Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
1.
J Hazard Mater ; 476: 135226, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39029186

RESUMO

The increasing prevalence of coal mine dust-related lung diseases in coal miners calls for urgent and meticulous scrutiny of airborne respirable coal mine dust (RCMD), specifically focusing on particles at the nano-level. This necessity is driven by expanding research, including the insights revealed in this paper, that establish the presence and significantly increased toxicity of nano-sized coal dust particles in contrast to their larger counterparts. This study presents an incontrovertible visual proof of these tiny particulates in samples collected from underground mines, utilizing advanced techniques such as scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The intricate elemental composition of nano-sized coal dust identified through EDS analysis reveals the presence of elements such as silica and iron, which are known to contribute to lung pathologies when inhaled over prolonged periods. The outcomes of the statistical analyses reveal significant relationships between particle size and elemental composition, highlighting that smaller particles tend to have higher carbon content, while larger particles exhibit increased concentrations of elements like silica and aluminum. These analyses underscore the complex interactions within nano-sized coal dust, providing critical insights into their behavior, transport, and health impacts. The nano-sized coal dust could invade the alveoli, carrying these toxic elements from where they are impossible to exhale. The revelation of nano-sized coal dust's existence and the associated health hazards necessitate their incorporation into the regulatory framework governing the coal mining industry. This study lays the groundwork for heightened protective measures for miners, urging the invention of state-of-the-art sampling instruments, comprehensive physicochemical profiling of RCMD nanoparticles, and the pursuit of groundbreaking remedies to neutralize their toxic impact. These findings advocate for a paradigm shift in how the coal mining industry views and handles particulate matter, proposing a re-evaluation of occupational health standards and a call to action for protecting coal miners worldwide.


Assuntos
Minas de Carvão , Carvão Mineral , Poeira , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Poeira/análise , Carvão Mineral/análise , Exposição Ocupacional/análise , Espectrometria por Raios X , Região dos Apalaches , Nanopartículas/análise , Nanopartículas/química , Poluentes Ocupacionais do Ar/análise , Humanos
2.
NanoImpact ; 34: 100503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514026

RESUMO

TiO2 is the most widely used white pigment in plastics and food packaging industry, thus the question of its migration towards food and hence the impact on consumers is raised. Since recent research indicate its potential toxicity, it is necessary to study TiO2 contamination as a consequence of food storage. For this purpose, plastic containers from commercially-available dairy products and custom-made TiO2-spiked polypropylene materials were put in contact with 50% (v/v) ethanol and 3% (w/v) acetic acid, which were used here as food simulants. The migration assays were carried out under standard contact conditions of packaging use (as recommended by Commission Regulation (EU) N° 10/2011 for food contact migration testing), and under conditions of extreme mechanical degradation of the packaging. The TiO2 (nano)particles released in the food simulants were analysed by single particle inductively coupled plasma-tandem mass spectrometry in mass-shift mode and using a high efficiency sample introduction system (APEX™ Ω) to avoid matrix effects from food simulants. For the dairy product containers and for the spiked polypropylene, results showed release of TiO2 particles of rather large sizes (average size: 164 and 175 nm, respectively) under mechanical degradation conditions, i.e. when the polymeric structure is damaged. The highest amounts of TiO2 were observed in 50% ethanol after 10 days of storage at 50 °C (0.62 ng cm-2) for the dairy product containers and after 1 day of storage at 50 °C (0.68 ng cm-2) for the spiked polypropylene. However, the level of Ti released in particle form was very small compared to the total Ti content in the packaging and far below the acceptable migration limits set by European legislation. Release under standard contact conditions of use of the container was not measurable, thus the migration of TiO2 particles from this packaging to dairy products among storage is expected to be negligible.


Assuntos
Contaminação de Alimentos , Embalagem de Alimentos , Espectrometria de Massas em Tandem , Titânio , Titânio/análise , Titânio/química , Contaminação de Alimentos/análise , Polipropilenos/química , Polipropilenos/análise , Tamanho da Partícula , Nanopartículas/análise , Nanopartículas/efeitos adversos
3.
Anal Bioanal Chem ; 416(11): 2657-2676, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38329514

RESUMO

The extensive application of metallic nanoparticles (NPs) in several fields has significantly impacted our daily lives. Nonetheless, uncertainties persist regarding the toxicity and potential risks associated with the vast number of NPs entering the environment and human bodies, so the performance of toxicological studies are highly demanded. While traditional assays focus primarily on the effects, the comprehension of the underlying processes requires innovative analytical approaches that can detect, characterize, and quantify NPs in complex biological matrices. Among the available alternatives to achieve this information, mass spectrometry, and more concretely, inductively coupled plasma mass spectrometry (ICP-MS), has emerged as an appealing option. This work critically reviews the valuable contribution of ICP-MS-based techniques to investigate NP toxicity and their transformations during in vitro and in vivo toxicological assays. Various ICP-MS modalities, such as total elemental analysis, single particle or single-cell modes, and coupling with separation techniques, as well as the potential of laser ablation as a spatially resolved sample introduction approach, are explored and discussed. Moreover, this review addresses limitations, novel trends, and perspectives in the field of nanotoxicology, particularly concerning NP internalization and pathways. These processes encompass cellular uptake and quantification, localization, translocation to other cell compartments, and biological transformations. By leveraging the capabilities of ICP-MS, researchers can gain deeper insights into the behaviour and effects of NPs, which can pave the way for safer and more responsible use of these materials.


Assuntos
Terapia a Laser , Nanopartículas Metálicas , Nanopartículas , Humanos , Análise Espectral , Nanopartículas Metálicas/química , Espectrometria de Massas/métodos , Nanopartículas/toxicidade , Nanopartículas/análise
4.
Braz. J. Pharm. Sci. (Online) ; 60: e22542, 2024. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1533990

RESUMO

We developed poly-ε-caprolactone (PCL)-based nanoparticles containing D-α-tocopherol polyethylene glycol-1000 succinate (TPGS) or Poloxamer 407 as stabilizers to efficiently encapsulate genistein (GN). Two formulations, referred to as PNTPGS and PNPol, were prepared using nanoprecipitation. They were characterized by size and PDI distribution, zeta potential, nanoparticle tracking analysis (NTA), GN association (AE%), infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC). PNTPGS-GN exhibited a particle size of 141.2 nm, a PDI of 0.189, a zeta potential of -32.9 mV, and an AE% of 77.95%. PNPol-GN had a size of 146.3 nm, a better PDI than PNTPGS-GN (0.150), a less negative zeta potential (-21.0 mV), and an AE% of 68.73%. Thermal and spectrometric analyses indicated that no new compounds were formed, and there was no incompatibility detected in the formulations. Cellular studies revealed that Poloxamer 407 conferred less toxicity to PCL nanoparticles. However, the percentage of uptake decreased compared to the use of TPGS, which exhibited almost 80% cellular uptake. This study contributes to the investigation of stabilizers capable of conferring stability to PCL nanoparticles efficiently encapsulating GN. Thus, the PCL nanoparticle proposed here is an innovative nanomedicine for melanoma therapy and represents a strong candidate for specific pre-clinical and in vivo studie


Assuntos
Genisteína/farmacologia , Nanopartículas/análise , Melanoma/tratamento farmacológico , Tamanho da Partícula , Análise Espectral/classificação , Varredura Diferencial de Calorimetria/métodos , Cromatografia Líquida de Alta Pressão/métodos
5.
Int J Nanomedicine ; 18: 225-241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36660337

RESUMO

Background: Gallium (III) metal-organic complexes have been shown to have the ability to inhibit tumor growth, but the poor water solubility of many of the complexes precludes further application. The use of materials with high biocompatibility as drug delivery carriers for metal-organic complexes to enhance the bioavailability of the drug is a feasible approach. Methods: Here, we modified the ligands of gallium 8-hydroxyquinolinate complex with good clinical anticancer activity by replacing the 8-hydroxyquinoline ligands with 5-bromo-8-hydroxyquinoline (HBrQ), and the resulting Ga(III) + HBrQ complex had poor water solubility. Two biocompatible materials, bovine serum albumin (BSA) and graphene oxide (GO), were used to synthesize the corresponding Ga(III) + HBrQ complex nanoparticles (NPs) BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs in different ways to enhance the drug delivery of the metal complex. Results: Both of BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs can maintain stable existence in different solution states. In vitro cytotoxicity test showed that two nanomedicines had excellent anti-proliferation effect on HCT116 cells, which shown higher level of intracellular ROS and apoptosis ratio than that of cisplatin and oxaliplatin. In addition, the superior emissive properties of BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs allow their use for in vivo imaging showing highly effective therapy in HCT116 tumor-bearing mouse models. Conclusion: The use of biocompatible materials for the preparation of NPs against poorly biocompatible metal-organic complexes to construct drug delivery systems is a promising strategy that can further improve drug delivery and therapeutic efficacy.


Assuntos
Antineoplásicos , Portadores de Fármacos , Gálio , Grafite , Nanopartículas Metálicas , Oxiquinolina , Animais , Humanos , Camundongos , Materiais Biocompatíveis , Linhagem Celular Tumoral , Portadores de Fármacos/síntese química , Gálio/química , Grafite/química , Células HCT116 , Nanopartículas Metálicas/análise , Nanopartículas/análise , Oxiquinolina/química , Tamanho da Partícula , Soroalbumina Bovina/farmacologia , Água , Antineoplásicos/síntese química , Antineoplásicos/química
6.
J Pharm Sci ; 112(5): 1401-1410, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36596392

RESUMO

Delivery of messenger RNA (mRNA) using lipid nanoparticles (LNPs) is expected to be applied to various diseases following the successful clinical use of the mRNA COVID-19 vaccines. This study aimed to evaluate the effect of the cholesterol molar percentage of mRNA-LNPs on protein expression in hepatocellular carcinoma-derived cells and in the liver after intramuscular or subcutaneous administration of mRNA-LNPs in mice. For mRNA-LNPs with cholesterol molar percentages reduced to 10 mol% and 20 mol%, we formulated neutral charge particles with a diameter of approximately 100 nm and polydispersity index (PDI) <0.25. After the intramuscular or subcutaneous administration of mRNA-LNPs with different cholesterol molar percentages in mice, protein expression in the liver decreased as the cholesterol molar percentage in mRNA-LNPs decreased from 40 mol% to 20 mol% and 10 mol%, suggesting that reducing the cholesterol molar percentage in mRNA-LNPs decreases protein expression in the liver. Furthermore, in HepG2 cells, protein expression decreased as cholesterol in mRNA-LNPs was reduced by 40 mol%, 20 mol%, and 10 mol%. These results suggest that the downregulated expression of mRNA-LNPs with low cholesterol content in the liver involves degradation in systemic circulating blood and decreased protein expression after hepatocyte distribution.


Assuntos
Colesterol , Fígado , RNA Mensageiro , RNA Mensageiro/administração & dosagem , Animais , Camundongos , Colesterol/análise , Colesterol/sangue , Colesterol/metabolismo , Linhagem Celular Tumoral , Carcinoma Hepatocelular , Neoplasias Hepáticas Experimentais , Fígado/metabolismo , Luciferases/metabolismo , Masculino , Humanos , Lipossomos/administração & dosagem , Lipossomos/análise , Lipossomos/química , Nanopartículas/administração & dosagem , Nanopartículas/análise , Nanopartículas/química
7.
Talanta ; 252: 123852, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041315

RESUMO

Iron-tannic nanoparticles were used as a new adsorbent for dispersive solid phase extraction (DSPE) synergized with cloud point extraction (CPE) to enrich four tetracyclines (oxytetracycline, tetracycline, chlortetracycline, and doxycycline) prior to high-performance liquid chromatographic determination. DSPE and CPE were performed simultaneously in a one-pot co-extraction to form iron-tannic nanoparticles in-situ and pre-concentrate the tetracyclines. The parameters affecting the extraction efficiency were investigated. Using the optimal parameters, linear calibrations ranging from 2.63 to 1000 ng mL-1 were obtained, with determination coefficients greater than 0.996. The limit of detection was found to be 1.06-3.19 ng mL-1, while the limit of quantification was 2.63-10.65 ng mL-1. Precision was expressed as a relative standard deviation of less than 10%. The residues of the four tetracyclines in milk, eggs, honey, chicken liver, and chicken kidney samples were determined by the proposed method. The recoveries ranged from 79.3 to 107.1%. The results indicated that the proposed method was an alternative method for the extraction and pre-concentration of tetracyclines with high extraction and enrichment efficiency. In addition, it promoted rapidity and environmental friendliness.


Assuntos
Nanopartículas , Tetraciclinas , Tetraciclinas/análise , Cromatografia Líquida de Alta Pressão/métodos , Ferro , Extração em Fase Sólida/métodos , Antibacterianos/análise , Nanopartículas/análise
8.
Braz. J. Pharm. Sci. (Online) ; 59: e22330, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1505846

RESUMO

Abstract Donepezil-HCl is a member of the acetylcholinesterase inhibitors that is indicated for the symptomatic treatment of Alzheimer's disease (AD) and has many side effects. In this study, to reduce the side effects of Donepezil-HCl and increase the penetration of the drug through the blood-brain barrier, we aimed to design a solid lipid nanoparticle (SLN) formulation. The effects of the different formulation parameters, such as homogenization speed, sonication time, lipid and drug concentration, surfactant type and concentration, and volume of the aqueous phase, were assessed for optimization. The particle size and PDI increased with increasing lipid concentration but decreased with increasing amounts of surfactant (Tween 80) and co-surfactant (lecithin). When the homogenization rate and sonication time increased, the particle size decreased and the encapsulation efficiency increased. The optimized formulation exhibited particle size, PDI, encapsulation efficiency, and zeta potential of 87.2±0.11 nm; 0.22±0.02; 93.84±0.01 %; -17.0±0.12 mV respectively. The in vitro release investigation revealed that approximately 70% of Donepezil-HCl was cumulatively released after 24 hours. TEM analysis proved that spherical and smooth particles were obtained and formulations had no toxic effect on cells. The final optimized formulation could be a candidate for Donepezil-HCl application in Alzheimer's treatment with reduced side effects and doses for patients


Assuntos
Padrões de Referência , Pesquisa/instrumentação , Nanopartículas/análise , Donepezila/efeitos adversos , Técnicas In Vitro/métodos , Preparações Farmacêuticas/administração & dosagem , Doença de Alzheimer/patologia
9.
Environ Pollut ; 307: 119578, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35688388

RESUMO

Long-term exposure to fine particles (PM2.5), ultrafine particles (UFPs), and volatile organic compounds (VOCs) emissions from cooking has been linked to adverse human health effects. Here, we measured the real-time number size distribution of particles emitted when cooking two served food in Chinese restaurants and estimated the emission rate of UFPs and PM2.5. Experiments were conducted under a control hood, and both online measurement and offline analysis of PM2.5 were carried out. The measured emission rates of PM2.5 generated from deep-frying and grilling were 0.68 ± 0.11 mg/min and 1.58 ± 0.25 mg/min, respectively. Moreover, the UFPs emission rate of deep-frying (4.3 × 109 #/min) is three times higher than that of grilling (1.4 × 109 #/min). Additionally, the PM2.5 emission of deep-frying was comprised of a considerable amount of α-Fe2O3 (5.7% of PM2.5 total mass), which is more toxic than other iron oxide species. A total of six carcinogenic HAPs were detected, among which formaldehyde, acrolein, and acetaldehyde were found to exceed the inhalation reference concentration (RfC) for both cooking methods. These findings can contribute to future evaluation of single particle and HAPs emission from cooking to better support toxicity assessment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Nanopartículas , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , China , Culinária/métodos , Monitoramento Ambiental/métodos , Humanos , Ferro/análise , Nanopartículas/análise , Tamanho da Partícula , Material Particulado/análise , Restaurantes
10.
Curr Protoc ; 2(3): e396, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35333456

RESUMO

Engineered nanomaterials are becoming increasingly ubiquitous in our society, with numerous applications in medicine, consumer products, bioremediation, and advanced materials. As these nanomaterials increase in variety, analyzing their characteristics is of great importance. Single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) is a high-throughput, sensitive, and robust instrumental analysis method used to simultaneously characterize and quantify nanoparticles in a variety of matrices. One such type of nanoparticle of interest is amorphous silica nanoparticles (SiNPs). SiNPs have widespread use in consumer products such as food and cosmetics and are prime candidates for novel medical applications and uses in environmental bioremediation. Despite their increased use, SiNPs have been shown to have toxicological properties in vitro and in vivo, particularly with regard to the immune system. Because of the potential for increased SiNP exposure in the general public and in occupational settings, examining the relationship that SiNPs have with immune cells such as macrophages to elucidate mechanisms of toxicity is vital. To effectively determine the toxicity of nanoparticles, it is critical to examine dosimetry and the amount of nanoparticles taken up by the cell of interest. Different cell types have different uptake profiles, and varying physicochemical properties govern nanoparticle dosimetry and uptake in cells. Here, we describe a protocol using SP-ICP-MS to quantify and characterize the size, size distribution, and amount of SiNPs present in a cell and medium sample. We use a single-step digestion, which allows for the digestion of biological matrices while simultaneously keeping the SiNPs intact for SP-ICP-MS analysis. Clinically, this approach has the potential to be used as a method for analyzing SiNPs in other biological matrices, potentially as a way of defining SiNP uptake as a biomarker in immune-mediated diseases. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Treatment of cells with silica nanoparticles (SiNPs) and digestion of biological matrices Support Protocol 1: Culturing RAW 264.7 cells for SiNP uptake assay Support Protocol 2: Determination of SiNP size via dynamic light scattering Support Protocol 3: Optimization of sample and ICP-MS parameters for SP-ICP-MS analysis of cells and medium Basic Protocol 2: Analysis and quantification of SiNP uptake in macrophages with SP-ICP-MS.


Assuntos
Nanopartículas , Dióxido de Silício , Macrófagos , Espectrometria de Massas , Nanopartículas/análise , Tamanho da Partícula , Dióxido de Silício/química
11.
Talanta ; 242: 123286, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131663

RESUMO

Intensive production of nanomaterials, especially metallic nanoparticles (MNPs), and their release into the environment pose several risks for humans and ecosystem health. Consequently, high-efficiency analytical methodologies are required for control and characterization of these emerging pollutants. Single-particle inductively coupled plasma - mass spectrometry (SP-ICP-MS) is a promising technique which allows the determination and characterization of MNPs. However, several elements or isotopes are hampered by spectral interferences, and dynamic-reaction cell (DRC) technology is becoming a useful tool for free interference determination by ICP-MS. DRC-based SP-ICP-MS methods using ammonia as a reaction gas (either on-mass approach or mass-shift approaches) have been developed for determining titanium dioxide nanoparticles (TiO2 NPs), copper oxide nanoparticles (CuO NPs), copper nanoparticles (Cu NPs), and zinc oxide nanoparticles (ZnO NPs). The effects of parameters such as ammonia flow rate and dwell time on the peak width (NP transient signal in SP-ICP-MS) were comprehensively studied. Influence of NP size and nature were also investigated.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Amônia , Ecossistema , Humanos , Espectrometria de Massas/métodos , Nanopartículas Metálicas/química , Nanopartículas/análise , Tamanho da Partícula , Análise Espectral
12.
Braz. J. Pharm. Sci. (Online) ; 58: e19457, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1383969

RESUMO

Abstract Diethylcarbamazine-loaded nanoparticles were previously evaluated for their anti-inflammatory activity. However, little is known regarding their physicochemical properties. Thus, the purpose of this study was to physiochemically characterize diethylcarbamazine-loaded poly(caprolactone) nanoparticles and evaluate their in vitro cytotoxicity. All formulations were prepared using the double-emulsion method. The average particle size was in the ranged between 298 and 364 nm and the polydispersity indexes were below 0.3. The zeta potential values were marginally negative, which may be related to drug loading, as higher loading led to an increase in the modulus of the zeta potential values. Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction (XRD) analysis did not reveal any chemical interactions between the chemicals used and the absence of drug in crystalline form on the nanoparticle surfaces. The in vitro drug release study revealed a concentration-dependent release from the nanoparticles into the medium. The in vitro cytotoxicity assay demonstrated the biocompatibility of the blank and loaded nanoparticles. Hence, all formulations presented good physicochemical and safety properties, corroborating the in vivo anti-inflammatory activity, previously reported by our group.


Assuntos
Preparações Farmacêuticas/análise , Dietilcarbamazina/agonistas , Liberação Controlada de Fármacos , Métodos , Anti-Inflamatórios/classificação , Técnicas In Vitro/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos Químicos , Nanopartículas/análise
13.
Braz. J. Pharm. Sci. (Online) ; 58: e19519, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1383984

RESUMO

Abstract Silver nanoparticles (AgNPs) are among the most known nanomaterials being used for several purposes, including medical applications. In this study, Calendula officinalis L. flower extract and silver nitrate were used for green synthesis of silver nanoparticles under red, green and blue light-emitting diodes. AgNPs were characterized by Ultraviolet-Visible Spectrophotometry, Field Emission Scanning Electron Microscopy, Dynamic Light Scattering, Electrophoretic Mobility, Fourier Transform Infrared Spectroscopy and X-ray Diffraction. Isotropic and anisotropic silver nanoparticles were obtained, presenting hydrodinamic diameters ranging 90 - 180 nm, polydispersity (PdI > 0.2) and moderate stability (zeta potential values around - 20 mV)


Assuntos
Prata , Nitrato de Prata/agonistas , Calendula/efeitos adversos , Flores/genética , Nanopartículas/análise , Espectrofotometria/métodos , Difração de Raios X/métodos , Microscopia Eletrônica de Varredura/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Luz
14.
Braz. J. Pharm. Sci. (Online) ; 58: e19586, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1384008

RESUMO

Abstract Design of experiment (DoE) is a useful time and cost-effective tool for analyzing the effect of independent variables on the formulation characteristics. The aim of this study is to evaluate the effect of the process variables on the characteristics involved in the preparation of Diclofenac Sodium (DC) loaded ethylcellulose (EC) nanoparticles (NP) using Central Composite Design (CCD). NP were prepared by W/O/W emulsion solvent evaporation method. Three factors were investigated (DC/EC mass ratio, PVA concentration, homogenization speed) in order to optimize the entrapment efficiency (EE) and the particle size of NP. The optimal formulation was characterized by Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), and in vitro release. Optimized formulation showed an EE of 49.09 % and an average particle size of 226.83 nm with a polydispersity index of 0.271. No drug-polymer interaction was observed in FTIR and DSC analysis. SEM images showed that the particles are spherical and uniform. The in vitro release study showed a sustained release nature, 53.98 % of the encapsulated drug has been released over 24hours period. This study demonstrated that statistical experimental design methodology can optimize the formulation and the process variables to achieve favorable responses.


Assuntos
Preparações Farmacêuticas , Diclofenaco/análise , Otimização de Processos , Nanopartículas/análise , Técnicas In Vitro/instrumentação , Varredura Diferencial de Calorimetria/instrumentação , Microscopia Eletrônica de Varredura/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Custos e Análise de Custo/métodos , Metodologia como Assunto , Análise de Fourier
15.
Braz. j. biol ; 82: 1-10, 2022. ilus, tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468490

RESUMO

Artemisia absinthium L. is an important herb that is widely cultivated in different parts of the world for its medicinal properties. The present study evaluated the effects of four concentrations of nanoparticles treatment (0, 10, 20 and 30 mg L-¹) and NaCl salinity stress (0, 50, 100 and 150 mM NaCl) and their interactions with respect to the expression of two key genes, i.e. DBR2 and ADS, in the biosynthesis pathway of artemisinin in A. absinthium. Total RNA was extracted and a relative gene expression analysis was carried out using Real-Time PCR. The amount of artemisinin was also determined by HPLC. All the experiments were performed as factorial in a completely randomized design in three replications. The results revealed that salinity stress and nanoparticles treatment and their interaction affected the expressions of these genes significantly. The highest levels of ADS gene expression were observed in the 30 mg L-¹ nanoparticles–treated plants in the presence of 150 mM salinity stress and the lowest levels in the 10 mg L-¹ nanoparticles–treated plants under 50 mM salinity stress. The maximum DBR2 gene expression was recorded in the 10 mg L-¹ nanoparticles–treated plants in the absence of salinity stress and the minimum expression in the 100 mM salinity-stressed plants in the absence of nanoparticles treatment. Moreover, the smallest amounts of artemisinin were observed in the 150 mM salinity-stressed plants in the absence of nanoparticles and the highest amounts in the 30 mg L-¹ nanoparticles–treated plants. The maximum amounts of artemisinin and ADS gene expression were reported from the plants in the same nanoparticles treatment and salinity stress [...].


Artemisia absinthium L. é uma erva importante que é amplamente cultivada em diferentes partes do mundo por suas propriedades medicinais. O presente estudo avaliou os efeitos de quatro concentrações de tratamento com nanopartículas (0, 10, 20 e 30 mg L-¹) e estresse de salinidade com NaCl (0, 50, 100 e 150 mM NaCl) e suas interações com relação à expressão de dois genes-chave, isto é, DBR2 e ADS, na via de biossíntese da artemisinina em A. absinthium. O RNA total foi extraído, e uma análise de expressão gênica relativa foi realizada usando PCR em tempo real. A quantidade de artemisinina também foi determinada por HPLC. Todos os experimentos foram realizados como fatorial, em delineamento inteiramente casualizado, em três repetições. Os resultados revelaram que o estresse por salinidade e o tratamento com nanopartículas e sua interação afetaram significativamente as expressões desses genes. Os níveis mais altos de expressão do gene ADS foram observados nas plantas tratadas com nanopartículas de 30 mg L-¹ na presença de estresse de salinidade de 150 mM, e os níveis mais baixos, nas plantas tratadas com nanopartículas de 10 mg L-¹ com estresse de salinidade de 50 mM. A expressão máxima do gene DBR2 foi registrada nas plantas tratadas com nanopartículas de 10 mg L-¹ na ausência de estresse de salinidade, e a expressão mínima, nas plantas estressadas com salinidade de 100 mM na ausência de tratamento com nanopartículas. Além disso, as menores quantidades de artemisinina foram observadas nas plantas com estresse de salinidade de 150 mM na ausência de nanopartículas, e as maiores quantidades, nas plantas tratadas com nanopartículas de 30 mg L-¹. As quantidades máximas de expressão de genes de artemisinina e ADS foram relatadas a partir das plantas no mesmo tratamento com nanopartículas e condições de estresse de salinidade. A esse respeito, a quantidade de artemisinina diminuiu pela metade nas [...],


Assuntos
Artemisia/enzimologia , Artemisia/genética , Artemisininas , Estresse Salino , Nanopartículas/análise
16.
Braz. j. biol ; 82: 1-8, 2022. ilus, graf, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468571

RESUMO

Green synthesis of silver nanoparticles (AgNPs) is an ecofriendly, cost-effective and promising approach for discovery of novel therapeutics. The aim of the current work was to biogenic synthesize, characterize AgNPs using seed extracts of three economically important varieties of date palm (Iklas, Irziz and Shishi), and assess their anti-pathogenic bacterial activities. AgNPs were synthesised then characterised using electron microscopy and Fourier transform infrared analyses. The bactericidal activities of AgNPs against five different bacterial pathogens, Bacillus subtilis, Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and Streptococcus pneumoniae, were determined in vitro. In particular, changes in membrane integrity of virulent bacterial strains in response to AgNPs were investigated. Results of lactate dehydrogenase, alkaline phosphatase activity assays, and measurement of membrane potential revealed that the cytotoxic effects of the AgNPs were mainly centred on the plasma membrane of bacterial cells, leading to loss of its integrity and eventually cell death. In conclusion, green synthesis of AgNPs is an efficient, cost-effective and promising strategy to combat virulent antibiotic-resistant strains.


A síntese verde de nanopartículas de prata (AgNPs) é uma abordagem ecologicamente correta, econômica e promissora para a descoberta de novas terapêuticas. O objetivo do presente trabalho foi sintetizar biogênica, caracterizar AgNPs usando extratos de sementes de três variedades economicamente importantes de tamareira (Iklas, Irziz e Shishi) e avaliar suas atividades bacterianas antipatogênicas. AgNPs foram sintetizados e caracterizados usando microscopia eletrônica e análise de infravermelho por transformada de Fourier. As atividades bactericidas de AgNPs contra cinco diferentes patógenos bacterianos, Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Staphylococcus aureus resistente à meticilina e Streptococcus pneumoniae, foram determinadas in vitro. Em particular, foram investigadas alterações na integridade da membrana de cepas bacterianas virulentas em resposta a AgNPs. Os resultados da lactato desidrogenase, dos ensaios da atividade da fosfatase alcalina e da medição do potencial de membrana revelaram que os efeitos citotóxicos dos AgNPs estavam principalmente centrados na membrana plasmática das células bacterianas, levando à perda de sua integridade e, eventualmente, à morte celular. A síntese verde de AgNPs é uma estratégia eficiente, econômica e promissora para combater cepas virulentas resistentes a antibióticos.


Assuntos
Antibiose , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Nanopartículas/análise , Phoeniceae , Prata/análise , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Microscopia , Técnicas In Vitro
17.
São Paulo; s.n; s.n; 2022. 107 p. tab, graf.
Tese em Português | LILACS | ID: biblio-1416541

RESUMO

A conjuntivite bacteriana tem significante impacto na Saúde Pública. Essa infecção representa mais de um terço das doenças oculares relatadas em âmbito global. É uma doença altamente contagiosa causada por variedade de bactérias aeróbias e anaeróbias. Diferentes antibióticos empregados no tratamento dessa doença têm apresentado elevada incidência de resistência bacteriana. Dentre os antibióticos de última geração, destaca-se o besifloxacino, antibiótico de quarta geração da classe das fluoroquinolonas, indicado exclusivamente para uso oftálmico tópico. Entretanto, esse fármaco possui baixa solubilidade em água, diminuindo sua biodisponibilidade. Tendo em vista superar esse desafio, foi proposta abordagem nanotecnológica para o desenvolvimento de nanocristais desse fármaco. A preparação de nanocristais de besifloxacino empregando moagem via úmida em escala reduzida foi promissora empregando tensoativo Povacoat®. O Diâmetro hidrodinâmico médio (DHM) da partícula foi de aproximadamente 550 nm, com índice de polidispersão (IP) menor que 0,2. Esse resultado permitiu aumentar a solubilidade de saturação em aproximadamente duas vezes em relação a matéria-prima, possibilitando aumentar a velocidade de dissolução desse fármaco e melhorar sua biodisponibilidade e segurança. Além disso, foi validado o método para quantificação do besifloxacino por CLAE, apresentando especificidade, linearidade no intervalo de 20 a 80µg/mL (r= 0,9996), precisão por repetibilidade (DPR= 1,20%, 0,84% e 0,39%), precisão intermediária (DPR= 0,94%) e exatidão 99,03%. Estudo de estabilidade acelerado (90 dias) na condição 40°C±2°C/75%UR±5%UR e estudo de estabilidade de acompanhamento (150 dias) na condição: 25°C ± 2°C / 60% UR ± 5% UR evidenciaram a estabilidade do teor no período avaliado. Ainda, a nanossuspensão de besifloxacino 0,6% m/m (nanocristais) na dose máxima (500 mg/kg) e o estabilizante Povacoat® (750 mg/kg) não apresentaram toxicidade em larvas de G. mellonella. A concentração inibitória mínima (CIM) para a formulação inovadora foi de 0,0960 µg/mL e 1,60 µg/mL frente a Staphylococcus aureus e Pseudomonas aeruginosa, respectivamente, confirmando eficácia in vitro


Bacterial conjunctivitis greatly impacts the population's health, presenting more than a third of eye diseases reported worldwide. It is an infection caused by various aerobic and anaerobic bacteria and is highly contagious. Therefore, it presents a high incidence of bacterial resistance to the antibiotics commonly used for treatment. Among the most recent antibiotics, besifloxacin is a fourth-generation fluoroquinolone antibiotic indicated exclusively for topical ophthalmic use. Due to its importance in treating bacterial conjunctivitis and its low solubility in the water, a nanotechnological approach was proposed to develop besifloxacin nanocrystals. The preparation of besifloxacin nanocrystals using small-scale wet milling was promising using Povacoat® surfactant. The particle's average hydrodynamic diameter (DHM) was approximately 550 nm, with a polydispersity index (IP) of less than 0.2. This result increased the saturation solubility approximately two times concerning the raw material, making it possible to increase the dissolution rate of this drug and improve its bioavailability and safety. In addition, the method for quantification of besifloxacin by HPLC was validated, presenting specificity, linearity in the range of 20 to 80µg/mL (r= 0.9996), precision by repeatability (DPR= 1.20%, 0.84% and 0.39%), intermediate precision (DPR= 0.94%) and accuracy 99.03%. Accelerated stability study (90 days) at 40°C±2°C/75%RH±5%RH condition and follow-up stability study (150 days) at 25°C ± 2°C / 60% RH ± condition 5% RH showed the stability of content in the evaluated period. Furthermore, the 0.6% besifloxacin nanosuspension (nanocrystals) at the maximum dose (500 mg/kg) and the Povacoat® stabilizer (750 mg/kg) did not show toxicity in G. mellonella larvae. The minimum inhibitory concentration (MIC) to innovative formulation was 0.0960 µg/mL and e 1.60 µg/mL against Staphylococcus aureus and Pseudomonas aeruginosa, respectively, confirming in vitro efficacy


Assuntos
Preparações Farmacêuticas , Química Farmacêutica , Físico-Química/instrumentação , Conjuntivite Bacteriana/metabolismo , Nanopartículas/análise , Bactérias Aeróbias/classificação , Técnicas In Vitro/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Fluoroquinolonas , Dissolução , Oftalmopatias/patologia , Infecções/tratamento farmacológico , Antibacterianos/classificação
18.
Bioorg Chem ; 117: 105412, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34649153

RESUMO

This study aimed to synthesize a nano-structure between selenium, Vit. C, and Vit. E (Vit-E/C@SeNPs) as a promising protective and therapeutic agent for hepatocellular carcinoma. Vit-E/C@SeNPs were characterized using TEM and DLS and its zetapotential was measured to evaluate its stability. DPPH assay and SRB test were performed to estimate its antioxidant capacity and cytotoxicity, respectively. A radiosynthesis of 99mTc-Vit-E/C@SeNPs was done for further in-vivo pharmacokinetic studies on normal and solid tumor induced mice. Further, in-vivo studies were conducted to investigate Vit-E/C@SeNPs efficacy against hepatocellular damage in Wistar albino rats induced by diethylnitrosamine (DEN) / Carbon Tetra chloride (CCl4). The synthesis results showed spherical Vit-E/C@SeNPs with core size of 50 nm, radical scavenging activity (%RSC) of 75.9%, and IC50 of 27.9 µg/ml. The biochemical analysis results showed that the lower liver function biomarker values (ALT, AST, ALP, total bilirubin and GGT) has gone for the Vit-E/C@SeNPs prevention and treated group, which also showed significant depletion of liver tissue l-MDA, and obvious increase in GSH concentration and CAT activity and marked improvement in the histological feature of liver tissue. Additionally, a significant up-regulation of mRNA gene expression levels of inflammatory gene (TGFß1, NFκB, iNOS, PPAR-γ and TNFα) and Apoptotic gene (P53) were determined by using Quantitative real-time PCR (qPCR). The values down regulate and tend to normal in prevention and control group. All of these introduce Vit-E/C@SeNPs as a promising agent as protective and therapeutic agent against DEN/ CCl4-induced hepatocellular damage (Hepatocellular carcinoma).


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Fígado/efeitos dos fármacos , Selênio/farmacologia , Vitamina E/farmacologia , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/farmacocinética , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/análise , Ratos , Ratos Wistar , Selênio/administração & dosagem , Selênio/farmacocinética , Vitamina E/administração & dosagem , Vitamina E/farmacocinética
19.
Molecules ; 26(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34684744

RESUMO

Benzo(a)pyrene (BaP) has been recognized as a marker for the detection of carcinogenic polycyclic aromatic hydrocarbons. In this work, a novel monolithic solid-phase extraction (SPE) sorbent based on graphene oxide nanoparticles (GO) in starch-based cryogel composite (GO-Cry) was successfully prepared for BaP analysis. Rice flour and tapioca starch (gel precursors) were gelatinized in limewater (cross-linker) under alkaline conditions before addition of GO (filler) that can increase the ability to extract BaP up to 2.6-fold. BaP analysis had a linear range of 10 to 1000 µgL-1 with good linearity (R2 = 0.9971) and high sensitivity (4.1 ± 0.1 a.u./(µgL-1)). The limit of detection and limit of quantification were 4.21 ± 0.06 and 14.04 ± 0.19 µgL-1, respectively, with excellent precision (0.17 to 2.45%RSD). The accuracy in terms of recovery from spiked samples was in the range of 84 to 110% with no significant difference to a C18 cartridge. GO-Cry can be reproducibly prepared with 2.8%RSD from 4 lots and can be reused at least 10 times, which not only helps reduce the analysis costs (~0.41USD per analysis), but also reduces the resultant waste to the environment.


Assuntos
Benzo(a)pireno/química , Grafite/química , Extração em Fase Sólida/métodos , Benzo(a)pireno/análise , Cálcio/análise , Cromatografia Líquida de Alta Pressão , Criogéis/química , Química Verde/métodos , Limite de Detecção , Nanopartículas/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Amido/análise , Poluentes Químicos da Água/análise
20.
Appl Opt ; 60(27): 8291-8298, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612925

RESUMO

A solution of spectroscopic inverse problems, implying determination of target parameters of the research object via analysis of spectra of various origins, is an overly complex task, especially in case of strong variability of the research object. One of the most efficient approaches to solve such tasks is use of machine learning (ML) methods, which consider some unobvious information relevant to the problem that is present in the data. Here, we compare ML approaches to the problem of nanocomplex concentrations determination in human urine via optical absorption spectra, perform preliminary analysis of the data array, find optimal parameters for several of the most popular ML methods, and analyze the results.


Assuntos
Antibióticos Antineoplásicos/urina , Carbono/urina , Doxorrubicina/urina , Aprendizado de Máquina , Nanoconjugados , Nanopartículas/análise , Algoritmos , Portadores de Fármacos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Microscopia Confocal , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA