Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Int J Pharm ; 656: 124078, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38569978

RESUMO

The role of tumor stroma in solid tumors has been widely recognized in cancer progression, metastasis and chemoresistance. Cancer-associated fibroblasts (CAFs) play a crucial role in matrix remodeling and promoting cancer cell stemness and resistance via reciprocal crosstalk. Residual tumor tissue after surgical removal as well as unresectable tumors face therapeutic challenges to achieve curable outcome. In this study, we propose to develop a dual delivery approach by combining p21-activated kinase 1 (PAK1) inhibitor (FRAX597) to inhibit tumor stroma and chemotherapeutic agent paclitaxel (PTX) to kill cancer cells using electrospun nanofibers. First, the role of the PAK1 pathway was established in CAF differentiation, migration and contraction using relevant in vitro models. Second, polycaprolactone polymer-based nanofibers were fabricated using a uniaxial electrospinning technique to incorporate FRAX597 and/or PTX, which showed a uniform texture and a prolonged release of both drugs for 16 days. To test nanofibers, stroma-rich 3D heterospheroid models were set up which showed high resistance to PTX nanofibers compared to stroma-free homospheroids. Interestingly, nanofibers containing PTX and FRAX597 showed strong anti-tumor effects on heterospheroids by reducing the growth and viability by > 90 % compared to either of single drug-loaded nanofibers. These effects were reflected by reduced intra-spheroidal expression levels of collagen 1 and α-smooth muscle actin (α-SMA). Overall, this study provides a new therapeutic strategy to inhibit the tumor stroma using PAK1 inhibitor and thereby enhance the efficacy of chemotherapy using nanofibers as a local delivery system for unresectable or residual tumor. Use of 3D models to evaluate nanofibers highlights these models as advanced in vitro tools to study the effect of controlled release local drug delivery systems before animal studies.


Assuntos
Nanofibras , Paclitaxel , Quinases Ativadas por p21 , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Nanofibras/administração & dosagem , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/metabolismo , Humanos , Linhagem Celular Tumoral , Esferoides Celulares/efeitos dos fármacos , Poliésteres/química , Poliésteres/administração & dosagem , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Movimento Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Liberação Controlada de Fármacos , Diferenciação Celular/efeitos dos fármacos
2.
Theranostics ; 12(17): 7237-7249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438504

RESUMO

Background: The only effective treatment for myocardial infarction (MI) is the timely restoration of coronary blood flow in the infarcted area, but further reperfusion exacerbates myocardial injury and leads to distal coronary no-reflow, which affects patient prognosis. Angiogenesis could be an important therapeutic strategy for re-establishing the blood supply to save the ischemic myocardium after MI. Basic fibroblast growth factor (bFGF) has been shown to promote angiogenesis. However, direct intravenous administration of bFGF is not a viable option given its poor half-life in vivo. Methods: Herein, we developed a peptide Lys-Lys-Pro-Leu-Gly-Leu-Ala-Gly-Phe-Phe (K2) to encapsulate bFGF to form bFGF@K2 micelle and proposed an enzyme-instructed self-assembly (EISA) strategy to deliver and slowly release bFGF in the ischemic myocardium. Results: The bFGF@K2 micelle exerted a stronger cardioprotective effect than free bFGF in a rat model of myocardial ischemia-reperfusion (MI/R). In vitro results revealed that the bFGF@K2 micelle could be cleaved by matrix metallopeptidase 9 (MMP-9) to yield bFGF@Nanofiber through amphipathic changes. In vivo experiments indicated that intravenous administration of bFGF@K2 micelle could lead to their restructuring into bFGF@Nanofiber and long term retention of bFGF in the ischemic myocardium of rat due to high expression of MMP-9 and assembly-induced retention (AIR) effect, respectively. Twenty-eight days after MI/R model establishment, bFGF@K2 micelle treatment significantly reduced fibrosis and improved cardiac function of the rats. Conclusion: We predict that our strategy could be applied in clinic for MI treatment in the future.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Metaloproteinase 9 da Matriz , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Nanofibras , Animais , Ratos , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Micelas , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Miocárdio/patologia , Nanofibras/administração & dosagem , Nanofibras/uso terapêutico , Neovascularização Patológica , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/terapia
3.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886987

RESUMO

(1) Objective: In order to evaluate the effect of a pre-induced mesenchymal stem cell (MSC)-coated cellulose/collagen nanofibrous nerve conduit on facial nerve regeneration in a rat model both in vitro and in vivo. (2) Methods: After fabrication of the cellulose/collagen nanofibrous conduit, its lumen was coated with either MSCs or pre-induced MSCs. The nerve conduit was then applied to the defective main trunk of the facial nerve. Rats were randomly divided into three treatment groups (n = 10 in each): cellulose/collagen nanofiber (control group), cellulose/collagen nanofiber/MSCs (group I), and cellulose/collagen nanofiber/pre-induced MSCs (group II). (3) Results Fibrillation of the vibrissae of each group was observed, and action potential threshold was compared 8 weeks post-surgery. Histopathological changes were also observed. Groups I and II showed better recovery of vibrissa fibrillation than the control group. (4) Conclusions: Group II, treated with the pre-induced MSC-coated cellulose/collagen nanofibrous nerve conduit, showed the highest degree of recovery based on functional and histological evaluations.


Assuntos
Celulose , Colágeno , Nervo Facial , Células-Tronco Mesenquimais , Nanofibras , Regeneração Nervosa , Animais , Celulose/farmacologia , Materiais Revestidos Biocompatíveis , Colágeno/farmacologia , Modelos Animais de Doenças , Nervo Facial/efeitos dos fármacos , Nervo Facial/fisiologia , Regeneração Tecidual Guiada , Células-Tronco Mesenquimais/fisiologia , Nanofibras/administração & dosagem , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Ratos , Nervo Isquiático/patologia , Alicerces Teciduais
4.
Int J Mol Sci ; 23(4)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216381

RESUMO

A novel hybrid biodegradable Nuss bar model was developed to surgically correct the pectus excavatum and reduce the associated pain during treatment. The scheme consisted of a three-dimensional (3D) printed biodegradable polylactide (PLA) Nuss bar as the surgical implant and electrospun polylactide-polyglycolide (PLGA) nanofibers loaded with lidocaine and ketorolac as the analgesic agents. The degradation rate and mechanical properties of the PLA Nuss bars were characterized after submersion in a buffered mixture for different time periods. In addition, the in vivo biocompatibility of the integrated PLA Nuss bars/analgesic-loaded PLGA nanofibers was assessed using a rabbit chest wall model. The outcomes of this work suggest that integration of PLA Nuss bar and PLGA/analgesic nanofibers could successfully enhance the results of pectus excavatum treatment in the animal model. The histological analysis also demonstrated good biocompatibility of the PLA Nuss bars with animal tissues. Eventually, the 3D printed biodegradable Nuss bars may have a potential role in pectus excavatum treatment in humans.


Assuntos
Analgésicos/farmacologia , Tórax em Funil/tratamento farmacológico , Tórax em Funil/cirurgia , Nanofibras/administração & dosagem , Animais , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Poliésteres/química , Ácido Poliglicólico/farmacologia , Impressão Tridimensional , Coelhos , Procedimentos de Cirurgia Plástica/métodos , Parede Torácica/efeitos dos fármacos , Parede Torácica/cirurgia , Resultado do Tratamento
5.
Int Immunopharmacol ; 104: 108522, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35032825

RESUMO

Induction of tumor-specific CD8 + T cell responses is known as a major challenge for cancer vaccine development; here we presented a strategy to improve peptide nanofibers-mounted antitumor immune responses. To this end, peptide nanofibers bearing class I (Kb)-restricted epitope (Epi-Nano) were formulated with polyethylene imine backbone (Epi-Nano-PEI), and characterized using morphological and physicochemicalcharacterizationtechniques. Nanofibers were studied in terms of their uptake by antigen-presenting cells (APCs), antigen cross-presentation capacity, and cytotoxic activity. Furthermore, nanofibers were assessed by their potency to induce NLRP3 inflammasome-related cytokines and factors. Finally, the ability of nanofibers to induce tumor-specific CD8 T cells and tumor protection were investigated in tumor-bearing mice. The formulation of Epi-Nano with PEI led to the formation of short strand nanofibers with a positive surface charge, a low critical aggregation concentration (CAC), and an increased resistancetoproteolytic degradation. Epi-Nano-PEI was significantly taken up more efficiently by antigen-presenting cells (APCs), and was more potent in cross-presentation when compared to Epi-Nano. Moreover, Epi-Nano-PEI, in comparison to Epi-Nano, efficiently up-regulated the expression of NLRP3, caspase-1, IL-1b, IL18 and IL-6. Cell viability analysis showed that formulation of PEI with Epi-Nano not only abolished its cytotoxic activity, but surprisingly induced macrophage proliferation. Furthermore, it demonstrated that Epi-Nano-PEI triggered robust antigen-specific CD8+ T cell responses, and induced maximum antitumor response (tumor growth inhibition and prolonged survival) in tumor-bearing mice that were significantly higher compared to Epi-Nano. Taken together, the formulation of Epi-Nano with PEI is suggested as a promising strategy to improve nanofibers-mounted antitumor immune response.


Assuntos
Antígenos/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Epitopos/administração & dosagem , Nanofibras/administração & dosagem , Neoplasias/imunologia , Ovalbumina/administração & dosagem , Peptídeos/administração & dosagem , Polietilenoimina/administração & dosagem , Animais , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular Tumoral , Feminino , Camundongos Endogâmicos C57BL
6.
Biochim Biophys Acta Mol Basis Dis ; 1867(12): 166245, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34391896

RESUMO

This article aims to investigate the mechanism of behaviors of human bone marrow stromal cells (hBMSCs) affected by scaffold structure combining Monte Carlo feature selection (MFCS), incremental feature selection (IFS) and support vector machine (SVM). The specific differentially expressed genes (DEGs) of hBMSCs cultured on nanofiber (NF) scaffolds and freeform fabrication (FFF) scaffolds were obtained. Key genes were screened from common genes between osteogenic DEGs and NF specific DEGs with MFCS, IFS and SVM. The results demonstrated that NF scaffolds induced hBMSCs to express more genes related to osteogenic differentiation. Finally, 16 key genes were identified among the common genes. The common genes were significantly enriched in Rap1 signaling pathway, extracellular matrix and ossification. The results in this study suggested that the gene expression of hBMSCs was sensitive to NF scaffolds and FFF scaffolds, and the osteogenic differentiation of hBMSCs could be enhanced by NF scaffolds.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Nanofibras/administração & dosagem , Osteogênese/genética , Diferenciação Celular/genética , Biologia Computacional , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Método de Monte Carlo , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Máquina de Vetores de Suporte , Alicerces Teciduais/química
7.
Neurotox Res ; 39(5): 1470-1486, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34309780

RESUMO

Nowadays, researchers pay a vast deal of attention to neural tissue regeneration due to its tremendous effect on the patient's life. There are many strategies, from using conventional autologous nerve grafts to the newly developed methods for reconstructing damaged nerves. Among the various therapeutic methods, incorporating highly potent biomolecules and growth factors, the damaged nerve site would promote nerve regeneration. The aim was to examine the efficiency of a mesenchymal stem cell condition medium (MSC-CM) loaded on a 3D-polycaprolactone (PCL) scaffold as a nerve conduit in an axotomy rat model. Twenty-four mature male rats were classified into four groups: controls (the animals of this group were intact), axotomy (10 mm piece of the nerve was removed), axotomy (10-mm piece of the nerve was removed) + scaffold, and axotomy (10-mm piece of the nerve was removed) + MSC-CM-loaded scaffold. We followed up nerve motor function using a sciatic function index and electromyography activity of the gastrocnemius muscle. At 12 weeks post axotomy, sciatic nerve and dorsal root ganglion specimens and L4 and L5 spinal cord segments were separated from the rats and were analyzed by stereological, immunohistochemistry, and RT-PCR procedures. The rats of the axotomy group presented the expected gross locomotor deficit. Stereological parameters, immunohistochemistry of GFAP, and gene expression of S100, NGF, and BDNF were significantly enhanced in the CM-loaded scaffold group compared with the axotomy group. The most observed similarity was noted between the results of the control group and the CM-loaded scaffold group. Our results support the potential applicability of MSC-CM-loaded PCL nanofibrous scaffold to treat peripheral nerve injury (PNI).


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/fisiologia , Nanofibras/administração & dosagem , Regeneração Nervosa/fisiologia , Poliésteres/administração & dosagem , Neuropatia Ciática/terapia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Masculino , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Ratos , Ratos Wistar , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Nervo Isquiático/fisiologia , Neuropatia Ciática/patologia , Alicerces Teciduais
8.
Int J Nanomedicine ; 16: 3803-3818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113101

RESUMO

BACKGROUND: Effective repair of full-thickness abdominal wall defects requires a patch with sufficient mechanical strength and anti-adhesion characteristics to avoid the formation of hernias and intra-abdominal complications such as intestinal obstruction and fistula. However, patches made from polymers or bio-derived materials may not meet these requirements and lack the bionic characteristics of the abdominal wall. MATERIALS AND METHODS: In this study, we report a consecutive electrospun method for preparing a double-layer structured nanofiber membrane (GO-PCL/CS-PCL) using polycaprolactone (PCL), graphene oxide (GO) and chitosan (CS). To expand the bio-functions (angiogenesis/reducing reactive oxygen species) of the patch (GO-PCL/NAC-CS-PCL), N-acetylcysteine (NAC) was loaded for the repair of full-thickness abdominal wall defects (2×1.5cm) in rat model. RESULTS: The double-layered patch (GO-PCL/NAC-CS-PCL) showed excellent mechanical strength and biocompatibility. After 2 months, rats treated with the patch exhibited the desired repair effect with no hernia formation, less adhesion (adhesion score: 1.50±0.50, P<0.001) and more collagen deposition (percentage of collagen deposition: 34.94%±3.31%, P<0.001). CONCLUSION: The double-layered nanomembranes presented in this study have good anti-hernia and anti-adhesion effects, as well as improve the microenvironment in vivo. It, therefore, holds good prospects for the repair of abdominal wall defects and provides a promising key as a postoperative anti-adhesion agent.


Assuntos
Parede Abdominal/anormalidades , Quitosana/química , Grafite/química , Hérnia/tratamento farmacológico , Nanofibras/administração & dosagem , Poliésteres/administração & dosagem , Aderências Teciduais/tratamento farmacológico , Animais , Colágeno/química , Hérnia/etiologia , Hérnia/patologia , Masculino , Nanofibras/química , Poliésteres/química , Ratos , Ratos Sprague-Dawley , Aderências Teciduais/etiologia , Aderências Teciduais/patologia
10.
Macromol Biosci ; 21(5): e2000410, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33690953

RESUMO

Protracted postsurgical inflammation leading to postoperative complications remains a persistent problem in urethral reconstruction. Nanofibers in the form of peptide amphiphiles expressing anti-inflammatory peptides (AIF-PA) have positively modulated local inflammatory responses. Urethroplasty is performed to repair 5 mm ventral urethral defects with: uncoated small intestinal submucosa (SIS); SIS dip-coated with AIF-PA1 (anti-inflammatory treatment), or SIS dip-coated with AIF-PA6 (control) on 12-week-old male Sprague Dawley rats (n = 6/group/timepoint). Animals are euthanized at 14 and 28 d postsurgery. Hematoxylin-eosin, Masson's Trichrome, and immunohistochemistry with primary antibodies against myeloperoxidase (MPO; neutrophils), CD68, CD86, CD206 (macrophages), and proinflammatory cytokines TNFα and IL-1ß are performed. Complete urethral healing occurs in 3/6 uncoated SIS (50%), 2/6 SIS+AIF-PA6 (33.3%), and 5/6 SIS+AIF-PA1 (83.3%) animals at 14 d and all at 28 d. Application of AIF-PA1 to SIS substitution urethroplasty decreases MPO+ neutrophils, CD86+ M1 proinflammatory macrophages, TNFα, and IL-1ß levels while concurrently increasing levels of CD206+ M2 proregenerative/anti-inflammatory macrophages at the anastomoses and the regenerated tissue at the wound bed (REGEN). AIF-PA1 treatment enhances the healing process, contributing to earlier, complete urethral healing, and increased angiogenesis. Further studies are needed to elucidate the specific mechanism of inflammatory response modulation on angiogenesis and overall urethral healing.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/prevenção & controle , Nanofibras/administração & dosagem , Uretra/patologia , Cicatrização/efeitos dos fármacos , Animais , Anticorpos/imunologia , Antígenos CD/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Masculino , Modelos Animais , Peroxidase/imunologia , Complicações Pós-Operatórias , Ratos , Ratos Sprague-Dawley , Uretra/imunologia , Uretra/metabolismo , Uretra/cirurgia
11.
Theranostics ; 11(6): 2917-2931, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456580

RESUMO

Rationale: Peripheral nerve injury (PNI) is a great challenge for regenerative medicine. Nerve autograft is the gold standard for clinical PNI repair. Due to its significant drawbacks, artificial nerve guidance conduits (NGCs) have drawn much attention as replacement therapies. We developed a combinatorial NGC consisting of longitudinally aligned electrospun nanofibers and porcine decellularized nerve matrix hydrogel (pDNM gel). The in vivo capacity for facilitating nerve tissue regeneration and functional recovery was evaluated in a rat sciatic nerve defect model. Methods: Poly (L-lactic acid) (PLLA) was electrospun into randomly oriented (PLLA-random) and longitudinally aligned (PLLA-aligned) nanofibers. PLLA-aligned were further coated with pDNM gel at concentrations of 0.25% (PLLA-aligned/0.25% pDNM gel) and 1% (PLLA-aligned/1% pDNM gel). Axonal extension and Schwann cells migration were evaluated by immunofluorescence staining of dorsal root ganglia cultured on the scaffolds. To fabricate implantable NGCs, the nanofibrous scaffolds were rolled and covered with an electrospun protection tube. The fabricated NGCs were then implanted into a 5 mm sciatic nerve defect model in adult male Sprague-Dawley rats. Nerves treated with NGCs were compared to contralateral uninjured nerves (control group), injured but untreated nerves (unstitched group), and autografted nerves. Nerve regeneration was monitored by an established set of assays, including T2 values and diffusion tensor imaging (DTI) derived from multiparametric magnetic resonance imaging (MRI), histological assessments, and immunostaining. Nerve functional recovery was evaluated by walking track analysis. Results: PLLA-aligned/0.25% pDNM gel scaffold exhibited the best performance in facilitating directed axonal extension and Schwann cells migration in vitro due to the combined effects of the topological cues provided by the aligned nanofibers and the biochemical cues retained in the pDNM gel. Consistent results were obtained in animal experiments with the fabricated NGCs. Both the T2 and fractional anisotropy values of the PLLA-aligned/0.25% pDNM gel group were the closest to those of the autografted group, and returned to normal much faster than those of the other NGCs groups. Histological assessment indicated that the implanted PLLA-aligned/0.25% pDNM gel NGC resulted in the largest number of axons and the most extensive myelination among all fabricated NGCs. Further, the PLLA-aligned/0.25% pDNM gel group exhibited the highest sciatic nerve function index, which was comparable to that of the autografted group, at 8 weeks post-surgery. Conclusions: NGCs composed of aligned PLLA nanofibers decorated with 0.25% pDNM gel provided both topological and biochemical guidance for directing and promoting axonal extension, nerve fiber myelination, and functional recovery. Moreover, T2-mapping and DTI metrics were found to be useful non-invasive monitoring techniques for PNI treatment.


Assuntos
Hidrogéis/farmacologia , Nanofibras/administração & dosagem , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Nervo Isquiático/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Imagem de Tensor de Difusão/métodos , Gânglios Espinais/efeitos dos fármacos , Regeneração Tecidual Guiada/métodos , Masculino , Regeneração Nervosa/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Poliésteres/administração & dosagem , Ratos , Ratos Sprague-Dawley , Medicina Regenerativa/métodos , Células de Schwann/efeitos dos fármacos , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
12.
Biomed Res Int ; 2021: 9977142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993249

RESUMO

Intra-abdominal adhesions following surgery are a challenging problem in surgical practice. This study fabricated different thermoplastic polyurethane (TPU) nanofibers with different average diameters using the electrospinning method. The conditions were evaluated by scanning electron microscopy (SEM), atomic force microscope (AFM), and Fourier transform infrared spectrometer (FTIR) analysis. A static tensile test was applied using a strength testing device to assess the mechanical properties of the electrospun scaffolds. By changing the effective electrospinning parameters, the best quality of nanofibers could be achieved with the lowest bead numbers. The electrospun nanofibers were evaluated in vivo using a rat cecal abrasion model. The macroscopic evaluation and the microscopic study, including the degree of adhesion and inflammation, were investigated after three and five weeks. The resultant electrospun TPU nanofibers had diameters ranging from about 200 to 1000 nm. The diameters and morphology of the nanofibers were significantly affected by the concentration of polymer. Uniform TPU nanofibers without beads could be prepared by electrospinning through reasonable control of the process concentration. These nanofibers' biodegradability and antibacterial properties were investigated by weight loss measurement and microdilution methods, respectively. The purpose of this study was to provide electrospun nanofibers having biodegradability and antibacterial properties that prevent any adhesions or inflammation after pelvic and abdominal surgeries. The in vivo experiments revealed that electrospun TPU nanofibers reduced the degree of abdominal adhesions. The histopathological study confirmed only a small extent of inflammatory cell infiltration in the 8% and 10% TPU. Conclusively, nanofibers containing 8% TPU significantly decreased the incidence and severity of postsurgical adhesions, and it is expected to be used in clinical applications in the future.


Assuntos
Parede Abdominal/patologia , Nanofibras/administração & dosagem , Poliuretanos/administração & dosagem , Complicações Pós-Operatórias/prevenção & controle , Aderências Teciduais/prevenção & controle , Animais , Feminino , Inflamação/prevenção & controle , Microscopia Eletrônica de Varredura/métodos , Modelos Animais , Polímeros/administração & dosagem , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos
13.
Plast Reconstr Surg ; 147(2): 386-397, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33235044

RESUMO

BACKGROUND: Current common techniques for repairing calvarial defects by autologous bone grafting and alloplastic implants have significant limitations. In this study, the authors investigated a novel alternative approach to bone repair based on peptide amphiphile nanofiber gels that are engineered to control the release of vascular endothelial growth factor (VEGF) to recruit circulating stem cells to a site of bone regeneration and facilitate bone healing by bone morphogenetic protein-2 (BMP-2). METHODS: VEGF release kinetics from peptide amphiphile gels were evaluated. Chemotactic functional scaffolds were fabricated by combining collagen sponges with peptide amphiphile gels containing VEGF. The in vitro and in vivo chemotactic activities of the scaffolds were evaluated by measuring mesenchymal stem cell migration, and angiogenic capability of the scaffolds was also evaluated. Large-scale rodent cranial bone defects were created to evaluate bone regeneration after implanting the scaffolds and other control materials. RESULTS: VEGF was released from peptide amphiphile in a controlled-release manner. In vitro migration of mesenchymal stem cells was significantly greater when exposed to chemotactic functional scaffolds compared to control scaffolds. In vivo chemotaxis was evidenced by migration of tracer-labeled mesenchymal stem cells to the chemotactic functional scaffolds. Chemotactic functional scaffolds showed significantly increased angiogenesis in vivo. Successful bone regeneration was noted in the defects treated with chemotactic functional scaffolds and BMP-2. CONCLUSIONS: The authors' observations suggest that this bioengineered construct successfully acts as a chemoattractant for circulating mesenchymal stem cells because of controlled release of VEGF from the peptide amphiphile gels. The chemotactic functional scaffolds may play a role in the future design of clinically relevant bone graft substitutes for large-scale bone defects.


Assuntos
Osteogênese/efeitos dos fármacos , Proteínas Recombinantes/administração & dosagem , Regeneração/efeitos dos fármacos , Crânio/cirurgia , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Proteína Morfogenética Óssea 2/administração & dosagem , Proteína Morfogenética Óssea 2/farmacocinética , Quimiotaxia/efeitos dos fármacos , Colágeno/administração & dosagem , Colágeno/farmacocinética , Modelos Animais de Doenças , Feminino , Géis , Humanos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Nanofibras/administração & dosagem , Neovascularização Fisiológica/efeitos dos fármacos , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Proteínas Recombinantes/farmacocinética , Crânio/lesões , Crânio/fisiologia , Engenharia Tecidual/métodos , Fator A de Crescimento do Endotélio Vascular/farmacocinética
14.
Biotechnol J ; 15(12): e2000100, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32679620

RESUMO

Biotinylated peptide amphiphile (Biotin-PA) nanofibers, are designed as a noncovalent binding location for antigens, which are adjuvants to enhance, accelerate, and prolong the immune response triggered by antigens. Presenting antigens on synthetic Biotin-PA nanofibers generated a higher immune response than the free antigens delivered with a cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN) (TLR9 agonist) adjuvant. Antigen attached Biotin-PA nanofibers trigger splenocytes to produce high levels of cytokines (IFN-γ, IL-12, TNF-α, and IL-6) and to exhibit a superior cross-presentation of the antigen. Both Biotin-PA nanofibers and CpG ODN induce a Th-1-biased IgG subclass response; however, delivering the antigen with Biotin-PA nanofibers induce significantly greater production of total IgG and subclasses of IgG compared to delivering the antigen with CpG ODN. Contrary to CpG ODN, Biotin-PA nanofibers also enhance antigen-specific splenocyte proliferation and increase the proportion of the antigen-specific CD8(+) T cells. Given their biodegradability and biocompatibility, Biotin-PA nanofibers have a significant potential in immunoengineering applications as a biomaterial for the delivery of a diverse set of antigens derived from intracellular pathogens, emerging viral diseases such as COVID-19, or cancer cells to induce humoral and cellular immune responses against the antigens.


Assuntos
Adjuvantes Imunológicos/química , Nanofibras/química , Peptídeos/química , Peptídeos/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Apresentação de Antígeno , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Antígenos/administração & dosagem , Antígenos/química , Materiais Biocompatíveis/química , Biotecnologia , Biotina/análogos & derivados , Citocinas/metabolismo , Desenho de Fármacos , Imunidade Celular , Imunidade Humoral , Técnicas In Vitro , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanofibras/administração & dosagem , Nanofibras/ultraestrutura , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Peptídeos/administração & dosagem , Engenharia de Proteínas
15.
Biomater Sci ; 8(12): 3454-3471, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32420550

RESUMO

The development of antimicrobial nanofibre dressings that can protect the injured tissues from commensal pathogens while promoting tissue regeneration finds enormous potential in plastic and reconstructive surgery practices. To achieve this goal, we investigated the effect of chondroitin sulphate on the morphology, mechanical properties, wettability and biocompatibility of polydopamine crosslinked electrospun gelatin nanofibres containing mineralized magnesium. To extend the durability of dressings, we prepared composite dressings containing polycaprolactone (PCL) and gelatin as blend or core-shell nanofibres. Nanofibre blends presented greater tensile strength and stretchability, while core-shell nanofibres displayed superior photoluminescent properties. In a porcine model of cutaneous burn injury, both the blend and core-shell nanofibre dressings displayed improved re-epithelialization, wound closure and clinical outcome in comparison to untreated burns. Histology of the biopsied tissues indicated smooth regeneration and collagen organization of the burns treated with core-shell nanostructures than untreated burns. This study compared the physico-chemical and biological properties of composite nanofibres that are capable of accelerating burn wound healing and possess antimicrobial properties, highlighting their potential as wound dressings and skin substitutes.


Assuntos
Antibacterianos/administração & dosagem , Bandagens , Sulfatos de Condroitina/administração & dosagem , Magnésio/administração & dosagem , Nanofibras/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Queimaduras/tratamento farmacológico , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Gelatina/administração & dosagem , Gelatina/química , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Humanos , Magnésio/química , Nanofibras/química , Poliésteres/administração & dosagem , Poliésteres/química , Suínos
16.
Biomater Sci ; 8(12): 3522-3535, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32452474

RESUMO

Several different self-assembling peptide systems that form nanofibers have been investigated as vaccine platforms, but design principles for adjusting the character of the immune responses they raise have yet to be well articulated. Here we compared the immune responses raised by two structurally dissimilar peptide nanofibers, one a ß-sheet fibrillar system (Q11), and one an α-helical nanofiber system (Coil29), hypothesizing that integrated T-cell epitopes within the latter would promote T follicular helper (Tfh) cell engagement and lead to improved antibody titers and quality. Despite significantly different internal structures, nanofibers of the two peptides exhibited surprisingly similar nanoscale morphologies, and both were capable of raising strong antibody responses to conjugated peptide epitopes in mice without adjuvant. Both were minimally inflammatory, but as hypothesized Coil29 nanofibers elicited antibody responses with higher titers and avidities against a conjugated model epitope (OVA323-339) and a candidate peptide epitope for vaccination against S. aureus. Subsequent investigation indicated that Coil29 nanofibers possessed internal CD4+ T cell epitopes: whereas Q11 nanofibers required co-assembly of additional CD4+ T cell epitopes to be immunogenic, Coil29 nanofibers did not. Coil29 nanofibers also raised stronger germinal center B cell responses and follicular helper T cell (Tfh) responses relative to Q11 nanofibers, likely facilitating the improvement of the antibody response. These findings illustrate design strategies for improving humoral responses raised by self-assembled peptide nanofibers.


Assuntos
Vacinas Bacterianas/administração & dosagem , Nanofibras/administração & dosagem , Ovalbumina/química , Peptídeos/administração & dosagem , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus , Vacinas de Subunidades Antigênicas/administração & dosagem , Animais , Anticorpos/imunologia , Linfócitos B/imunologia , Células Dendríticas/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Camundongos Endogâmicos C57BL , Peptídeos/química , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta
17.
Int J Biol Macromol ; 160: 112-127, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32422270

RESUMO

Biocompatible soy protein isolate/silk fibroin (SPI/SF) nanofibrous scaffolds were successfully fabricated through electrospinning a novel protein blend SPI/SF. Prepared nanofibers were treated with ethanol vapor to obtain an improved water-stable structure. Fabricated scaffolds were characterized through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), UV-VIS spectrophotometry and image analysis. The mean diameters of SPI/SF electrospun fibers were observed ranging between 71 and 160 nm. The scaffolds were found significantly stable for a prolong duration at the room temperature as well as at 37 °C, when placed in phosphate buffered saline, nutrient medium, and lysozyme-containing solution. The potential of fabricated scaffolds for skin tissue regeneration was evaluated by in vitro culturing of standard cell lines i.e., fibroblast cells (L929-RFP (red fluorescent protein) and NIH-3T3) and melanocytes (B16F10). The outcomes revealed that all the fabricated nanofibrous scaffolds were non-toxic towards normal mammalian cells. In addition, healing of full-thickness wound in rats within 14 days after treatment with a nanofibrous scaffold demonstrated its suitability as a potential wound dressing material. Interestingly, we found that nanofibers induced a noticeable reduction in the proliferation rate of B16F10 melanoma cells.


Assuntos
Fibroínas/farmacologia , Nanofibras/administração & dosagem , Seda/química , Pele/efeitos dos fármacos , Proteínas de Soja/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Bandagens , Bombyx/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Masculino , Mamíferos , Melanócitos/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais
18.
Biomater Sci ; 8(9): 2537-2548, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32215404

RESUMO

Bone regeneration is a complex process in which angiogenesis and osteogenesis are crucial. Introducing multiple angiogenic and osteogenic cues simultaneously into a single system and tuning these cues to optimize the niche remains a challenge for bone tissue engineering. Herein, based on our injectable biomimetic hydrogels composed of silk nanofibers (SNF) and hydroxyapatite nanoparticles (HA), deferoxamine (DFO) and bone morphogenetic protein-2 (BMP-2) were loaded on SNF and HA to introduce more angiogenic and osteogenic cues. The angiogenesis and osteogenesis capacity of injectable hydrogels could be regulated by tuning the delivery of DFO and BMP-2 independently, resulting in vascularization and bone regeneration in cranial defects. The angiogenesis and osteogenesis outcomes accelerated the regeneration of vascularized bones toward similar composition and structure to natural bones. Therefore, the multiple biophysical and chemical cues provided by the nanofibrous structures, organic-inorganic compositions, and chemical and biochemical angiogenic and osteogenic inducing cues suggest the potential for clinical applicability of these hydrogels in bone tissue engineering.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Regeneração Óssea/efeitos dos fármacos , Desferroxamina/administração & dosagem , Durapatita/administração & dosagem , Hidrogéis/administração & dosagem , Nanofibras/administração & dosagem , Nanopartículas/administração & dosagem , Seda/administração & dosagem , Animais , Injeções , Masculino , Células-Tronco Mesenquimais , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos
19.
Int J Nanomedicine ; 15: 125-136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021169

RESUMO

BACKGROUND: Despite recent advancements in surgical techniques, the repair of tendon rupture remains a challenge for surgeons. The purpose of this study was to develop novel doxycycline-loaded biodegradable nanofibrous membranes and evaluate their efficacy for the repair of Achilles tendon rupture in a rat model. MATERIALS AND METHODS: The drug-loaded nanofibers were prepared using the electrospinning process and drug release from the prepared membranes was investigated both in vitro and in vivo. Furthermore, the safety and efficacy of the drug-loaded nanofibrous membranes were evaluated in rats that underwent tendon surgeries. An animal behavior cage was employed to monitor the post-surgery activity of the animals. RESULTS: The experimental results demonstrated that poly(D,L-lactide-co-glycolide) (PLGA) nanofibers released effective concentrations of doxycycline for more than 40 days post-surgery, and the systemic plasma drug concentration was low. Rats receiving implantation of doxycycline-loaded nanofibers also showed greater activities and stronger tendons post-operation. CONCLUSION: Nanofibers loaded with doxycycline may have great potential in the repair of Achilles tendon rupture.


Assuntos
Doxiciclina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Nanofibras/administração & dosagem , Traumatismos dos Tendões/terapia , Implantes Absorvíveis , Tendão do Calcâneo/lesões , Animais , Doxiciclina/administração & dosagem , Doxiciclina/farmacocinética , Liberação Controlada de Fármacos , Membranas Artificiais , Nanofibras/química , Nanofibras/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Ratos Sprague-Dawley , Cicatrização
20.
J Vis Exp ; (156)2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32090989

RESUMO

The use of biocompatible materials for circumferential esophageal reconstruction is a technically challenging task in rats and requires an optimal implant technique with nutritional support. Recently, there have been many attempts at esophageal tissue engineering, but the success rate has been limited due to difficulty in early epithelization in the special environment of peristalsis. Here, we developed an artificial esophagus that can improve the regeneration of the esophageal mucosa and muscle layers through a two-layered tubular scaffold, a mesenchymal stem cell-based bioreactor system, and a bypass feeding technique with modified gastrostomy. The scaffold is made of polyurethane (PU) nanofibers in a cylindrical shape with a three-dimensional (3D) printed polycaprolactone strand wrapped around the outer wall. Prior to transplantation, human-derived mesenchymal stem cells were seeded into the lumen of the scaffold, and bioreactor cultivation was performed to enhance cellular reactivity. We improved the graft survival rate by applying surgical anastomosis and covering the implanted prosthesis with a thyroid gland flap, followed by temporary nonoral gastrostomy feeding. These grafts were able to recapitulate the findings of initial epithelialization and muscle regeneration around the implanted sites, as demonstrated by histological analysis. In addition, increased elastin fibers and neovascularization were observed in the periphery of the graft. Therefore, this model presents a potential new technique for circumferential esophageal reconstruction.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Esôfago/cirurgia , Sobrevivência de Enxerto , Procedimentos de Cirurgia Plástica/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Esôfago/fisiologia , Sobrevivência de Enxerto/efeitos dos fármacos , Sobrevivência de Enxerto/fisiologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Nanofibras/administração & dosagem , Poliésteres/administração & dosagem , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA