Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.400
Filtrar
1.
J Nanobiotechnology ; 22(1): 244, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735969

RESUMO

Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.


Assuntos
Macrófagos , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Poliuretanos , Ratos Sprague-Dawley , Células de Schwann , Animais , Regeneração Nervosa/efeitos dos fármacos , Poliuretanos/química , Ratos , Macrófagos/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Nanofibras/química , Nervo Isquiático/efeitos dos fármacos , Regeneração Tecidual Guiada/métodos , Masculino , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Alicerces Teciduais/química , Camundongos , Células RAW 264.7
2.
J Nanobiotechnology ; 22(1): 232, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720301

RESUMO

Diabetic wounds pose a challenge to healing due to increased bacterial susceptibility and poor vascularization. Effective healing requires simultaneous bacterial and biofilm elimination and angiogenesis stimulation. In this study, we incorporated polyaniline (PANI) and S-Nitrosoglutathione (GSNO) into a polyvinyl alcohol, chitosan, and hydroxypropyltrimethyl ammonium chloride chitosan (PVA/CS/HTCC) matrix, creating a versatile wound dressing membrane through electrospinning. The dressing combines the advantages of photothermal antibacterial therapy and nitric oxide gas therapy, exhibiting enduring and effective bactericidal activity and biofilm disruption against methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli. Furthermore, the membrane's PTT effect and NO release exhibit significant synergistic activation, enabling a nanodetonator-like burst release of NO through NIR irradiation to disintegrate biofilms. Importantly, the nanofiber sustained a uniform release of nitric oxide, thereby catalyzing angiogenesis and advancing cellular migration. Ultimately, the employment of this membrane dressing culminated in the efficacious amelioration of diabetic-infected wounds in Sprague-Dawley rats, achieving wound closure within a concise duration of 14 days. Upon applying NIR irradiation to the PVA-CS-HTCC-PANI-GSNO nanofiber membrane, it swiftly eradicates bacteria and biofilm within 5 min, enhancing its inherent antibacterial and anti-biofilm properties through the powerful synergistic action of PTT and NO therapy. It also promotes angiogenesis, exhibits excellent biocompatibility, and is easy to use, highlighting its potential in treating diabetic wounds.


Assuntos
Antibacterianos , Bandagens , Biofilmes , Óxido Nítrico , Terapia Fototérmica , Ratos Sprague-Dawley , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Ratos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Terapia Fototérmica/métodos , Masculino , Quitosana/química , Quitosana/farmacologia , Nanofibras/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Staphylococcus aureus/efeitos dos fármacos , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , S-Nitrosoglutationa/farmacologia , S-Nitrosoglutationa/química
3.
Part Fibre Toxicol ; 21(1): 23, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734694

RESUMO

BACKGROUND: Inhalation of biopersistent fibers like asbestos can cause strong chronic inflammatory effects, often resulting in fibrosis or even cancer. The interplay between fiber shape, fiber size and the resulting biological effects is still poorly understood due to the lack of reference materials. RESULTS: We investigated how length, diameter, aspect ratio, and shape of synthetic silica fibers influence inflammatory effects at doses up to 250 µg cm-2. Silica nanofibers were prepared with different diameter and shape. Straight (length ca. 6 to 8 µm, thickness ca. 0.25 to 0.35 µm, aspect ratio ca. 17:1 to 32:1) and curly fibers (length ca. 9 µm, thickness ca. 0.13 µm, radius of curvature ca. 0.5 µm, aspect ratio ca. 70:1) were dispersed in water with no apparent change in the fiber shape during up to 28 days. Upon immersion in aqueous saline (DPBS), the fibers released about 5 wt% silica after 7 days irrespectively of their shape. The uptake of the fibers by macrophages (human THP-1 and rat NR8383) was studied by scanning electron microscopy and confocal laser scanning microscopy. Some fibers were completely taken up whereas others were only partially internalized, leading to visual damage of the cell wall. The biological effects were assessed by determining cell toxicity, particle-induced chemotaxis, and the induction of gene expression of inflammatory mediators. CONCLUSIONS: Straight fibers were only slightly cytotoxic and caused weak cell migration, regardless of their thickness, while the curly fibers were more toxic and caused significantly stronger chemotaxis. Curly fibers also had the strongest effect on the expression of cytokines and chemokines. This may be due to the different aspect ratio or its twisted shape.


Assuntos
Quimiotaxia , Macrófagos , Tamanho da Partícula , Dióxido de Silício , Dióxido de Silício/toxicidade , Dióxido de Silício/química , Animais , Humanos , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Quimiotaxia/efeitos dos fármacos , Nanofibras/toxicidade , Nanofibras/química , Células THP-1 , Transcriptoma/efeitos dos fármacos , Fibras Minerais/toxicidade , Citocinas/metabolismo , Citocinas/genética , Linhagem Celular
4.
ACS Nano ; 18(19): 12341-12354, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38695772

RESUMO

The patch with a superlubricated surface shows great potential for the prevention of postoperative adhesion during soft tissue repair. However, the existing patches suffer from the destruction of topography during superlubrication coating and lack of pro-healing capability. Herein, we demonstrate a facile and versatile strategy to develop a Janus nanofibrous patch (J-NFP) with antiadhesion and reactive oxygen species (ROS) scavenging functions. Specifically, sequential electrospinning is performed with initiators and CeO2 nanoparticles (CeNPs) embedded on the different sides, followed by subsurface-initiated atom transfer radical polymerization for grafting zwitterionic polymer brushes, introducing superlubricated skin on the surface of single nanofibers. The poly(sulfobetaine methacrylate) brush-grafted patch retains fibrous topography and shows a coefficient of friction of around 0.12, which is reduced by 77% compared with the pristine fibrous patch. Additionally, a significant reduction in protein, platelet, bacteria, and cell adhesion is observed. More importantly, the CeNPs-embedded patch enables ROS scavenging as well as inhibits pro-inflammatory cytokine secretion and promotes anti-inflammatory cytokine levels. Furthermore, the J-NFP can inhibit tissue adhesion and promote repair of both rat skin wounds and intrauterine injuries. The present strategy for developing the Janus patch exhibits enormous prospects for facilitating soft tissue repair.


Assuntos
Nanofibras , Animais , Ratos , Nanofibras/química , Cicatrização/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Aderências Teciduais/prevenção & controle , Ratos Sprague-Dawley , Adesão Celular/efeitos dos fármacos , Cério/química , Cério/farmacologia , Propriedades de Superfície , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
5.
ACS Nano ; 18(19): 12477-12488, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38699877

RESUMO

Progress in the design and synthesis of nanostructured self-assembling systems has facilitated the realization of numerous nanoscale geometries, including fibers, ribbons, and sheets. A key challenge has been achieving control across multiple length scales and creating macroscopic structures with nanoscale organization. Here, we present a facile extrusion-based fabrication method to produce anisotropic, nanofibrous hydrogels using self-assembling peptides. The application of shear force coinciding with ion-triggered gelation is used to kinetically trap supramolecular nanofibers into aligned, hierarchical macrostructures. Further, we demonstrate the ability to tune the nanostructure of macroscopic hydrogels through modulating phosphate buffer concentration during peptide self-assembly. In addition, increases in the nanostructural anisotropy of fabricated hydrogels are found to enhance their strength and stiffness under hydrated conditions. To demonstrate their utility as an extracellular matrix-mimetic biomaterial, aligned nanofibrous hydrogels are used to guide directional spreading of multiple cell types, but strikingly, increased matrix alignment is not always correlated with increased cellular alignment. Nanoscale observations reveal differences in cell-matrix interactions between variably aligned scaffolds and implicate the need for mechanical coupling for cells to understand nanofibrous alignment cues. In total, innovations in the supramolecular engineering of self-assembling peptides allow us to decouple nanostructure from macrostructure and generate a gradient of anisotropic nanofibrous hydrogels. We anticipate that control of architecture at multiple length scales will be critical for a variety of applications, including the bottom-up tissue engineering explored here.


Assuntos
Hidrogéis , Nanofibras , Peptídeos , Nanofibras/química , Peptídeos/química , Hidrogéis/química , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Anisotropia , Animais
6.
ACS Biomater Sci Eng ; 10(5): 2925-2934, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38587986

RESUMO

Spider dragline (major ampullate) silk is one of the toughest known fibers in nature and exhibits an excellent combination of high tensile strength and elasticity. Increasing evidence has indicated that preassembly plays a crucial role in facilitating the proper assembly of silk fibers by bridging the mesoscale gap between spidroin molecules and the final strong fibers. However, it remains challenging to control the preassembly of spidroins and investigate its influence on fiber structural and mechanical properties. In this study, we explored to bridge this gap by modulating the polyalanine (polyA) motifs in repetitive region of spidroins to tune their preassemblies in aqueous dope solutions. Three biomimetic silk proteins with varying numbers of alanine residues in polyA motif and comparable molecular weights were designed and biosynthesized, termed as N16C-5A, N15C-8A, and N13C-12A, respectively. It was found that all three proteins could form nanofibril assemblies in the concentrated aqueous dopes, but the size and structural stability of the fibrils were distinct from each other. The silk protein N15C-8A with 8 alanine residues in polyA motif allowed for the formation of stable nanofibril assemblies with a length of approximately 200 nm, which were not prone to disassemble or aggregate as that of N16C-5A and N13C-12A. More interestingly, the stable fibril assembly of N15C-8A enabled spinning of simultaneously strong (623.3 MPa) and tough (107.1 MJ m-3) synthetic fibers with fine molecular orientation and close interface packing of fibril bundles. This work highlights that modulation of polyA motifs is a feasible way to tune the morphology and stability of the spidroin preassemblies in dope solutions, thus controlling the structural and mechanical properties of the resulting fibers.


Assuntos
Fibroínas , Peptídeos , Resistência à Tração , Fibroínas/química , Fibroínas/genética , Peptídeos/química , Seda/química , Animais , Motivos de Aminoácidos , Nanofibras/química , Aranhas/química
7.
ACS Biomater Sci Eng ; 10(5): 3041-3056, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38623037

RESUMO

Oral immunization is a promising strategy for preventing and treating gastrointestinal (GI) infections and diseases, as it allows for direct access to the disease site. To elicit immune responses within the GI tract, however, there are many obstacles that oral vaccines must surmount, including proteolytic degradation and thick mucus barriers. Here, we employed a modular self-assembling peptide nanofiber platform to facilitate oral immunization against both peptide and small molecule epitopes. Synthesizing nanofibers with d-amino acids rendered them resistant to proteases in vitro, whereas l-amino acid nanofibers were rapidly degraded. Additionally, the inclusion of peptide sequences rich in proline, alanine, and serine (PAS), increased nanofiber muco-penetration, and accelerated nanofiber transport through the GI tract. Oral immunization with PASylated nanofibers and mucosal adjuvant generated local and systemic immune responses to a peptide epitope but only for l-amino acid nanofibers. Further, we were able to apply this design to also enable oral immunization against a small molecule epitope and illustrated the therapeutic and prophylactic effectiveness of these immunizations in mouse models of colitis. These findings demonstrate that supramolecular peptide self-assemblies have promise as oral vaccines and immunotherapies.


Assuntos
Imunização , Nanofibras , Peptídeos , Animais , Administração Oral , Nanofibras/química , Peptídeos/imunologia , Peptídeos/química , Peptídeos/administração & dosagem , Camundongos , Imunização/métodos , Epitopos/imunologia , Feminino , Camundongos Endogâmicos C57BL , Colite/imunologia , Colite/prevenção & controle , Colite/induzido quimicamente
8.
Biomacromolecules ; 25(5): 3063-3075, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38652055

RESUMO

Assemblies of peptides and proteins through specific intermolecular interactions set the basis for macroscopic materials found in nature. Peptides provide easily tunable hydrogen-bonding interactions, which can lead to the formation of ordered structures such as highly stable ß-sheets that can form amyloid-like supramolecular peptide nanofibrils (PNFs). PNFs are of special interest, as they could be considered as mimics of various fibrillar structures found in nature. In their ability to serve as supramolecular scaffolds, they could mimic certain features of the extracellular matrix to provide stability, interact with pathogens such as virions, and transduce signals between the outside and inside of cells. Many PNFs have been reported that reveal rich bioactivities. PNFs supporting neuronal cell growth or lentiviral gene transduction have been studied systematically, and their material properties were correlated to bioactivities. However, the impact of the structure of PNFs, their dynamics, and stabilities on their unique functions is still elusive. Herein, we provide a microscopic view of the self-assembled PNFs to unravel how the amino acid sequence of self-assembling peptides affects their secondary structure and dynamic properties of the peptides within supramolecular fibrils. Based on sequence truncation, amino acid substitution, and sequence reordering, we demonstrate that peptide-peptide aggregation propensity is critical to form bioactive ß-sheet-rich structures. In contrast to previous studies, a very high peptide aggregation propensity reduces bioactivity due to intermolecular misalignment and instabilities that emerge when fibrils are in close proximity to other fibrils in solution. Our multiscale simulation approach correlates changes in biological activity back to single amino acid modifications. Understanding these relationships could lead to future material discoveries where the molecular sequence predictably determines the macroscopic properties and biological activity. In addition, our studies may provide new insights into naturally occurring amyloid fibrils in neurodegenerative diseases.


Assuntos
Amiloide , Interações Hidrofóbicas e Hidrofílicas , Amiloide/química , Peptídeos/química , Agregados Proteicos , Humanos , Simulação de Dinâmica Molecular , Nanofibras/química , Estrutura Secundária de Proteína
9.
ACS Biomater Sci Eng ; 10(5): 3164-3172, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38671385

RESUMO

Intestinal adhesion is one of the complications that occurs more frequently after abdominal surgery. Postsurgical intestinal adhesion (PIA) can lead to a series of health problems, including abdominal pain, intestinal obstruction, and female infertility. Currently, hydrogels and nanofibrous films as barriers are often used for preventing PIA formation; however, these kinds of materials have their intrinsic disadvantages. Herein, we developed a dual-structure drug delivery patch consisting of poly lactic-co-glycolic acid (PLGA) nanofibers and a chitosan hydrogel (NHP). PLGA nanofibers loaded with deferoxamine mesylate (DFO) were incorporated into the hydrogel; meanwhile, the hydrogel was loaded with anti-inflammatory drug dexamethasone (DXMS). The rapid degradation of the hydrogel facilitated the release of DXMS at the acute inflammatory stage of the early injury and provided effective anti-inflammatory effects for wound sites. Moreover, PLGA composite nanofibers could provide sustained and stable release of DFO for promoting the peritoneal repair by the angiogenesis effects of DFO. The in vivo results indicated that NHP can effectively prevent PIA formation by restraining inflammation and vascularization, promoting peritoneal repair. Therefore, we believe that our NHP has a great potential application in inhibition of PIA.


Assuntos
Dexametasona , Sistemas de Liberação de Medicamentos , Hidrogéis , Nanofibras , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Nanofibras/química , Nanofibras/uso terapêutico , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/administração & dosagem , Aderências Teciduais/prevenção & controle , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Dexametasona/farmacologia , Dexametasona/administração & dosagem , Dexametasona/uso terapêutico , Quitosana/química , Quitosana/farmacologia , Intestinos/efeitos dos fármacos , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Complicações Pós-Operatórias/prevenção & controle , Ratos Sprague-Dawley , Camundongos , Feminino , Ratos
10.
Int J Biol Macromol ; 267(Pt 1): 131443, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588837

RESUMO

Facial masks have become ubiquitous in our daily life to endow skin enough moisture and activated nutrition through mask nonwovens infused with skincare ingredients. However, the active nutrients in wet masks are prone to deterioration and deactivation. Herein, a novel multifunctional nanofiber dry mask was successfully prepared using aqueous-electrospun phenolic acid grafted chitosan/collagen peptides. When used, the functional nanofibers in the mask dissolve through spraying moisture, activating active ingredients in response to water and providing in-situ free radical scavenging, moisturizing and antibacterial effects to the skin. In this work, a series of gallic acid (GA), caffeic acid (CA), and protocatechuic acid (PA) have been studied to be grafted with chitosan to improve water solubility of chitosan (CS). Also, through aqueous electrospinning of phenolic acid-grafted chitosan/collagen peptides, a one-step green multifunctional nanofiber mask was obtained. The results showed that the mask had a 12.14 % moisturizing rate and a 94.09 % activity for removing free radicals from the skin after encountering moisture. Considering its high efficiency, controllable function release, and easy processability, the nanofiber multifunctional mask may provide a competitive alternative to facial masks and promote potential value-added applications of bio-based macro-molecules.


Assuntos
Quitosana , Colágeno , Hidroxibenzoatos , Nanofibras , Quitosana/química , Hidroxibenzoatos/química , Colágeno/química , Nanofibras/química , Peptídeos/química , Água/química , Pele/efeitos dos fármacos , Solubilidade , Antibacterianos/química , Antibacterianos/farmacologia
11.
Int J Biol Macromol ; 267(Pt 1): 131539, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608994

RESUMO

Sustainable strategies to improve the water resistance of cellulose paper are actively sought. In this work, polymeric microspheres (PMs), prepared through emulsion polymerization of cellulose nanofibers stabilized rubber seed oil-derived monomer, were investigated as coatings on corrugated medium paper (CMP). After infiltrating porous paper with PMs, the water-resistant corrugated papers (WRCPn) with enhanced mechanical properties were obtained. When 30 wt% PMs were introduced, WRCP30 turned out to be highly compacted with an increased water contact angle of 106.3° and a low water vapor transmission rate of 81 g/(m2 d) at 23 °C. Meanwhile, the tensile strength of WRCP30 increased to 22.2 MPa, a 4-fold increase from CMP. When tested in a well-hydrated state, 71% of its mechanical strength in the dry state was maintained. Even with a low content of 10 wt% PMs, WRCP10 also exhibited stable tensile strength and water wettability during the cyclic soaking-drying process. Thus, the plant oil based sustainable emulsion polymers provide a convenient route for enhancing the overall performance of cellulose paper.


Assuntos
Celulose , Microesferas , Óleos de Plantas , Resistência à Tração , Água , Celulose/química , Água/química , Óleos de Plantas/química , Papel , Molhabilidade , Polímeros/química , Emulsões/química , Porosidade , Nanofibras/química
12.
Int J Biol Macromol ; 267(Pt 1): 131584, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615856

RESUMO

Heterocyclic aromatic amines (HAAs) are the main carcinogens produced during thermal processing of protein-rich foods. In this paper, a composite aerogel (TOCNFCa) with a stabilized dual-network structure was prepared via a template for the in-situ synthesis of UiO-66 on cellulose for the adsorption of HAAs in food. The dual-network structure of TOCNFCa provides the composite aerogel with excellent wet strength, maintaining excellent compressive properties. With the in-situ grown UiO-66 content up to 71.89 wt%, the hierarchical porosity endowed TOCNFCa@UiO-66 with the ability to rapidly adsorb HAAs molecules with high capacity (1.44-5.82 µmol/g). Based on excellent thermal stability, adsorption capacity and anti-interference, TOCNFCa@UiO-66 achieved satisfactory recoveries of HAAs in the boiled marinade, which is faster and more economical than the conventional SPE method. Moreover, TOCNFCa@UiO-66 could maintain 84.55 % of the initial adsorption capacity after 5 times of reuse.


Assuntos
Aminas , Celulose , Compostos Heterocíclicos , Estruturas Metalorgânicas , Nanofibras , Ácidos Ftálicos , Celulose/química , Adsorção , Aminas/química , Nanofibras/química , Estruturas Metalorgânicas/química , Compostos Heterocíclicos/química , Géis/química , Porosidade
13.
Carbohydr Polym ; 336: 122138, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670763

RESUMO

Water-soluble silver nanoclusters (AgNCs) as a new type of fluorescent material have attracted much attention for their remarkable optical properties and excellent cytocompatibility. However, it is still challenging to synthesize water-soluble AgNCs with good cytocompatibility and excellent fluorescence. Herein, the dialdehyde nanofibrillated cellulose (DANFC)- reduced water-soluble AgNCs capped by glutathione (GSH) with tunable fluorescence emissions were first reported. The DANFC provides a mild reduction environment and crystal growth system for the coordination between silver ions and GSH compared to conventional methods using strong reducing agents. The AgNCs with intense red fluorescence (R-AgNCs@GSH, size ∼2.24 nm) and green fluorescence (G-AgNCs@GSH, size ∼1.93 nm) were produced by varying the ratios of silver sources and ligands, and could maintain stable fluorescence intensity over 6 months. Moreover, the CCK-8 study demonstrated that the R-AgNCs@GSH and G-AgNCs@GSH reduced by DANFC of excellent cytocompatibility (cell viability >90 %) and enable precise multicolor intracellular imaging of Hela cells in 1 h. This work proposes a novel method to synthesize water-soluble AgNCs with tunable fluorescence emission at room temperature based on the classical silver- mirror reaction (SMR) using DANFC as reducing agent, and the synthesized fluorescent AgNCs have great potential as novel luminescent nanomaterials in biological research.


Assuntos
Celulose , Nanopartículas Metálicas , Prata , Solubilidade , Água , Prata/química , Humanos , Celulose/química , Células HeLa , Nanopartículas Metálicas/química , Água/química , Glutationa/química , Nanofibras/química , Sobrevivência Celular/efeitos dos fármacos , Imagem Óptica/métodos , Fluorescência , Corantes Fluorescentes/química
14.
Int J Pharm ; 656: 124078, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38569978

RESUMO

The role of tumor stroma in solid tumors has been widely recognized in cancer progression, metastasis and chemoresistance. Cancer-associated fibroblasts (CAFs) play a crucial role in matrix remodeling and promoting cancer cell stemness and resistance via reciprocal crosstalk. Residual tumor tissue after surgical removal as well as unresectable tumors face therapeutic challenges to achieve curable outcome. In this study, we propose to develop a dual delivery approach by combining p21-activated kinase 1 (PAK1) inhibitor (FRAX597) to inhibit tumor stroma and chemotherapeutic agent paclitaxel (PTX) to kill cancer cells using electrospun nanofibers. First, the role of the PAK1 pathway was established in CAF differentiation, migration and contraction using relevant in vitro models. Second, polycaprolactone polymer-based nanofibers were fabricated using a uniaxial electrospinning technique to incorporate FRAX597 and/or PTX, which showed a uniform texture and a prolonged release of both drugs for 16 days. To test nanofibers, stroma-rich 3D heterospheroid models were set up which showed high resistance to PTX nanofibers compared to stroma-free homospheroids. Interestingly, nanofibers containing PTX and FRAX597 showed strong anti-tumor effects on heterospheroids by reducing the growth and viability by > 90 % compared to either of single drug-loaded nanofibers. These effects were reflected by reduced intra-spheroidal expression levels of collagen 1 and α-smooth muscle actin (α-SMA). Overall, this study provides a new therapeutic strategy to inhibit the tumor stroma using PAK1 inhibitor and thereby enhance the efficacy of chemotherapy using nanofibers as a local delivery system for unresectable or residual tumor. Use of 3D models to evaluate nanofibers highlights these models as advanced in vitro tools to study the effect of controlled release local drug delivery systems before animal studies.


Assuntos
Nanofibras , Paclitaxel , Quinases Ativadas por p21 , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Nanofibras/administração & dosagem , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/metabolismo , Humanos , Linhagem Celular Tumoral , Esferoides Celulares/efeitos dos fármacos , Poliésteres/química , Poliésteres/administração & dosagem , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Movimento Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Liberação Controlada de Fármacos , Diferenciação Celular/efeitos dos fármacos
15.
Luminescence ; 39(4): e4746, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644460

RESUMO

The use of photochromism to increase the credibility of consumer goods has shown great promise. To provide mechanically dependable anticounterfeiting nanofibres, it has also been critical to improve the engineering processes of authentication patterns. Mechanically robust and photoluminescent electrospun poly(ethylene oxide)/glass (PGLS) nanofibres (150-350 nm) immobilized with nanoparticles of lanthanide-doped aluminate (NLA; 8-15 nm) were developed using electrospinning technology for anticounterfeiting purposes. The provided nanofibrous membranes changed colour from transparent to green when irradiated with ultraviolet light. By delivering NLA with homogeneous distribution without aggregations, we were able to keep the nanofibrous membrane transparent. When excited at 365 nm, NLA@PGLS nanofibres showed an emission intensity at 517 nm. The hydrophobicity of NLA@PGLS nanofibres improved by raising the pigment concentration as the contact angle was increased from 146.4° to 160.3°. After being triggered by ultraviolet light, NLA@PGLS showed quick and reversible photochromism without fatigue. It was shown that the suggested method can be applied to reliably produce various anticounterfeiting materials.


Assuntos
Vidro , Nanofibras , Polietilenoglicóis , Raios Ultravioleta , Nanofibras/química , Polietilenoglicóis/química , Vidro/química , Tamanho da Partícula , Propriedades de Superfície
16.
AAPS PharmSciTech ; 25(4): 74, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575778

RESUMO

Advancements in recombinant DNA technology have made proteins and peptides available for diagnostic and therapeutic applications, but their effectiveness when taken orally leads to poor patient compliance, requiring clinical administration. Among the alternative routes, transmucosal delivery has the advantage of being noninvasive and bypassing hepato-gastrointestinal clearance. Various mucosal routes-buccal, nasal, pulmonary, rectal, and vaginal-have been explored for delivering these macromolecules. Nanofibers, due to their unique properties like high surface-area-to-volume ratio, mechanical strength, and improved encapsulation efficiency, serve as promising carriers for proteins and peptides. These nanofibers can be tailored for quick dissolution, controlled release, enhanced encapsulation, targeted delivery, and improved bioavailability, offering superior pharmaceutical and pharmacokinetic performance compared to conventional methods. This leads to reduced dosages, fewer side effects, and enhanced patient compliance. Hence, nanofibers hold tremendous potential for protein/peptide delivery, especially through mucosal routes. This review focuses on the therapeutic application of proteins and peptides, challenges faced in their conventional delivery, techniques for fabricating different types of nanofibers and, various nanofiber-based dosage forms, and factors influencing nanofiber generation. Insights pertaining to the precise selection of materials used for fabricating nanofibers and regulatory aspects have been covered. Case studies wherein the use of specific protein/peptide-loaded nanofibers and delivered via oral/vaginal/nasal mucosa for diagnostic/therapeutic use and related preclinical and clinical studies conducted have been included in this review.


Assuntos
Sistemas de Liberação de Medicamentos , Nanofibras , Feminino , Humanos , Sistemas de Liberação de Medicamentos/métodos , Nanofibras/química , Proteínas , Peptídeos , Preparações Farmacêuticas
17.
Bioorg Med Chem Lett ; 104: 129727, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582132

RESUMO

ß-galactosidase (ß-gal) has high activity in various malignancies, which is suitable for targeted positron emission tomography (PET) imaging. Meanwhile, ß-gal can successfully guide the formation of nanofibers, which enhances the intensity of imaging and extends the imaging time. Herein, we designed a ß-galactosidase-guided self-assembled PET imaging probe [68Ga]Nap-NOTA-1Gal. We envisage that ß-gal could recognize and cleave the target site, bringing about self-assembling to form nanofibers, thereby enhancing the PET imaging effect. The targeting specificity of [68Ga]Nap-NOTA-1Gal for detecting ß-gal activity was examined using the control probe [68Ga]Nap-NOTA-1. Micro-PET imaging showed that tumor regions of [68Ga]Nap-NOTA-1Gal were visible after injection. And the tumor uptake of [68Ga]Nap-NOTA-1Gal was higher than [68Ga]Nap-NOTA-1 at all-time points. Our results demonstrated that the [68Ga]Nap-NOTA-1Gal can be used for the purpose of a new promising PET probe for helping diagnose cancer with high levels of ß-gal activity.


Assuntos
Nanofibras , Neoplasias , Humanos , Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons/métodos , beta-Galactosidase , Linhagem Celular Tumoral
18.
J Mater Chem B ; 12(16): 3984-3995, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563496

RESUMO

The natural extracellular matrix (ECM) consists of a continuous integrated fibrin network and a negatively charged proteoglycan-based matrix. In this work, we report a novel three-dimensional nanofiber hydrogel composite that mimics the natural ECM structure, exhibiting both degradability and mechanical characteristics comparable to that of tumor tissue. The embedded nanofiber improves the hydrogel mechanical properties, and varying the fiber density can match the elastic modulus of different tumor tissues (1.51-10.77 kPa). The degradability of the scaffold gives sufficient space for tumor cells to secrete and remodel the ECM. The expression levels of cancer stem cell markers confirmed the development of aggressive and metastatic phenotypes of prostate cancer cells in the 3D scaffold. Similar results were obtained in terms of anticancer resistance of prostate cancer cells in 3D scaffolds showing stem cell-like properties, suggesting that the current bionic 3D scaffold tumor model has broad potential in the development of effective targeted agents.


Assuntos
Matriz Extracelular , Hidrogéis , Nanofibras , Nanofibras/química , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Hidrogéis/química , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Alicerces Teciduais/química , Masculino , Linhagem Celular Tumoral , Células Tumorais Cultivadas , Proliferação de Células/efeitos dos fármacos
19.
ACS Appl Mater Interfaces ; 16(15): 18268-18284, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564419

RESUMO

The essential amino acid histidine plays a central role in the manifestation of several metabolic processes, including protein synthesis, enzyme-catalysis, and key biomolecular interactions. However, excess accumulation of histidine causes histidinemia, which shows brain-related medical complications, and the molecular mechanism of such histidine-linked complications is largely unknown. Here, we show that histidine undergoes a self-assembly process, leading to the formation of amyloid-like cytotoxic and catalytically active nanofibers. The kinetics of histidine self-assembly was favored in the presence of Mg(II) and Co(II) ions. Molecular dynamics data showed that preferential noncovalent interactions dominated by H-bonds between histidine molecules facilitate the formation of histidine nanofibers. The histidine nanofibers induced amyloid cross-seeding reactions in several proteins and peptides including pathogenic Aß1-42 and brain extract components. Further, the histidine nanofibers exhibited oxidase activity and enhanced the oxidation of neurotransmitters. Cell-based studies confirmed the cellular internalization of histidine nanofibers in SH-SY5Y cells and subsequent cytotoxic effects through necrosis and apoptosis-mediated cell death. Since several complications including behavioral abnormality, developmental delay, and neurological disabilities are directly linked to abnormal accumulation of histidine, our findings provide a foundational understanding of the mechanism of histidine-related complications. Further, the ability of histidine nanofibers to catalyze amyloid seeding and oxidation reactions is equally important for both biological and materials science research.


Assuntos
Nanofibras , Nanoestruturas , Neuroblastoma , Humanos , Histidina , Peptídeos/química , Nanofibras/química , Amiloide/química , Peptídeos beta-Amiloides/química
20.
Anal Chem ; 96(15): 5940-5950, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38562013

RESUMO

Peptide-based supramolecules exhibit great potential in various fields due to their improved target recognition ability and versatile functions. However, they still suffer from numerous challenges for the biopharmaceutical analysis, including poor self-assembly ability, undesirable ligand-antibody binding rates, and formidable target binding barriers caused by ligand crowding. To tackle these issues, a "polyvalent recognition" strategy employing the CD20 mimotope peptide derivative NBD-FFVLR-GS-WPRWLEN (acting on the CDR domains of rituximab) was proposed to develop supramolecular nanofibers for target antibody recognition. These nanofibers exhibited rapid self-assembly within only 1 min and robust stability. Their binding affinity (179 nM) for rituximab surpassed that of the monomeric peptide (7 µM) by over 38-fold, highlighting that high ligand density and potential polyvalent recognition can efficiently overcome the target binding barriers of traditional supramolecules. Moreover, these nanofibers exhibited an amazing "instantaneous capture" rate (within 15 s), a high recovery (93 ± 3%), and good specificity for the target antibody. High-efficiency enrichment of rituximab was achieved from cell culture medium with good recovery and reproducibility. Intriguingly, these peptide nanofibers combined with bottom-up proteomics were successful in tracking the deamidation of asparagine 55 (from 10 to 16%) on the rituximab heavy chain after 21 day incubation in human serum. In summary, this study may open up an avenue for the development of versatile mimotope peptide supramolecules for biorecognition and bioanalysis of biopharmaceuticals.


Assuntos
Produtos Biológicos , Nanofibras , Humanos , Rituximab , Nanofibras/química , Ligantes , Reprodutibilidade dos Testes , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA