Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 701
Filtrar
1.
J Colloid Interface Sci ; 668: 282-292, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678884

RESUMO

Metal-phenolic networks (MPNs) have emerged as a versatile and multifunctional platform applied in bioimaging, disease treatment, electrocatalysis, and water purification. The synthesis of MPNs with mesoporous frameworks and ultra-small diameters (<200 nm), crucial for post-modification, cargo loading, and mass transport, remains a formidable challenge. Inspired by mussel chemistry, mesoporous metal-phenolic nanospheres (MMPNs) are facilely prepared by direct deposition of the metal-polyphenol complex on the interface of oil nano-droplets composed of block copolymers/1,3,5-trimethylbenzene followed by a spontaneous template-removal process. Due to the penetrable and stable networks, the oil nano-droplets gradually leak from the networks driven by shear stress during the stirring process. As a result, MMPNs are obtained without additional template removal procedures such as solvent extraction or high-temperature calcination. The materials have a large pore size (∼12.1 nm), uniform spherical morphology with a small particle size (∼99 nm), and a large specific surface area (49.8 m2 g-1). Due to the abundant phenolic hydroxyl groups, the MMPNs show excellent antioxidative property. The MMPNs also have excellent photothermal property, whose photothermal conversion efficiency was 40.9 %. Moreover, the phenolic hydroxyl groups can reduce Ag+ in situ to prepare Ag nanoparticles loaded MMPNs composites, which have excellent inhibition performance of drug-resistant bacteria biofilm.


Assuntos
Antibacterianos , Antioxidantes , Nanosferas , Tamanho da Partícula , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/química , Nanosferas/química , Porosidade , Animais , Testes de Sensibilidade Microbiana , Bivalves/química , Fenóis/química , Fenóis/farmacologia , Propriedades de Superfície , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 714: 149976, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677007

RESUMO

BACKGROUND: The systemic treatment of advanced hepatocellular carcinoma is currently facing a bottleneck. EGCG, the primary active compound in green tea, exhibits anti-tumor effects through various pathways. However, there is a lack of study on EGCG-induced immunogenic cell death (ICD) in hepatocellular carcinoma. METHODS: In a previous study, we successfully synthesized folate-modified thermosensitive nano-materials, encapsulated EGCG within nanoparticles using a hydration method, and established the EGCG nano-drug delivery system. The viability of HepG2 cells post-EGCG treatment was assessed via the MTT and EdU assays. Cell migration and invasion were evaluated through wound healing experiments, Transwell assays, and Annexin V-FITC/PI assay for apoptosis detection. Additionally, the expression levels of damage-associated molecular patterns (DAMPs) were determined using immunofluorescence, ATP measurement, RT-qPCR, and Western Blot. RESULTS: The drug sensitivity test revealed an IC50 value of 96.94 µg/mL for EGCG in HepG2 cells after 48 h. EGCG at a low concentration (50 µg/mL) significantly impeded the migration and invasion of HepG2 cells, showing a clear dose-dependent response. Moreover, medium to high EGCG concentrations induced cell apoptosis in a dose-dependent manner and upregulated DAMPs expression. Immunofluorescence analysis demonstrated a notable increase in CRT expression following low-concentration EGCG treatment. As EGCG concentration increased, cell viability decreased, leading to CRT exposure on the cell membrane. EGCG also notably elevated ATP levels. RT-qPCR and Western Blot analyses indicated elevated expression levels of HGMB1, HSP70, and HSP90 following EGCG intervention. CONCLUSION: EGCG not only hinders the proliferation, migration, and invasion of hepatocellular carcinoma cells and induces apoptosis, but also holds significant clinical promise in the treatment of malignant tumors by promoting ICD and DAMPs secretion.


Assuntos
Carcinoma Hepatocelular , Catequina , Catequina/análogos & derivados , Ácido Fólico , Neoplasias Hepáticas , Humanos , Catequina/farmacologia , Catequina/química , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Células Hep G2 , Ácido Fólico/química , Ácido Fólico/farmacologia , Movimento Celular/efeitos dos fármacos , Morte Celular Imunogênica/efeitos dos fármacos , Nanosferas/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Temperatura , Calreticulina/metabolismo
3.
Int J Biol Macromol ; 267(Pt 1): 131409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582478

RESUMO

Vessel normalization has proved imperative in tumor growth inhibition. In this work, biopolymer-based hybrid nanospheres capable of normalizing blood vessels were designed to improve the therapeutic effect of chemotherapeutic drugs. Zn0.4Fe2.6O4 nanoparticles (ZFO NPs) were synthesized, and were encapsulated in cross-inked chitosan (CS) along with a nitric oxide (NO) precursor, DETA NONOate, forming hybrid ZFO/NO@CS nanospheres highly stable in physiological environment. The structure, morphology and size of the nanospheres were characterized. The ZFO/NO@CS nanospheres could release NO under acidic conditions typical of intratumoral and intracellular environment. The results of related factors expression, wound healing and tube formation assays demonstrated that both the encapsulated ZFO NPs and the released NO were able to inhibit angiogenesis in tumors. The ZFO/NO@CS nanospheres enhanced the antitumor efficacy of the chemotherapeutic drug DOX by normalizing tumor vessels, as evidenced by in vivo experiments for CT26 tumor-bearing mice. By analyzing the contents of Fe in the tumor and different organs, the nanospheres were found to accumulate primarily at the tumor site. The blood analysis showed little side effect of the nanospheres. The ZFO/NO@CS nanospheres have great potential in improving tumor therapeutic effect when used in combination with chemotherapeutic drugs.


Assuntos
Quitosana , Nanosferas , Quitosana/química , Animais , Nanosferas/química , Camundongos , Linhagem Celular Tumoral , Óxido Nítrico/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Neovascularização Patológica/tratamento farmacológico , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico , Neoplasias/irrigação sanguínea , Neoplasias/patologia
4.
Biosens Bioelectron ; 256: 116273, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621341

RESUMO

Simple and reliable profiling of tumor-derived exosomes (TDEs) holds significant promise for the early detection of cancer. Nonetheless, this remains challenging owing to the substantial heterogeneity and low concentration of TDEs. Herein, we devised an accurate and highly sensitive electrochemical sensing strategy for TDEs via simultaneously targeting exosomal mucin 1 (MUC1) and programmed cell death ligand 1 (PD-L1). This approach employs high-affinity aptamers as specific recognition elements, utilizes rolling circle amplification and DNA nanospheres as effective bridges and signal amplifiers, and leverages methylene blue (MB) and doxorubicin (DOX) as robust signal reporters. The crux of this separation- and label-free method is the specific response of MB and DOX to G-quadruplex structures and DNA nanospheres, respectively. Quantifying TDEs using this strategy enabled precise discrimination of lung cancer patients (n = 25) from healthy donors (n = 12), showing 100% specificity (12/12), 92% sensitivity (23/25), and an overall accuracy of 94.6% (35/37), with an area under the receiver operating characteristic curve (AUC) of 0.97. Furthermore, the assay results strongly correlated with findings from computerized tomography and pathological analyses. Our approach could facilitate the early diagnosis of lung cancer through TDEs-based liquid biopsy.


Assuntos
Aptâmeros de Nucleotídeos , Antígeno B7-H1 , Técnicas Biossensoriais , Doxorrubicina , Técnicas Eletroquímicas , Exossomos , Neoplasias Pulmonares , Humanos , Técnicas Biossensoriais/métodos , Exossomos/química , Técnicas Eletroquímicas/métodos , Neoplasias Pulmonares/química , Aptâmeros de Nucleotídeos/química , Doxorrubicina/química , DNA/química , Azul de Metileno/química , Nanosferas/química , Quadruplex G
5.
Colloids Surf B Biointerfaces ; 236: 113804, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428209

RESUMO

In this study, a double network (DN) hydrogel was synthesized using poly(ethylene glycol) diacrylate (PEGDA) and sodium alginate (SA), incorporating copper-doped mesoporous silica nanospheres (Cu-MSNs) and zinc oxide nanoparticles (ZnO NPs). The blending of PEGDA and SA (PS) facilitates the double network and improves the less porous microstructure of pure PEGDA hydrogel. Furthermore, the incorporation of ZnO NPs and Cu-MSNs into the hydrogel network (PS@ZnO/Cu-MSNs) improved the mechanical properties of the hydrogel (Compressive strength = ⁓153 kPa and Young's modulus = ⁓ 1.66 kPa) when compared to PS hydrogel alone (Compressive strength = ⁓ 103 kPa and Young's modulus = ⁓ 0.95 kPa). In addition, the PS@ZnO/Cu-MSNs composite hydrogel showed antibacterial activities against Staphylococcus aureus and Escherichia coli. Importantly, the PS@ZnO/Cu-MSNs hydrogel demonstrated excellent biocompatibility, enhanced MC3T3-E1 cell adhesion, proliferation, and significant early-stage osteoblastic differentiation, as evidenced by increased alkaline phosphatase (ALP), and improved calcium mineralization, as evidenced by increased alizarin red staining (ARS) activities. These findings point to the possible use of the PS@ZnO/Cu-MSNs composite hydrogel in bone tissue regeneration.


Assuntos
Nanopartículas , Nanosferas , Óxido de Zinco , Nanosferas/química , Cobre/farmacologia , Óxido de Zinco/farmacologia , Osteogênese , Engenharia Tecidual , Hidrogéis/farmacologia , Hidrogéis/química , Dióxido de Silício/química , Alginatos/farmacologia , Alginatos/química , Nanopartículas/química , Polietilenoglicóis/química
6.
J Colloid Interface Sci ; 661: 908-922, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330663

RESUMO

Combinational therapy in cancer treatment that integrates the merits of different therapies is an effective approach to improve therapeutic outcomes. Herein, a simple nanoplatform (N-CNS-CaO2-HA/Ce6 NCs) that synergized chemodynamic therapy (CDT), photodynamic therapy (PDT), photothermal therapy (PTT), and Ca2+ interference therapy (CIT) has been developed to combat hypoxic tumors. With high photothermal effect, excellent peroxidase-like activity, and inherent mesoporous structure, N-doped carbon nanospheres (N-CNSs) were prepared via in situ pyrolysis of an established nanoscale covalent organic frameworks (COFs) precursor. These N-CNSs acted as PTT/CDT agents and carriers for the photosensitizer chlorin e6 (Ce6), thereby yielding a minimally invasive PDT/PTT/CDT synergistic therapy. Hyaluronic acid (HA)-modified CaO2 nanoparticles (CaO2-HA NPs) coated on the surface of the nanoplatform endowed the nanoplatform with O2/H2O2 self-supply capability to respond to and modulate the tumor microenvironment (TME), which greatly facilitated the tumor-specific performance of CDT and PDT. Moreover, the reactive oxygen species (ROS) produced during PDT and CDT enhanced the Ca2+ overloading due to CaO2 decomposition, amplifying the intracellular oxidative stress and leading to mitochondrial dysfunction. Notably, the HA molecules not only increased the cancer-targeting efficiency but also prevented CaO2 degradation during blood circulation, providing double insurance of tumor-selective CIT. Such a nanotherapeutic system possessed boosted antitumor efficacy with minimized systemic toxicity and showed great potential for treating hypoxic tumors.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Nanosferas , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Nanosferas/química , Cálcio , Carbono , Peróxido de Hidrogênio/química , Nanopartículas/química , Porfirinas/química , Neoplasias/tratamento farmacológico , Estresse Oxidativo , Linhagem Celular Tumoral , Microambiente Tumoral
7.
Anal Chim Acta ; 1288: 342056, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220266

RESUMO

Bacterial infections, viral infections and autoimmune diseases pose a considerable threat to human health. Procalcitonin (PCT) has emerged as a biomarker for the detection of these diseases. To ensure accurate and reliable results, we propose a dual-mode approach that incorporates self-validation and self-correction mechanisms. Herein, we develop a dual-mode self-powered photoelectrochemical (PEC) and colorimetric sensor to determine PCT. The self-powered PEC sensor was constructed with a photoanode of spherical nanoflower-MoS2/Cu2ZnSnS4/Bi2S3 material and a photocathode of CuInS2 material. Ni4Cu2 bimetallic hollow nanospheres (BHNs) possess superoxide dismutase and catalase performance, which facilitate superoxide anion radical (·O2-) and H2O2 circulating generation, promoting the separation of photogenerated electrons and holes to amplify photocurrent signal. Thus Ni4Cu2 BHNs is used as a marker material for PEC sensor. Meanwhile, in colorimetric mode, Ni4Cu2 BHNs converts blue oxTMB to a colourless TMB for colorimetric detection of PCT. Based on this principle, dual-mode determination of PCT with high sensitivity is achieved. The dual-mode method not only demonstrates outstanding properties and practicability, but also presents an effective, highly efficient and reliable method for detecting PCT.


Assuntos
Técnicas Biossensoriais , Nanosferas , Humanos , Nanosferas/química , Pró-Calcitonina , Molibdênio/química , Peróxido de Hidrogênio , Colorimetria , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção
8.
Small ; 20(21): e2307390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100300

RESUMO

Tumor immunotherapy has become a research hotspot in cancer treatment, with macrophages playing a crucial role in tumor development. However, the tumor microenvironment restricts macrophage functionality, limiting their therapeutic potential. Therefore, modulating macrophage function and polarization is essential for enhancing tumor immunotherapy outcomes. Here, a supramolecular peptide amphiphile drug-delivery system (SPADS) is utilized to reprogram macrophages and reshape the tumor immune microenvironment (TIM) for immune-based therapies. The approach involved designing highly specific SPADS that selectively targets surface receptors of M2-type macrophages (M2-Mφ). These targeted peptides induced M2-Mφ repolarization into M1-type macrophages by dual inhibition of endoplasmic reticulum and oxidative stresses, resulting in improved macrophagic antitumor activity and immunoregulatory function. Additionally, TIM reshaping disrupted the immune evasion mechanisms employed by tumor cells, leading to increased infiltration, and activation of immune cells. Furthermore, the synergistic effect of macrophage reshaping and anti-PD-1 antibody (aPD-1) therapy significantly improved the immune system's ability to recognize and eliminate tumor cells, thereby enhancing tumor immunotherapy efficacy. SPADS utilization also induced lung metastasis suppression. Overall, this study demonstrates the potential of SPADS to drive macrophage reprogramming and reshape TIM, providing new insights, and directions for developing more effective immunotherapeutic approaches in cancer treatment.


Assuntos
Neoplasias da Mama , Imunoterapia , Nanosferas , Peptídeos , Microambiente Tumoral , Macrófagos Associados a Tumor , Microambiente Tumoral/efeitos dos fármacos , Imunoterapia/métodos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Animais , Nanosferas/química , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Peptídeos/química , Peptídeos/farmacologia , Feminino , Camundongos , Linhagem Celular Tumoral , Humanos , Camundongos Endogâmicos BALB C
9.
Int J Biol Macromol ; 258(Pt 2): 129039, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154704

RESUMO

Compared with traditional tedious organic solvent-assisted separation process in natural medicinal chemistry, cytomembrane (CM) fishing technique became a more appealing and greener choice for screening bioactive components from natural products. However, its large-scale practical value was greatly weakened by the easy fall-off of CMs from magnetic supports, rooted in the instability of common Fe3O4 particles and their insufficient interaction with CMs. In this research, a new green biostable platform was developed for drug screening through the integration of hyperbranched quaternized hydrothermal magnetic carbon spheres (HQ-HMCSs) and CMs. The positive-charged HQ-HMCSs were constructed by chitosan-based hydrothermal carbonization onto Fe3O4 nanospheres and subsequent aqueous hyperbranching quaternization with 1,4-butanediol diglycidyl ether and methylamine. The strong interaction between HQ-HMCSs and CMs was formed via electrostatic attraction of HQ-HMCSs to negative-charged CMs and covalent linkage derived from the epoxy-amine addition reactions. The chemically stable HMCSs and its integration with CMs contributed to dramatically higher stability and recyclability of bionic nanocomposites. With the fishing of osteoblast CMs integrated HQ-HMCSs, two novel potential anti-osteoporosis compounds, narcissoside and beta-ionone, were discovered from Hippophae rhamnoides L. Enhanced osteoblast proliferation, alkaline phosphatase, and mineralization levels proved their positive osteogenesis effects. Preliminary pharmacological investigation demonstrated their potential action on membrane proteins of estrogen receptor alpha and insulin-like growth factor 1. Furthermore, beta-ionone showed apparent therapeutic effects on osteogenic lesions in zebrafish. These results provide a green, stable, cost-efficient, and reliable access to rapid discovery of drug leads, which verifiably benefits the design of nanocarbon-based biocomposites with increasingly advanced functionality.


Assuntos
Produtos Biológicos , Quitosana , Nanosferas , Norisoprenoides , Animais , Quitosana/química , Nanosferas/química , Peixe-Zebra , Carbono/química , Fenômenos Magnéticos
10.
J Mater Chem B ; 11(47): 11280-11289, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37990931

RESUMO

The combination of noble metal nanoparticles with metal-organic complexes has attracted great attention for exploring new properties in biomedical application areas. So far, the preparation of noble metal nanoparticle-loaded metal-organic complexes often requires complex processes. Here, a simple coordination-crystallization approach was developed to prepare platinum nanoparticle-anchored metal-organic complexes (Pt-MOCs) by directly mixing disulfiram (DSF), chloroplatinic acid, and a reducing agent. The DSF and Pt ions first coordinate forming metal-organic complex nanospheres and then the Pt nanoparticles crystallized on the surface taking advantage of the coordination rate of the metal ions and organic ligand being greater than the reduction rate of the metal ions. The Pt-MOCs possess uniform and adjustable diameter (240-536 nm), and their surface potentials can also be modulated easily from -22 to +14 mV by adjusting the ratio of DSF and chloroplatinic acid. Phantom experiments show that the Pt-MOC nanospheres significantly improve the efficiency of singlet oxygen production after exposure to ultrasound irradiation. In vitro experiments show that the Pt-MOCs effectively produce reactive oxygen species and exhibit superior cytotoxicity for tumor cells under ultrasound irradiation compared to metal-organic complexes (MOCs) or Pt nanoparticles. Taken together, this work reports a coordination-crystallization approach to synthesize Pt-MOCs, which show excellent sonodynamic therapy for tumors.


Assuntos
Complexos de Coordenação , Nanosferas , Neoplasias , Humanos , Platina/farmacologia , Platina/química , Nanosferas/química , Cristalização , Neoplasias/tratamento farmacológico , Íons
11.
Anal Chem ; 95(31): 11777-11784, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506347

RESUMO

Isothermal, enzyme-free amplification techniques, such as the hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA), have gained increasing attention for miRNA analysis. However, current methodological challenges, including slow kinetics, low amplification efficiency, difficulties in efficient cellular internalization of DNA probes, and concerns regarding the intracellular stability of nucleic acids, need to be addressed. To this end, we propose a novel strategy for sensitive miRNA detection based on a three-dimensional (3D) CHA-HCR system. This system comprises two DNA nanospheres, named DS-13 and DS-24, which are functionalized with CHA and HCR hairpins. Target miR-21 initiates CHA between the two nanospheres, thereby activating downstream HCR and bringing cyanine 3 (Cy3) and cyanine 5 (Cy5) into proximity. The 3D CHA-HCR process leads to the formation of large DNA aggregates and the generation of fluorescence resonance energy transfer signals. In this strategy, the employment of a cascaded reaction and spatial confinement effect improve sensitivity and kinetics, while the use of DNA nanocarriers facilitates cellular delivery and protects nucleic acid probes. The experimental results in vitro, in living cells, and in clinical tissue samples demonstrated the desirable sensing performance. Collectively, this approach holds promise as a valuable tool for cancer diagnosis and biomedical research.


Assuntos
Nanosferas , Hibridização de Ácido Nucleico , Hibridização de Ácido Nucleico/métodos , Nanosferas/química , Fatores de Tempo , DNA/química , MicroRNAs/química , Sobrevivência Celular , Humanos , Linhagem Celular Tumoral
12.
J Synchrotron Radiat ; 30(Pt 4): 780-787, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338043

RESUMO

The routes by which foreign objects enter cells is well studied; however, their fate following uptake has not been explored extensively. Following exposure to synchrotron-sourced (SS) terahertz (THz) radiation, reversible membrane permeability has been demonstrated in eukaryotic cells by the uptake of nanospheres; nonetheless, cellular localization of the nanospheres remained unclear. This study utilized silica core-shell gold nanospheres (AuSi NS) of diameter 50 ± 5 nm to investigate the fate of nanospheres inside pheochromocytoma (PC 12) cells following SS THz exposure. Fluorescence microscopy was used to confirm nanosphere internalization following 10 min of SS THz exposure in the range 0.5-20 THz. Transmission electron microscopy followed by scanning transmission electron microscopy energy-dispersive spectroscopic (STEM-EDS) analysis was used to confirm the presence of AuSi NS in the cytoplasm or membrane, as single NS or in clusters (22% and 52%, respectively), with the remainder (26%) sequestered in vacuoles. Cellular uptake of NS in response to SS THz radiation could have suitable applications in a vast number of biomedical applications, regenerative medicine, vaccines, cancer therapy, gene and drug delivery.


Assuntos
Neoplasias das Glândulas Suprarrenais , Nanosferas , Feocromocitoma , Humanos , Radiação Terahertz , Nanosferas/química , Síncrotrons
13.
Bioorg Chem ; 139: 106673, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37354660

RESUMO

Chemically engineered PLGA nanospheres are one of the emerging technologies for treating neurodegenerative disorders by inhibiting Catechol-O-methyltransferase (COMT). PLGA-MATPM nanospheres were chemically synthesized using PLGA and MATPM (N-allyl-N-(3-(m-tolyloxy)propyl) methioninate). The tailored PLGA nanospheres induce dose-dependent COMT inhibition in competitive kinetic mode. The interactions between COMT and PLGA nanosphere are explained by spectroscopic and molecular dynamics analysis. PLGA-MATPM NPs suppressed the growth of neuroblastoma cells due to the neurodegenerative toxicity of MPTP induction, demonstrating its potency as a cure for neurological disorders. PLGA-MATPM NPs cross the blood-brain barrier more effectively than those in the blood. Furthermore, PLGA nanospheres showed the most neurodegenerative recovery against MPTP-induced C57BL/6 mice. Using magnetic resonance imaging (MRI), it was validated for quality images of cerebral blood flow (CBF).


Assuntos
Catecol O-Metiltransferase , Nanosferas , Camundongos , Animais , Catecol O-Metiltransferase/metabolismo , Nanosferas/química , Camundongos Endogâmicos C57BL , Inibidores de Catecol O-Metiltransferase/farmacologia , Metilação
14.
J Am Chem Soc ; 145(14): 7810-7819, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37002870

RESUMO

Chiral mesoporous silica (mSiO2) nanomaterials have gained significant attention during the past two decades. Most of them show a topologically characteristic helix; however, little attention has been paid to the molecular-scale chirality of mSiO2 frameworks. Herein, we report a chiral amide-gel-directed synthesis strategy for the fabrication of chiral mSiO2 nanospheres with molecular-scale-like chirality in the silicate skeletons. The functionalization of micelles with the chiral amide gels via electrostatic interactions realizes the growth of molecular configuration chiral silica sols. Subsequent modular self-assembly results in the formation of dendritic large mesoporous silica nanospheres with molecular chirality of the silica frameworks. As a result, the resultant chiral mSiO2 nanospheres show abundant large mesopores (∼10.1 nm), high pore volumes (∼1.8 cm3·g-1), high surface areas (∼525 m2·g-1), and evident CD activity. The successful transfer of the chirality from the chiral amide gels to composited micelles and further to asymmetric silica polymeric frameworks based on modular self-assembly leads to the presence of molecular chirality in the final products. The chiral mSiO2 frameworks display a good chiral stability after a high-temperature calcination (even up to 1000 °C). The chiral mSiO2 can impart a notable decline in ß-amyloid protein (Aß42) aggregation formation up to 79%, leading to significant mitigation of Aß42-induced cytotoxicity on the human neuroblastoma line SH-ST5Y cells in vitro. This finding opens a new avenue to construct the molecular chirality configuration in nanomaterials for optical and biomedical applications.


Assuntos
Doença de Alzheimer , Nanosferas , Humanos , Nanosferas/química , Peptídeos beta-Amiloides , Dióxido de Silício/química , Micelas , Géis , Amidas
15.
Biosensors (Basel) ; 13(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36979562

RESUMO

As a biomarker, alpha-fetoprotein (AFP) is valuable for detecting some tumors in men, non-pregnant women, and children. However, the detection sensitivity in some methods needs to be improved. Therefore, developing a simple, reliable, and sensitive detection method for AFP is important for non-malignant diseases. An aptamer binding was developed based on aggregation-induced emission luminogen (AIEgen) nanosphere labeled with Fe3O4@MPTMS@AuNPs. AFP was detected with a sandwich structure of AuNPs magnetic composite particles. An aggregation-induced emission (AIE) molecule and polystyrene (PS) nanosphere complex were assembled, enhancing the fluorescence and improving the sensitivity of detection. The limit of detection (LOD) was at a given level of 1.429 pg/mL, which can best be achieved in serum samples. Finally, the results obtained showed the complex to be promising in practical applications.


Assuntos
Nanopartículas de Magnetita , Nanopartículas Metálicas , Nanocompostos , Nanosferas , alfa-Fetoproteínas/análise , alfa-Fetoproteínas/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Oligonucleotídeos/química , Nanosferas/química , Nanosferas/ultraestrutura , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Ouro/química , Humanos
16.
ACS Appl Mater Interfaces ; 15(2): 2552-2563, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36600575

RESUMO

Sonodynamic therapy (SDT) can be described as ultrasonic (US) catalysis. Adequate charge separation is considered as effective means to promote reactive oxygen species (ROS). Here, hollow CoP@N-carbon@PEG (CPCs@PEG) nanospheres (∼60 nm) are prepared as sonosensitizers, showing greater ROS generation than pure CoP@PEG under US irradiation. Both 1O2 and ·O2- are activation species that are determined by O2 and electrons. The great SDT performance of CPCs@PEG is ascribed to the heterostructure which promotes the separation and transfer for US-generated electrons and holes. In addition, holes can be further captured by endogenous glucose that is in favor of electron aggregation and ROS generation. Moreover, the consumption of glucose would decrease intracellular ATP for starvation therapy. Given the higher oxidation ability of Co3+, CPCs@PEG nanospheres possess catalase (CAT) activity to convert H2O2 into O2 for assisting ROS generation. Moreover, they also can oxidize glutathione (GSH) as a mimic GSH oxidase to break intratumor redox balance, facilitating oxidative stress. More importantly, the nanocomposites reveal good degradation ability dominated by the oxidation from insoluble phosphide into soluble phosphate, accelerating elimination via urine and feces within 14 days. CPCs@PEG nanospheres integrate the above effects not only to reveal great tumor inhibition ability but also to excite immune activation for anticancer.


Assuntos
Nanosferas , Neoplasias , Humanos , Carbono/química , Linhagem Celular Tumoral , Peróxido de Hidrogênio/química , Nanosferas/química , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo
17.
Colloids Surf B Biointerfaces ; 222: 113122, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587435

RESUMO

Controllable size, self-degradability and targeting property are important for a precise improvement of anticancer effects and reduction of side effects of drug vehicles. Here, a series of DNA nanospheres with controllable size and self-degradation ability were constructed through the hybridization of two i-motif strands and two linker strands for targeted cancer therapy. DNA nanospheres with different sizes were fabricated by regulating the linker sequence, and their pH-responsive self-degradation property was realized by the introduction of the i-motif strand. Moreover, the ZY11 aptamer was introduced to endow the DNA nanospheres with targeting property toward SMMC-7721 cancer cells. The results revealed that the appropriate size of DNA nanospheres (80 nm) highly promoted the internalization by mammalian cells. The results of DLS, AFM and CD spectra showed that the DNA nanospheres were stable in a physiological environment but they self-degraded in a slightly acidic environment due to the existence of the i-motif strand. Moreover, the fluorescence of DOX@AP-NSs2 was triple at pH = 5.0 than at pH = 7.4, which further confirmed the pH-responsive drug release performance. The above results proved that the use of DOX@AP-NSs2 is a promising approach to accelerate the rapid release of drugs into the tumors and avoid drug leakage into the normal tissue. The results at a cellular level and in vivo confirmed the pH-responsive targeted antitumor effect. Hence, the novel DNA nanospheres with controllable size and self-degradable property represent a potential tool for targeted drug delivery and cancer therapy.


Assuntos
Nanosferas , Neoplasias , Animais , Humanos , Doxorrubicina/química , Nanosferas/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , DNA/química , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos , Mamíferos
18.
ACS Appl Bio Mater ; 6(2): 722-732, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36626248

RESUMO

The rational design of cancer theranostics with natural diagnostic information and therapeutic behavior has been considered to be a big challenge, since common theranostics from photothermal and photodynamic therapy need to be activated with external stimuli of photoirradiation to enable the chemotherapeutic effects. In this contribution, we have designed and synthesized a series of simple theranostic agents, TPA-N-n (n = 4, 8, 12), which could accumulate at the tumor site over 48 h and indicate superior antiproliferative performance in vivo. TPA-N-n was constructed with electron donor triphenylamine-acceptor benzothiadiazole-mitochondria-targeting moiety pyridinium. Complex TPA-N-8 indicated the best cytotoxicity to cancerous HeLa cells, with an IC50 value of 4.3 µM, and could self-assemble to a nanosphere with a size of 161.2 nm in the DMSO/PBS solution. It is worth noting that TPA-N-8 could accumulate in the mitochondria and produce major ROS species O2•- and OH• as well as small amounts of 1O2 without photoirradiation. Oxidative DNA damage is initiated due to the imbalance of intracellular redox homeostasis from the significant ROS storm. Multimodal synergistic therapy for HeLa cells was activated, as the PINK1-mediated mitophagy from the damaged mitochondria and DNA damage responsive (DDR) induced necroptosis and autophagy. This work not only provided a successful D-A type theranostic agent with superior anticancer performance from multimodal synergistic therapy but also further demonstrated the high efficacy of a mitochondria-targeting strategy for cancer treatment.


Assuntos
Mitocôndrias , Nanosferas , Neoplasias , Humanos , Células HeLa , Mitocôndrias/efeitos dos fármacos , Nanosferas/química , Nanosferas/uso terapêutico , Neoplasias/tratamento farmacológico , Medicina de Precisão/métodos , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo
19.
J Colloid Interface Sci ; 637: 225-236, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36701868

RESUMO

Multimodal therapies have aroused great interest in tumor therapy due to their highly effective antitumor effect. However, immune clearance limits the practical application of nanoagents-based multimodal therapies. To solve this problem, we have designed hemoporfin-Cu9S8 hollow nanospheres camouflaged with the CT26 cell membrane (CCM) as a model of multifunctional agents, achieving homologous-targeted synergistic photothermal therapy (PTT) and sonodynamic therapy (SDT). Hollow Cu9S8 as photothermal agents and carriers have been obtained through sulfurizing cuprous oxide (Cu2O) nanoparticles through "Kirkendall effect", and they exhibit hollow nanospheres structure with a size of ∼200 nm. Then, Cu9S8 nanospheres could be used to load with hemoporfin sonosensitizers, and then hemoporfin-Cu9S8 nanospheres (abbreviated as H-Cu9S8) can be further surface-camouflaged with CCM. H-Cu9S8@CCM nanospheres exhibit a broad photoabsorption in the range of 700-1100 nm and high photothermal conversion efficiency of 39.8% under 1064 nm laser irradiation for subsequent PTT. In addition, under the excitation of ultrasound, the loaded hemoporfin could generate 1O2 for subsequent SDT. Especially, H-Cu9S8@CCM NPs are featured with biocompatibility and homologous targeting capacity. When intravenously (i.v.) injected into mice, H-Cu9S8@CCM NPs display a higher blood circulation half-life (3.17 h, 6.47 times) and tumor accumulation amount (18.75% ID/g, 1.94 times), compared to H-Cu9S8 NPs (0.49 h, 9.68% ID/g) without CCM. In addition, upon 1064 nm laser and ultrasound irradiation, H-Cu9S8@CCM NPs can inhibit tumor growth more efficiently due to high accumulation efficiency and synergistic PTT-SDT functions. Therefore, the present study provides some insight into the design of multifunctional efficient agents for homotypic tumor-targeted therapy.


Assuntos
Nanopartículas , Nanosferas , Neoplasias , Animais , Camundongos , Neoplasias/terapia , Fototerapia , Nanopartículas/química , Nanosferas/química , Membrana Celular , Linhagem Celular Tumoral
20.
Molecules ; 27(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36431921

RESUMO

The in vitro diagnostics of cancer are not represented well yet, but the need for early-stage detection is undeniable. In recent decades, surface-enhanced Raman spectroscopy (SERS) has emerged as an efficient, adaptable, and unique technique for the detection of cancer molecules in their early stages. Herein, we demonstrate an opto-plasmonic hybrid structure for sensitive detection of the prostate cancer biomarker sarcosine using silica nanospheres coated silver nano-islands as a facile and efficient SERS active substrate. The SERS active platform has been developed via thin (5-15 nm) deposition of silver islands using a simple and cost-effective Radio Frequency (RF) sputtering technique followed by the synthesis and decoration of silica nanospheres (~500 nm) synthesized via Stober's method. It is anticipated that the coupling of Whispering Gallery Modes and photonic nano-jets in SiO2 nanospheres induce Localized Surface Plasmon Resonance (LSPR) in Ag nano-islands, which is responsible for the SERS enhancement. The as-fabricated SERS active platform shows a linear response in the physiological range (10 nM to 100 µM) and an extremely low limit of detection (LOD) of 1.76 nM with a correlation coefficient of 0.98 and enhancement factor ~2 × 107. The findings suggest that our fabricated SERS platform could be potentially used for the rapid detection of bio-chemical traces with high sensitivity.


Assuntos
Nanopartículas Metálicas , Nanosferas , Neoplasias , Humanos , Masculino , Nanosferas/química , Próstata , Dióxido de Silício/química , Biomarcadores Tumorais , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA