capture enables direct 100-aM limit of detection and single-base mismatch selectivity in a 2-h kinetic discrimination assay. The PRAM assay demonstrates that ultrasensitivity (<1 pM) and high selectivity can be achieved on a direct readout diagnostic.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , MicroRNA Circulante/análise , MicroRNA Circulante/genética , Microscopia/instrumentação , Fótons , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , MicroRNA Circulante/química , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanoestruturas/análise , Nanoestruturas/química , Oligonucleotídeos/química , Mutação Puntual , Sensibilidade e Especificidade
6.
ACS Synth Biol ; 8(9): 2152-2162, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31419103

RESUMO

Genetically controlled synthetic biosystems are being developed to create nanoscale materials. These biosystems are modeled on the natural ability of living cells to synthesize materials: many organisms have dedicated proteins that synthesize a wide range of hard tissues and solid materials, such as nanomagnets and biosilica. We designed an autonomous living material synthesizing system consisting of engineered cells with genetic circuits that synthesize nanomaterials. The circuits encode a nanomaterial precursor-sensing module (sensor) coupled with a materials synthesis module. The sensor detects the presence of cadmium, gold, or iron ions, and this detection triggers the synthesis of the related nanomaterial-nucleating extracellular matrix. We demonstrate that when engineered cells sense the availability of a precursor ion, they express the corresponding extracellular matrix to form the nanomaterials. This proof-of-concept study shows that endowing cells with synthetic genetic circuits enables nanomaterial synthesis and has the potential to be extended to the synthesis of a variety of nanomaterials and biomaterials using a green approach.


Assuntos
Redes Reguladoras de Genes , Nanoestruturas/química , Biologia Sintética/métodos , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Técnicas Biossensoriais , Escherichia coli/química , Escherichia coli/metabolismo , Metais/química , Microscopia Eletrônica de Varredura , Nanofibras/análise , Nanofibras/química , Nanoestruturas/análise , Peptídeos/genética , Peptídeos/metabolismo
7.
Environ Pollut ; 251: 862-870, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31234251

RESUMO

Microplastics (MPs) in the environment have become an issue worldwide. However, data about MPs in freshwater systems are still limited so far. This study investigated sources, fate, and seasonal and spatial distribution of MPs in the main stream Pearl River and its tributaries, as well as in the Pearl River Estuary (PRE), China. MPs were widely detected in the river water, river bed sediment, and estuarine sediment, with abundances of 0.57 ±â€¯0.71 items L-1, 685 ±â€¯342 items kg-1 dry weight (dw), and 258 ±â€¯133 items kg-1 dw, respectively. Sheet, fragmental, and fibrous polyethylene, polypropylene, and ethylene-propylene copolymers were predominant, suggesting that MPs in the Pearl River catchment be mainly derived from fragmentation of discarded plastic wastes. In addition, municipal wastewater was also an important MPs source, especially for polyethylene terephthalate (PET) fibers. Polymers of higher density, such as PET and polyvinyl alcohol were relatively more abundant in the sediment than in the river water, especially in the estuarine sediment. Upward increase of the MP abundance was observed in the sedimentary core, probably indicating increasing release of plastic wastes due to growing production and uses of plastic products. On the other hand, percentage of finer MPs increased with increasing depth. The results revealed persistence and potential downward dispersion of the fine MPs. The MPs abundance was positively related with population density and gross domestic product, demonstrating impacts of human activities and economic development on the MPs contamination. Higher MPs abundance was detected in dry season than in wet season in the river water, suggesting dilution effect of precipitation. It's estimated that 15963 tons of MPs could be released annually into the PRE from the main stream Pearl River and its tributaries.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Polietileno/análise , Polipropilenos/análise , Rios/química , Poluentes Químicos da Água/análise , China , Estuários , Nanoestruturas/análise , Estações do Ano , Águas Residuárias/química
8.
Environ Pollut ; 249: 527-534, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30928524

RESUMO

Microplastics (MPs) are an emerging concern and potential risk to marine and terrestrial environments. Surface soils are reported to act as a sink. However, MP vertical mobility in the subsurface remains uncertain due to a lack of scientific data. This study focused on MP penetration in sand soil column experiments. Here we report the mobility of five different MPs, which consisted of polyethylene (PE) and polypropylene (PP) particles of various sizes and densities. We observed that the smallest sized PE MPs (21 µm) had the greatest movement potential. Moreover, it was found that when these MPs were subjected to greater numbers of wet-dry cycles, the penetration depth significantly increased, with an apparent linear relationship between depth and wet-dry cycle number (r2 = 0.817). In comparison, increasing the volume of infiltration liquid or the surface MP concentration had only negligible or weak effects on migration depth (r2 = 0.169 and 0.312, respectively). Based on the observed wet-dry cycle trend, we forecast 100-year penetration depths using weather data for 347 cities across China. The average penetration depth was calculated as 5.24 m (95% CI = 2.78-7.70 m), with Beijing Municipality and Hebei, Henan and Hubei provinces being the most vulnerable to MP vertical dispersion. Our results suggest that soils may not only represent a sink for MPs, but also a feasible entryway to subsurface receptors, such as subterranean fauna or aquifers. Finally, research gaps are identified and suggested research directions are put forward to garner a better understanding MP vertical migration in soil.


Assuntos
Poluição Ambiental/análise , Água Subterrânea/química , Plásticos/análise , Poluentes do Solo/análise , Solo/química , Poluentes Químicos da Água/análise , Pequim , China , Nanoestruturas/análise , Polietileno/análise , Polipropilenos/análise , Dióxido de Silício/análise
9.
Cell Prolif ; 52(2): e12556, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30710394

RESUMO

OBJECTIVES: Nanocarriers can greatly enhance the cellular uptake of therapeutic agents to regulate cell proliferation and metabolism. Nevertheless, further application of nanocarriers is often limited by insufficient understanding of the mechanisms of their uptake and intracellular behaviour. MATERIALS AND METHODS: Fluorescent polymer dots (Pdots) are coated with synthetic octaarginine peptides (R8) and are analysed for cellular uptake and intracellular transportation in HeLa cervical cancer cells via single particle tracking. RESULTS: Surface modification with the R8 peptide efficiently improves both cellular uptake and endosomal escape of Pdots. With single particle tracking, we capture the dynamic process of internalization and intracellular trafficking of R8-Pdots, providing new insights into the mechanism of R8 in facilitating nanostructure-based cellular delivery. Furthermore, our results reveal R8-Pdots as a novel type of autophagy inducer. CONCLUSIONS: This study provides new insights into R8-mediated cellular uptake and endosomal escape of nanocarriers. It potentiates biological applications of Pdots in targeted cell imaging, drug delivery and gene regulation.


Assuntos
Endocitose , Corantes Fluorescentes/metabolismo , Oligopeptídeos/metabolismo , Polímeros/metabolismo , Transporte Biológico , Endossomos/metabolismo , Corantes Fluorescentes/análise , Células HeLa , Humanos , Microscopia Confocal , Nanoestruturas/análise , Oligopeptídeos/análise , Imagem Óptica , Polímeros/análise
10.
J Control Release ; 299: 1-20, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30771414

RESUMO

In recent years, novel two-dimensional (2D) nanomaterials are of great interest for diverse potential applications such as device fabrication, energy storage, sensing and theranostics because of their superlative physical features namely, large surface area, minimal thickness, tunable composition and easier surface modification methods. Rapid exploration in design and fabrication of 2D nano-structures have opened new avenue for cancer theranostics as it can encapsulate group of cancer cells and inflict major damage with great specificity in a non-invasive manner. Among the reported 2D materials such as graphene and its derivatives, metallic compounds, transition metal dichalcogenides (TMDC), black phosphorous and MXenes (e.g., carbides, nitrides, or carbonitrides), 2D nanomaterials based on graphene and TMDCs have gathered most of the limelight in this field due to their easily tunable properties. In this review, we summarize recent progress in the design of 2D theranostic nanomaterials, functionalization methods and their applications in photothermal therapy (PTT) as well as synergistic cancer therapy. We have also addressed the different modes of cellular entry of 2D nanomaterials into tumor cells based on their unique structural properties and investigated different methodologies to enhance PTT effect by optimizing the physico-chemical properties of the 2D sheets. Recent progress on in vitro and in vivo short and long term biocompatibility, immunotoxicity and excretion of the decorated structure is also highlighted. Investigation of the interaction of 2D nanomaterial with hematological factors such as RBC and WBC is of paramount importance as they are key indicators in in vivo responses, and this investigation will give a better solution for overcoming direct inflammation and infection related issues of the animal system. Besides, investigations on addressing the ways to incorporate polymer linkers and drug conjugates on to the surface of 2D materials, multiplexing capability, and the influence of surface functionalization on PTT effect is vital for future developments in clinical level diagnosis and cancer therapy. Finally, we conclude our opinion on current challenges and future prospective on meeting the various demands of advanced cancer imaging and therapies.


Assuntos
Nanoestruturas/uso terapêutico , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Animais , Humanos , Hipertermia Induzida/métodos , Nanoestruturas/análise , Nanoestruturas/toxicidade , Nanotecnologia/métodos , Neoplasias/diagnóstico , Fototerapia/métodos , Propriedades de Superfície
11.
Braz. J. Pharm. Sci. (Online) ; 55: e18295, 2019. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1011644

RESUMO

Inorganic and carbon based nanomaterials are widely used against several diseases, such as cancer, autoimmune diseases as well as fungi and bacteria colonization. In this work, Santa Barbara Amorphous mesoporous silica (SBA), Halloysite Nanotubes (HNTs) and Multiwalled Carbon Nanotubes (CNTs) were loaded with fluoroquinolone Levofloxacin (LVF) to be applied as antimicrobial agents. The prepared via adsorption nanocarriers were characterized by Fourier-Transformed Spectroscopy, Scanning Electron Microscopy as well as High Pressure liquid Chromatography. In vitro release studies were carried out using Simulated Body Fluid at 37oC and data analyzed by various kinetic models showing slow dissolution over 12-24 hours. Antimicrobial studies showed improved antibacterial activity against Escherichia coli, Enterococcus faecalis, Listeria monocytogenes, Staphylococcus aureus, and Staphylococcus epidermidis compared to neat nanomaterials. CNTs were found to be the most promising candidates for LVF delivery and they were chosen to be further studied for their acute oral toxicity and histopathological examination using C57/Black mice. Histological examination depicted that drug loading did not affect mice organs morphology as well as hepatocyte degeneration, central vein degeneration and parenchymal necrosis scores. To conclude, the prepared nanomaterials present significant characteristics and can act as antimicrobial drug carriers; CNTs found to be safe candidates when orally fed to mice.


Assuntos
Nanotubos/efeitos adversos , Nanoestruturas/análise , Projetos , Toxicidade , Levofloxacino/agonistas , Técnicas In Vitro/classificação , Anti-Infecciosos
12.
J Sep Sci ; 41(17): 3382-3388, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30006947

RESUMO

The low bioavailability and nonspecific distribution of dapsone and clofazimine, commonly applied in combination for the treatment of leprosy, can produce toxic effects. Nanotechnological approaches enhance the delivery of these drugs. Therefore, a high-performance liquid chromatography method was developed for the simultaneous determination of dapsone and clofazimine loaded in nanoformulations for quality control purposes. Chromatographic separation was achieved on a reversed-phase Kinetex core-shell C18 column, followed by spectrophotometric detection at 280 nm. Considering the different physicochemical properties of dapsone and clofazimine, elution was performed in gradient mode using an aqueous acetate buffer (50 mmol/L, pH 4.8) and an increasing acetonitrile content from 27 to 63% v/v at a flow rate of 1.0 mL/min with retention times of 6.2 and 14.0 min, respectively. The method was validated according to the European Medicines Agency guideline and it was found to be specific, accurate (99.6-114.0%), and precise for intra- (RSD ≤ 1.8%) and interday assays (RSD ≤ 12.5%). Both drugs showed stability after 24 h at room temperature and over three freeze-thaw cycles with recoveries ≥86.2%. Low temperature (4°C) in the autosampler caused the precipitation of clofazimine and must be avoided. The validated method was successfully applied in the quantification of both drugs in nanoformulations.


Assuntos
Clofazimina/análise , Dapsona/análise , Nanoestruturas/análise , Cromatografia Líquida de Alta Pressão , Estrutura Molecular
13.
J Fish Dis ; 41(7): 1041-1048, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29770449

RESUMO

Monogeneans are ectoparasites that may cause losses in production and productivity in the aquaculture of Colossoma macropomum. Chemotherapeutics used in aquaculture usually have major adverse effects on fish; hence, the use of essential oils has been considered advantageous, but these are not soluble in water. Thus, the use of nanostructures to enhance water solubility of compounds and improve bioactivity may be very promising. This study investigated the antiparasitic activity of nanoemulsion prepared with Copaifera officinalis oleoresin (50, 100, 150, 200 and 300 mg/L), against monogenean parasites from the gills of C. macropomum. The particle size distribution and zeta potential suggested that a potentially kinetic stable system was generated. The nanoemulsion from C. officinalis oleoresin achieved high efficacy (100%) at low concentrations (200 and 300 mg/L) after 15 min of exposure. This was the first time that a nanoemulsion was generated from C. officinalis oleoresin using a solvent-free, non-heating and low-energy method. Moreover, this was the first time that an antiparasitic against monogeneans on fish gills, based on nanoemulsion of C. officinalis oleoresin, was tested.


Assuntos
Antiparasitários/farmacologia , Caraciformes , Fabaceae/química , Extratos Vegetais/farmacologia , Trematódeos/efeitos dos fármacos , Infecções por Trematódeos/veterinária , Animais , Relação Dose-Resposta a Droga , Emulsões , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/parasitologia , Nanoestruturas/análise , Infecções por Trematódeos/tratamento farmacológico , Infecções por Trematódeos/parasitologia
14.
Sci Total Environ ; 627: 689-702, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426194

RESUMO

Exposure assessment is a key stage in the risk assessment/management of engineered nanomaterials. Although different sampling strategies and instruments have been used to define the occupational exposure to nano-scale materials, currently there is no international consensus regarding measurement strategy, metrics and limit values. In fact, the assessment of individual exposure to engineered nanomaterials remains a critical issue despite recent innovative developments in personal monitors and samplers. Hence, we used several of these instruments to evaluate the workers' personal exposure in a large research laboratory where engineered nanomaterials are produced, handled, and characterized in order to provide input data for nanomaterial exposure assessment strategies and future epidemiological studies. The results obtained using personal monitors showed that the workplace concentrations of engineered nanomaterials (lung deposited surface area and particle number concentrations) were quite low in all the different workplaces monitored, with short spikes during the execution of some specific job tasks. The sampling strategy was been adopted on the basis of an Organisation for Economic Cooperation and Development (OECD) suggestion for a tiered approach and was found to be suitable for determining the individual exposure and for identifying possible sources of emission, even those with very low emission rates. The use of these instruments may lead to a significant improvement not only in the exposure assessment stage but, more generally, in the entire risk assessment and management process.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental , Exposição por Inalação/análise , Nanoestruturas/análise , Exposição Ocupacional/análise , Humanos , Exposição por Inalação/estatística & dados numéricos , Exposição Ocupacional/estatística & dados numéricos , Local de Trabalho
15.
Environ Pollut ; 235: 589-601, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29331892

RESUMO

Static environmental exposure assessment models based on material flow analysis (MFA) have previously been used to estimate flows of engineered nanomaterials (ENMs) to the environment. However, such models do not account for changes in the system behavior over time. Dynamic MFA used in this study includes the time-dependent development of the modelling system by considering accumulation of ENMs in stocks and the environment, and the dynamic release of ENMs from nano-products. In addition, this study also included regional variations in population, waste management systems, and environmental compartments, which subsequently influence the environmental release and concentrations of ENMs. We have estimated the flows and release concentrations of nano-SiO2, nano-iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in the EU and six geographical sub-regions in Europe (Central Europe, Northern Europe, Southern Europe, Eastern Europe, South-eastern Europe, and Switzerland). The model predicts that a large amount of ENMs are accumulated in stocks (not considering further transformation). For example, in the EU 2040 Mt of nano-SiO2 are stored in the in-use stock, 80,400 tonnes have been accumulated in sediments and 65,600 tonnes in natural and urban soil from 1990 to 2014. The magnitude of flows in waste management processes in different regions varies because of differences in waste handling. For example, concentrations in landfilled waste are lowest in South-eastern Europe due to dilution by the high amount of landfilled waste in the region. The flows predicted in this work can serve as improved input data for mechanistic environmental fate models and risk assessment studies compared to previous estimates using static models.


Assuntos
Óxido de Alumínio/análise , Cério/análise , Compostos Férricos/análise , Modelos Químicos , Nanoestruturas/análise , Pontos Quânticos/análise , Dióxido de Silício/análise , Exposição Ambiental/análise , Europa (Continente) , Medição de Risco , Solo , Gerenciamento de Resíduos
16.
Nature ; 553(7686): 86-90, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29300010

RESUMO

The mammalian microbiome has many important roles in health and disease, and genetic engineering is enabling the development of microbial therapeutics and diagnostics. A key determinant of the activity of both natural and engineered microorganisms in vivo is their location within the host organism. However, existing methods for imaging cellular location and function, primarily based on optical reporter genes, have limited deep tissue performance owing to light scattering or require radioactive tracers. Here we introduce acoustic reporter genes, which are genetic constructs that allow bacterial gene expression to be visualized in vivo using ultrasound, a widely available inexpensive technique with deep tissue penetration and high spatial resolution. These constructs are based on gas vesicles, a unique class of gas-filled protein nanostructures that are expressed primarily in water-dwelling photosynthetic organisms as a means to regulate buoyancy. Heterologous expression of engineered gene clusters encoding gas vesicles allows Escherichia coli and Salmonella typhimurium to be imaged noninvasively at volumetric densities below 0.01% with a resolution of less than 100 µm. We demonstrate the imaging of engineered cells in vivo in proof-of-concept models of gastrointestinal and tumour localization, and develop acoustically distinct reporters that enable multiplexed imaging of cellular populations. This technology equips microbial cells with a means to be visualized deep inside mammalian hosts, facilitating the study of the mammalian microbiome and the development of diagnostic and therapeutic cellular agents.


Assuntos
Acústica , Trato Gastrointestinal/microbiologia , Genes Bacterianos , Genes Reporter/genética , Neoplasias Ovarianas/microbiologia , Proteínas/genética , Ultrassonografia/métodos , Animais , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Feminino , Gases/análise , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Xenoenxertos , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Família Multigênica/genética , Nanoestruturas/análise , Transplante de Neoplasias , Fotossíntese , Proteínas/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação
17.
Curr Med Chem ; 25(25): 2954-2969, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28322153

RESUMO

Near-infrared (NIR) light responsive nanomaterials have attracted considerable attention due to their location in the biological window. Especially, lanthanide-doped nanomaterials exhibit unique upconversion luminescence (UCL) properties with low background interference and long luminescence lifetime, which makes them promising in imaging diagnosis of cancers. Compared with traditional upconversion nanomaterials excited by 980 nm laser, 808 nm excitation can overcome the disadvantages of high heating effect and weak penetration depth induced by excitation source. Therefore, developing 808 nm excited upconversion nanoprobes will be important for the in vivo bio-imaging and visualized theranostics of tumors in deep-tissue. In the review paper, we systematically summarized the synthesis strategy and luminescence modulation of Nd3+-sensitized upconversion nanomaterials under 808 nm excitation, discussed the influence of excitation source on heating effect and penetration depth, and particularly focused on their applications in UCL imaging, multi-modal imaging and imaging-guided therapy of cancers.


Assuntos
Nanoestruturas/análise , Nanoestruturas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica , Animais , Humanos , Nanoestruturas/química
18.
J Fish Dis ; 41(3): 443-449, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29194663

RESUMO

Outbreaks of diseases pose a major threat to sustainable aquaculture development worldwide. Application of herbal products to combat parasitic diseases provides an alternative approach for sustainable aquaculture. This study investigated the in vitro antiparasitic effects of an oil-in-water nanoemulsion prepared using the essential oil from Pterodon emarginatus, against monogeneans infesting Colossoma macropomum. Gill arches from C. macropomum (47.6 ± 14.5 g and 13.5 ± 1.4 cm) that were naturally parasitized by Anacanthorus spathulatus, Notozothecium janauachensis and Mymarothecium boegeri were immersed in different dispersions of the P. emarginatus nanoemulsions (0, 50, 100, 200, 400 and 600 mg/L). The major compounds presented in the essential oil of P. emarginatus were ß-elemene, ß-caryophyllene and α-humulene. Characterization of these nanoemulsions showed that they have a small mean droplet size and low polydispersity index, which is concordant with stable systems. In this in vitro trial, the P. emarginatus nanoemulsion concentrations of 100, 200, 400 and 600 mg/L presented 100% helminthic efficacy against monogeneans of the gills of C. macropomum. The highest two concentrations used (400 and 600 mg/L) were seen to immobilize the parasites after only 15 min. Therefore, it would be worthwhile testing these concentrations in therapeutic baths against monogeneans of C. macropomum.


Assuntos
Anti-Helmínticos/farmacologia , Caraciformes , Fabaceae/química , Doenças dos Peixes/prevenção & controle , Óleos Voláteis/farmacologia , Trematódeos/efeitos dos fármacos , Infecções por Trematódeos/veterinária , Animais , Emulsões , Doenças dos Peixes/parasitologia , Nanoestruturas/análise , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/prevenção & controle
19.
Environ Sci Pollut Res Int ; 24(36): 27731-27745, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29098585

RESUMO

Oil spills over seawater and dye pollutants in water cause economic and environmental damage every year. Among various methods to deal oil spill problems, the use of porous materials has been proven as an effective strategy. In recent years, graphene-based porous sorbents have been synthesized to address the shortcomings associated with conventional sorbents such as their low uptake capacity, slow sorption rate, and non-recyclability. This article reviews the research undertaken to control oil spillage using three-dimensional (3D) graphene-based materials. The use of these materials for removal of dyes and miscellaneous environmental pollutants from water is explored and the application of various multifunctional 3D oil sorbents synthesized by surface modification technique is presented. The future prospects and limitations of these materials as sorbents are also discussed.


Assuntos
Corantes/química , Grafite/análise , Nanoestruturas/análise , Poluição por Petróleo , Poluentes Químicos da Água/química , Adsorção
20.
ACS Nano ; 11(9): 9022-9032, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28759195

RESUMO

Acoustic imaging is affordable and accessible without ionizing radiation. Photoacoustic imaging increases the contrast of traditional ultrasound and can offer good spatial resolution when used at high frequencies with excellent temporal resolution. Prussian blue nanoparticles (PBNPs) are an emerging photoacoustic contrast agent with strong optical absorption in the near-infrared region. In this study, we developed a simple and efficient method to label human mesenchymal stem cells (hMSCs) with PBNPs and imaged them with photoacoustic imaging. First, PBNPs were synthesized by the reaction of FeCl3 with K4[Fe(CN)6] in the presence of citric acid and complexed with the cationic transfection agent poly-l-lysine (PLL). The PLL-coated PBNPs (PB-PLL nanocomplexes) have a maximum absorption peak at 715 nm and could efficiently label hMSCs. Cellular uptake of these nanocomplexes was studied using bright field, fluorescence, and transmission electron microscopy. The labeled stem cells were successfully differentiated into two downstream lineages of adipocytes and osteocytes, and they showed positive expression for surface markers of CD73, CD90, and CD105. No changes in viability or proliferation of the labeled cells were observed, and the secretome cytokine analysis indicated that the expression levels of 12 different proteins were not dysregulated by PBNP labeling. The optical properties of PBNPs were preserved postlabeling, suitable for the sensitive and quantitative detection of implanted cells. Labeled hMSCs exhibited strong photoacoustic contrast in vitro and in vivo when imaged at 730 nm, and the detection limit was 200 cells/µL in vivo. The photoacoustic signal increased as a function of cell concentration, indicating that the number of labeled cells can be quantified during and after cell transplantations. In hybrid ultrasound/photoacoustic imaging, this approach offers real-time and image-guided cellular injection even through an intact skull for brain intraparenchymal injections. Our labeling and imaging technique allowed the detection and monitoring of 5 × 104 mesenchymal stem cells in living mice over a period of 14 days.


Assuntos
Rastreamento de Células/métodos , Corantes/análise , Ferrocianetos/análise , Células-Tronco Mesenquimais/citologia , Nanoestruturas/análise , Técnicas Fotoacústicas/métodos , Polilisina/análogos & derivados , Linhagem Celular , Humanos , Nanoestruturas/ultraestrutura , Imagem Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA