Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 313: 122788, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39236628

RESUMO

Drug resistance is a significant challenge in cancer chemotherapy and is a primary factor contributing to poor recovery for cancer patients. Although drug-loaded nanoparticles have shown promise in overcoming chemotherapy resistance, they often carry a combination of drugs and require advanced design and manufacturing processes. Furthermore, they seldom approach chemotherapy-resistant tumors from an immunotherapy perspective. In this study, we developed a therapeutic nanovaccine composed solely of chemotherapy-induced resistant tumor antigens (CIRTAs) and the immune adjuvant Toll-like receptor (TLR) 7/8 agonist R848 (CIRTAs@R848). This nanovaccine does not require additional carriers and has a simple production process. It efficiently delivers antigens and immune stimulants to dendritic cells (DCs) simultaneously, promoting DCs maturation. CIRTAs@R848 demonstrated significant tumor suppression, particularly when used in combination with the immune checkpoint blockade (ICB) anti-PD-1 (αPD-1). The combined therapy increased the infiltration of T cells into the tumor while decreasing the proportion of regulatory T cells (Tregs) and modulating the tumor microenvironment, resulting in long-term immune memory. Overall, this study introduces an innovative strategy for treating chemotherapy-resistant tumors from a novel perspective, with potential applications in personalized immunotherapy and precision medicine.


Assuntos
Vacinas Anticâncer , Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Imunoterapia , Nanopartículas , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Desoxicitidina/farmacologia , Animais , Imunoterapia/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Nanopartículas/química , Camundongos , Humanos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Feminino , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Antígenos de Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Nanovacinas
2.
J Extracell Vesicles ; 13(10): e12524, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39400457

RESUMO

Bacterial infections, especially those caused by multidrug-resistant pathogens, pose a significant threat to public health. Vaccines are a crucial tool in fighting these infections; however, no clinically available vaccine exists for the most common bacterial infections, such as those caused by Pseudomonas aeruginosa. Herein, a multiantigenic antibacterial nanovaccine (AuNP@HMV@SPs) is reported to combat P. aeruginosa infections. This nanovaccine utilizes the hybrid membrane vesicles (HMVs) created by fusing macrophage membrane vesicles (MMVs) with bacterial outer membrane vesicles (OMVs). The HMVs mitigate the toxic effects of both OMVs and bacterial secreted toxins (SP) adsorbed on the surface of MMVs, while preserving their stimulating properties. Gold nanoparticles (AuNPs) are utilized as adjuvant to enhance immune response without comprising safety. The nanovaccine AuNP@HMV@SPs induces robust humoral and cellular immune responses, leading to destruction of bacterial cells and neutralization of their secreted toxins. In murine models of septicemia and pneumonia caused by P. aeruginosa, AuNP@HMV@SPs exhibits superior prophylactic efficacy compared to control groups including OMVs, or MMVs@SPs and HMV@SPs, achieving 100% survival in septicemia and > 99.9% reduction in lung bacterial load in pneumonia. This study highlights AuNP@HMV@SPs as a safe and effective antibacterial nanovaccine, targeting both bacteria and their secreted toxins, and offers a promising platform for developing multiantigenic antibacterial vaccines against multidrug-resistant pathogens.


Assuntos
Ouro , Nanopartículas Metálicas , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/efeitos dos fármacos , Camundongos , Ouro/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Vesículas Extracelulares/imunologia , Vacinas Bacterianas/imunologia , Feminino , Membrana Externa Bacteriana/imunologia , Macrófagos/imunologia , Nanovacinas
3.
Nat Commun ; 15(1): 8121, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284814

RESUMO

Inducing high levels of antigen-specific CD8α+ T cells in the tumor is beneficial for cancer immunotherapy, but achieving this in a safe and effective manner remains challenging. Here, we have developed a designer liposomal nanovaccine containing a sonosensitizer (LNVS) to efficiently program T cell immunity in mice. Following intravenous injection, LNVS accumulates in the spleen in a protein corona and fluidity-dependent manner, leading to greater frequencies of antigen-specific CD8α+ T cells than soluble vaccines (the mixture of antigens and adjuvants). Meanwhile, some LNVS passively accumulates in the tumor, where it responds to ultrasound (US) to increase the levels of chemokines and adhesion molecules that are beneficial for recruiting CD8α+ T cells to the tumor. LNVS + US induces higher levels of intratumoral antitumor T cells than traditional sonodynamic therapy, regresses established mouse MC38 tumors and orthotopic cervical cancer, and protects cured mice from relapse. Our platform sheds light on the importance of tuning the fluidity and protein corona of naovaccines to program T cell immunity in mice and may inspire new strategies for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Vacinas Anticâncer , Imunoterapia , Lipossomos , Camundongos Endogâmicos C57BL , Animais , Lipossomos/química , Camundongos , Feminino , Imunoterapia/métodos , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Linhagem Celular Tumoral , Nanopartículas/química , Neoplasias/imunologia , Neoplasias/terapia , Humanos , Nanovacinas
4.
Adv Mater ; 36(41): e2408090, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39221522

RESUMO

This study aimed to develop an intranasal nanovaccine by combining chiral nanoparticles with the RSV pre-fusion protein (RSV protein) to create L-nanovaccine (L-Vac). The results showed that L-NPs increased antigen attachment in the nasal cavity by 3.83 times and prolonged its retention time to 72 h. In vivo experimental data demonstrated that the intranasal immunization with L-Vac induced a 4.86-fold increase in secretory immunoglobulin A (sIgA) secretion in the upper respiratory tract, a 1.85-fold increase in the lower respiratory tract, and a 20.61-fold increase in RSV-specific immunoglobin G (IgG) titer levels in serum, compared with the commercial Alum Vac, while the neutralizing activity against the RSV authentic virus is 1.66-fold higher. The mechanistic investigation revealed that L-Vac activated the tumor necrosis factor (TNF) signaling pathway in nasal epithelial cells (NECs), in turn increasing the expression levels of interleukin-6 (IL-6) and C-C motif chemokine ligand 20 (CCL20) by 1.67-fold and 3.46-fold, respectively, through the downstream nuclear factor kappa-B (NF-κB) signaling pathway. Meanwhile, CCL20 recruited dendritic cells (DCs) and L-Vac activated the Toll-like receptor signaling pathway in DCs, promoting IL-6 expression and DCs maturation, and boosted sIgA production and T-cell responses. The findings suggested that L- Vac may serve as a candidate for the development of intranasal medicine against various types of respiratory infections.


Assuntos
Administração Intranasal , Nanopartículas , Animais , Nanopartículas/química , Camundongos , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/fisiologia , Antivirais/química , Antivirais/farmacologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/imunologia , NF-kappa B/metabolismo , Humanos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vacinas contra Vírus Sincicial Respiratório/química , Imunoglobulina A Secretora/metabolismo , Imunoglobulina G , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos , Interleucina-6/metabolismo , Nanovacinas
5.
Int J Nanomedicine ; 19: 9437-9458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290859

RESUMO

Background: Tumor vaccines have achieved remarkable progress in treating patients with various tumors in clinical studies. Nevertheless, extensive research has also revealed that tumor vaccines are not up to expectations for the treatment of solid tumors due to their low immunogenicity. Therefore, there is an urgent need to design a tumor vaccine that can stimulate a broad anti-tumor immune response. Methods: In this work, we developed a nanovaccine (NP-TCL@APS), which includes nanoparticles loaded with colorectal cancer tumor cell lysates (TCL) and Astragalus polysaccharides (APS) into poly (lactic-co-glycolic acid) to induce a robust innate immune response. The NP-TCL@APS was identified by transmission electron microscopy and Malvern laser particle size analyzer. The killing and immune activation effects of NP-TCL@APS were evaluated in vitro. Finally, safety and anti-tumor efficacy were evaluated in the colorectal cancer tumor-bearing mouse model. Results: We found that NP-TCL@APS was preferentially uptaken by DC and further promoted the activation of DC in vitro. Additionally, nanoparticles codelivery of TCL and APS enhanced the antigen-specific CD8+ T cell response and suppressed the growth of tumors in mouse models with good biocompatibility. Conclusion: We successfully prepared a nanovaccine termed NP-TCL@APS, which can promote the maturation of DC and induce strong responses by T lymphocytes to exert anti-tumor effects. The strategy proposed here is promising for generating a tumor vaccine and can be extended to various types of cancers.


Assuntos
Vacinas Anticâncer , Neoplasias Colorretais , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polissacarídeos , Neoplasias Colorretais/terapia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/tratamento farmacológico , Animais , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Humanos , Camundongos , Nanopartículas/química , Linhagem Celular Tumoral , Astrágalo/química , Camundongos Endogâmicos BALB C , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Feminino , Nanovacinas
6.
ACS Nano ; 18(35): 24219-24235, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39172516

RESUMO

Fibrosarcoma, a malignant mesenchymal tumor, is characterized by aggressive invasiveness and a high recurrence rate, leading to poor prognosis. Anthracycline drugs, such as doxorubicin (DOX), represent the frontline chemotherapy for fibrosarcoma, but often exhibit suboptimal efficacy. Recently, exploiting the stimulator of interferon genes (STING)-mediated innate immunity has emerged as a hopeful strategy for cancer treatment. Integrating chemotherapy with immunomodulators in chemo-immunotherapy has shown potential for enhancing treatment outcomes. Herein, we introduce an advanced dendritic cell (DC) nanovaccine, cGAMP@PLGA@CRTM (GP@CRTM), combined with low-dose DOX to enhance fibrosarcoma chemo-immunotherapy. The nanovaccine consists of poly(lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating the STING agonist 2,3-cGAMP (cGAMP@PLGA, GP) as its core, and a calreticulin (CRT) high-expressing fibrosarcoma cell membrane (CRTM) as the shell. Exposing CRT on the vaccine surface aids in recruiting DCs and stimulating uptake, facilitating efficient simultaneous delivery of STING agonists and tumor antigens to DCs. This dual delivery method effectively activates the STING pathway in DCs, triggering sustained immune stimulation. Simultaneously, low-dose DOX reduces chemotherapy-related side effects, directly kills a subset of tumor cells, and increases tumor immunogenicity, thus further amplifying immune therapeutic performance. Hence, these findings demonstrate the potential of DC nanovaccine GP@CRTM as a booster for chemotherapy. Synergistically combining low-dose DOX with the DC nanovaccine emerges as a powerful chemo-immunotherapy strategy, optimizing systemic fibrosarcoma therapy.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Doxorrubicina , Fibrossarcoma , Nanopartículas , Nucleotídeos Cíclicos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/patologia , Fibrossarcoma/imunologia , Fibrossarcoma/terapia , Animais , Doxorrubicina/farmacologia , Doxorrubicina/química , Camundongos , Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/farmacologia , Nanopartículas/química , Vacinas Anticâncer/imunologia , Humanos , Proteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Camundongos Endogâmicos C57BL , Imunoterapia , Calreticulina/metabolismo , Nanovacinas
7.
J Control Release ; 374: 325-336, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154934

RESUMO

mRNA-based vaccines symbolize a new paradigm shift in personalized medicine for the treatment of infectious and non-infectious diseases. However, the reactogenicity associated with the currently approved formulations limits their applicability in autoinflammatory disorders, such as tumour therapeutics. In this study, we present a delivery system showing controlled immunogenicity and minimal non-specific inflammation, allowing for selective delivery of mRNA to antigen presenting cells (APCs) within the medullary region of the lymph nodes. Our platform offers precise control over the trafficking of nanoparticles within the lymph nodes by optimizing stealth and targeting properties, as well as the subsequent opsonization process. By targeting specific cells, we observed a potent adaptive and humoral immune response, which holds promise for preventive and therapeutic anti-tumoral vaccines. Through spatial programming of nanoparticle distribution, we can promote robust immunization, thus improving and expanding the utilization of mRNA vaccines. This innovative approach signifies a remarkable step forward in the field of targeted nanomedicine.


Assuntos
Linfonodos , Camundongos Endogâmicos C57BL , Nanopartículas , RNA Mensageiro , Linfonodos/imunologia , Animais , RNA Mensageiro/administração & dosagem , Nanopartículas/química , Nanopartículas/administração & dosagem , Feminino , Vacinas de mRNA , Células Apresentadoras de Antígenos/imunologia , Humanos , Camundongos , Vacinas/administração & dosagem , Vacinas/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Nanovacinas
8.
Adv Mater ; 36(40): e2407189, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39171954

RESUMO

Hematological malignancies (HM) like acute myeloid leukemia (AML) are often intractable. Cancer vaccines possibly inducing robust and broad anti-tumor immune responses may be a promising treatment option for HM. Few effective vaccines against blood cancers are, however, developed to date partly owing to insufficient stimulation of dendritic cells (DCs) in the body and lacking appropriate tumor antigens (Ags). Here it is found that systemic multifunctional nanovaccines consisting of nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and Toll-like receptor 9 (TLR9) agonists - muramyl dipeptide (MDP) and CpG, and tumor cell lysate (TCL) as Ags (MCA-NV) induce potent and broad immunity against AML. MCA-NV show complementary stimulation of DCs and prime homing to lymphoid organs following systemic administration. Of note, in orthotopic AML mouse models, intravenous infusion of different vaccine formulations elicits substantially higher anti-AML efficacies than subcutaneous administration. Systemic MCA-NV cure 78% of AML mice and elicit long-term immune memory with 100% protection from rechallenging AML cells. Systemic MCA-NV can also serve as prophylactic vaccines against the same AML. These systemic nanovaccines utilizing patient TCL as Ags and dual adjuvants to elicit strong, durable, and broad immune responses can provide a personalized immunotherapeutic strategy against AML and other HM.


Assuntos
Vacinas Anticâncer , Imunoterapia , Leucemia Mieloide Aguda , Medicina de Precisão , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/imunologia , Animais , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Camundongos , Humanos , Nanopartículas/química , Células Dendríticas/imunologia , Linhagem Celular Tumoral , Antígenos de Neoplasias/imunologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Nanovacinas
9.
Adv Mater ; 36(40): e2409590, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39194369

RESUMO

Personalized cancer vaccines based on tumor cell lysates offer promise for cancer immunotherapy yet fail to elicit a robust therapeutic effect due to the weak immunogenicity of tumor antigens. Autophagosomes, obtained from pleural effusions and ascites of cancer patients, have been identified as abundant reservoirs of tumor neoantigens that exhibit heightened immunogenicity. However, their potential as personalized cancer vaccines have been constrained by suboptimal lymphatic-targeting performances and challenges in antigen-presenting cell endocytosis. Here,a reinforced biomimetic autophagosome-based (BAPs) nanovaccine generated by precisely amalgamating autophagosome-derived neoantigens and two types of adjuvants capable of targeting lymph nodes is developed to potently elicit antitumor immunity. The redox-responsive BAPs facilitate cytosolic vaccine opening within antigen-presenting cells, thereby exposing adjuvants and antigens to stimulate a strong immune response. BAPs evoke broad-spectrum T-cell responses, culminating in the effective eradication of 71.4% of established tumors. Notably, BAPs vaccination triggers enduring T-cell responses that confer robust protection, with 100% of mice shielded against tumor rechallenge and a significant reduction in tumor incidence by 87.5%. Furthermore, BAPs synergize with checkpoint blockade therapy to inhibit tumor growth in the poorly immunogenic breast cancer model. The biomimetic approach presents a powerful nanovaccine formula with high versatility for personalized cancer immunotherapy.


Assuntos
Autofagossomos , Materiais Biomiméticos , Vacinas Anticâncer , Animais , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Vacinas Anticâncer/administração & dosagem , Camundongos , Materiais Biomiméticos/química , Autofagossomos/metabolismo , Linhagem Celular Tumoral , Humanos , Imunoterapia , Feminino , Antígenos de Neoplasias/imunologia , Nanopartículas/química , Adjuvantes Imunológicos/química , Biomimética/métodos , Nanovacinas
10.
ACS Nano ; 18(37): 25826-25840, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39196858

RESUMO

Engineering nanovaccines capable of targeting dendritic cells (DCs) is desperately required to maximize antigen cross-presentation to effector immune cells, elicit strong immune responses, and avoid adverse reactions. Here, we showed that glucose transporter 1 (Glut-1) on DCs is a reliable target for delivering antigens to DCs, and thus, a versatile antigen delivery strategy using glucosylated nanovaccines was developed for DC-targeted antigen delivery and tumor immunotherapy. The developed glucosylated ovalbumin-loaded nanovaccines highly accumulated in lymph nodes and efficiently engaged with Glut-1 on DCs to accelerate intracellular antigen delivery and promote DC maturation and antigen presentation, which elicited potent antitumor immunity to prevent and inhibit ovalbumin-expressing melanoma. Moreover, immunotherapeutic experiments in DC- and macrophage-depleted animal models confirmed that the glucosylated nanovaccines functioned mainly through DCs. In addition, the neoantigen-delivering glucosylated nanovaccines were further engineered to elicit tumor-specific immune responses against MC38 tumors. This study offers a DC-targeted antigen delivery strategy for cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Imunoterapia , Camundongos Endogâmicos C57BL , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Vacinas Anticâncer/administração & dosagem , Camundongos , Ovalbumina/imunologia , Ovalbumina/química , Nanopartículas/química , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/química , Feminino , Apresentação de Antígeno/imunologia , Linhagem Celular Tumoral , Humanos , Nanovacinas
11.
Front Immunol ; 15: 1423212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136021

RESUMO

Background: Nanovaccine treatment is an exciting area of research in immunology and personalized medicine, holding great promise for enhancing immune responses and targeting specific diseases. Their small size allows efficient uptake by immune cells, leading to robust immune activation. They can incorporate immune-stimulating molecules to boost vaccine efficacy. Therefore, nanovaccine can be personalized to target tumor-specific antigens, activating the immune system against cancer cells. Currently, there have been ample evidence showing the effectiveness and potential of nanovaccine as a treatment for cancer. However, there was rare bibliometric analysis of nanovaccine for cancer. Here we performed a bibliometric and visual analysis of published studies related to nanovaccine treatment for cancer, providing the trend of future development of nanovaccine. Methods: We collected the literatures based on the Web of Science Core Collection SCI-Expanded database. The bibliometric analysis was performed via utilizing visualization analysis tools VOSviewer, Co-Occurrence (COOC), Citespace, Bibliometrix (R-Tool of R-Studio), and HitCite. Results: A total of 517 literatures were included in this study. China is the country with the most publications and the highest total local citation score (TLCS). The Chinese Academy of Sciences holds the largest research count in this field and the most prolific author is Deling Kong from Nankai University. The most prominent journal for publishing in this area is Biomaterials. The researches mainly focus on the therapeutic process of tumor nanovaccines, the particle composition and the application of nanovaccines, suggesting the potential hotspots and trends of nanovaccine. Conclusion: In this study, we summarized the characteristics and variation trends of publications involved in nanovaccine, and categorized the most influential countries, institutions, authors, journals, hotspots and trends regarding the nanovaccine for cancer. With the continuous development of nanomaterials and tumor immunotherapy, nanovaccine for cancer provides a research field of significant clinical value and potential application.


Assuntos
Bibliometria , Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Nanopartículas , Animais , Nanovacinas
12.
Drug Dev Res ; 85(5): e22244, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39138855

RESUMO

Nanovaccines have been designed to overcome the limitations associated with conventional vaccines. Effective delivery methods such as engineered carriers or smart nanoparticles (NPs) are critical requisites for inducing self-tolerance and optimizing vaccine immunogenicity with minimum side effects. NPs can be used as adjuvants, immunogens, or nanocarriers to develop nanovaccines for efficient antigen delivery. Multiloaded nanovaccines carrying multiple tumor antigens along with immunostimulants can effectively increase immunity against tumor cells. They can be biologically engineered to boost interactions with dendritic cells and to allow a gradual and constant antigen release. Modifying NPs surface properties, using high-density lipoprotein-mimicking nanodiscs, and developing nano-based artificial antigen-presenting cells such as dendritic cell-derived-exosomes are amongst the new developed technologies to enhance antigen-presentation and immune reactions against tumor cells. The present review provides an overview on the different perspectives, improvements, and barriers of successful clinical application of current cancer therapeutic and vaccination options. The immunomodulatory effects of different types of nanovaccines and the nanoparticles incorporated into their structure are described. The advantages of using nanovaccines to prevent and treat common illnesses such as AIDS, malaria, cancer and tuberculosis are discussed. Further, potential paths to develop optimal cancer vaccines are described. Given the immunosuppressive characteristics of both cancer cells and the tumor microenvironment, applying immunomodulators and immune checkpoint inhibitors in combination with other conventional anticancer therapies are necessary to boost the effectiveness of the immune response.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Imunoterapia , Nanopartículas , Neoplasias , Humanos , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Nanopartículas/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/administração & dosagem , Animais , Terapia Combinada , Sistemas de Liberação de Medicamentos/métodos , Nanovacinas
13.
J Nanobiotechnology ; 22(1): 483, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138475

RESUMO

The mortality of ovarian cancer (OC) has long been the highest among gynecological malignancies. Although OC is considered to be an immunogenic tumor, the effect of immunotherapy is not satisfactory. The immunosuppressive microenvironment is one reason for this, and the absence of recognized effective antigens for vaccines is another. Chemotherapy, as one of the most commonly used treatment for OC, can produce chemotherapy-associated antigens (CAAs) during treatment and show the effect of in situ vaccine. Herein, we designed an antigen capture nano-vaccine NP-TP1@M-M with tumor targeting peptide TMTP1 and dendritic cell (DC) receptor mannose assembled on the surface and adjuvant monophosphoryl lipid A (MPLA) encapsulated in the core of poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles. PLGA itself possessed the ability of antigen capture. TMTP1 was a tumor-homing peptide screened by our research team, which held extensive and excellent tumor targeting ability. After these modifications, NP-TP1@M-M could capture and enrich more tumor-specific antigens after chemotherapy, stimulate DC maturation, activate the adaptive immunity and combined with immune checkpoint blockade to maximize the release of the body's immune potential, providing an eutherapeutic strategy for the treatment of OC.


Assuntos
Antígenos de Neoplasias , Antígeno B7-H1 , Vacinas Anticâncer , Nanopartículas , Neoplasias Ovarianas , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Animais , Camundongos , Vacinas Anticâncer/uso terapêutico , Nanopartículas/química , Linhagem Celular Tumoral , Antígenos de Neoplasias/imunologia , Humanos , Células Dendríticas/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Lipídeo A/análogos & derivados , Lipídeo A/química , Lipídeo A/farmacologia , Imunoterapia/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Endogâmicos BALB C , Inibidores de Checkpoint Imunológico/farmacologia , Nanovacinas
14.
Nano Lett ; 24(33): 10114-10123, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39109634

RESUMO

Personalized cancer vaccines targeting specific neoantigens have been envisioned as one of the most promising approaches in cancer immunotherapy. However, the physicochemical variability of the identified neoantigens limits their efficacy as well as vaccine manufacturing in a uniform format. Herein, we developed a uniform nanovaccine platform based on poly(2-oxazoline)s (POx) to chemically conjugate neoantigen peptides, regardless of their physicochemical properties. This vaccine system could self-assemble into nanoparticles with uniform size (around 50 nm) and improve antigen accumulation as well as infiltration in the lymph node to increase antigen presentation. In vivo vaccination using this system conjugated with three predicted peptide neoantigen peptides from the MC38 tumor cell line induced 100% robust CD8+ T cell responses and superior tumor clearance compared to free peptides. This POx-based vaccine carrier represents a generalizable approach to increase the availability and efficacy of screened neoantigen peptides for a personalized cancer vaccine.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Nanopartículas , Peptídeos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/química , Peptídeos/química , Peptídeos/imunologia , Animais , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/química , Camundongos , Nanopartículas/química , Humanos , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Oxazóis/química , Polímeros/química , Imunoterapia/métodos , Nanovacinas
15.
J Control Release ; 373: 358-369, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009083

RESUMO

Cancer vaccines based on single-source (exogenous or endogenous) tumor-associated antigens (TAAs) are often challenged by the insufficient T cell response and the immunosuppressive tumor microenvironment (TME). Herein, a dual TAAs-boosted nanovaccine based on cancer cell (4T1) membrane-cloaked, CO-immobilized Prussian blue nanoparticles (4T1-PB-CO NPs) is developed and coupled with anti-interleukin (IL)-10 therapy to maximize the efficacy of antitumor immunotherapy. 4T1 cell membrane not only endows NPs with tumor targeting ability, but also serves as exogenous TAAs to trigger CD4+ T cell response and M1-phenotype polarization of tumor-associated macrophages. Under near-infrared light irradiation, 4T1-PB-CO NPs release CO to induce immunogenic cell death (ICD) of tumor cells, thus generating endogenous TAAs to activate CD8+ T cell response. Meanwhile, ICD triggers release of damage-associated molecular patterns, which can promote DC maturation to amplify the antitumor T cell response. When combined with anti-IL-10 that reverses the immunosuppressive TME, 4T1-PB-CO NPs efficiently suppress the primary tumors and produce an abscopal effect to inhibit distant tumors in a breast tumor-bearing mouse model. Such a two-pronged cancer vaccine represents a promising paradigm for robust antitumor immunotherapy.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Camundongos Endogâmicos BALB C , Nanopartículas , Microambiente Tumoral , Animais , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Nanopartículas/química , Nanopartículas/administração & dosagem , Feminino , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ferrocianetos/química , Interleucina-10/imunologia , Camundongos , Imunoterapia/métodos , Linfócitos T CD8-Positivos/imunologia , Nanovacinas
16.
J Control Release ; 373: 568-582, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067792

RESUMO

Cancer vaccine is regarded as an effective immunotherapy approach mediated by dendritic cells (DCs) which are crucial for antigen presentation and the initiation of adaptive immune responses. However, lack of DC-targeting properties significantly hampers the efficacy of cancer vaccines. Here, by using the phage display technique, peptides targeting the endocytic receptor DEC-205 primarily found on cDC1s were initially screened. An optimized hydrolysis-resistant peptide, hr-8, was identified and conjugated to PLGA-loaded antigen (Ag) and CpG adjuvant nanoparticles, resulting in a DC-targeting nanovaccine. The nanovaccine hr-8-PLGA@Ag/CpG facilitates dendritic cell maturation and improves antigen cross-presentation. The nanovaccine can enhance the antitumor immune response mediated by CD8+ T cells by encapsulating the nanovaccine with either exogenous OVA protein antigen or endogenous gp100/E7 antigenic peptide. As a result, strong antitumor effects are observed in both anti-PD-1 responsive B16-OVA and anti-PD-1 non-responsive B16 and TC1 immunocompetent tumor models. In summary, this study presents the initial documentation of a nanovaccine that targets dendritic cells via the novel DEC-205 binding peptide. This approach offers a new method for developing cancer vaccines that can potentially improve the effectiveness of cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Imunoterapia , Lectinas Tipo C , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor , Nanopartículas , Peptídeos , Receptores de Superfície Celular , Células Dendríticas/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Animais , Lectinas Tipo C/imunologia , Receptores de Superfície Celular/imunologia , Imunoterapia/métodos , Nanopartículas/química , Peptídeos/química , Peptídeos/administração & dosagem , Antígenos de Histocompatibilidade Menor/imunologia , Linhagem Celular Tumoral , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Feminino , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Camundongos , Antígenos CD/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Linfócitos T CD8-Positivos/imunologia , Nanovacinas
17.
Vet Microbiol ; 296: 110198, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067145

RESUMO

Senecavirus A (SVA) is a causative agent that can cause vesicular disease in swine, which causes a great threat to the swine husbandry in the world. Therefore, it is necessary to develop a vaccine that can effectively prevent the spread of SVA. In this study, we developed a 24-polymeric nano-scaffold using ß-annulus peptide from tomato bushy effect virus (TBSV) by coupling this antigen to SVA B cell epitope VP121-26 and VP2 proteins via linkers, respectively. The SVA-based nanoparticle protein of the VP1(B)-ß-VP2 was expressed and purified by low-cost prokaryotic system to prepare a SVA nanoparticle vaccine. The immunological protective effect of SVA nanoparticle vaccine was evaluated in mouse and swine models, respectively. The results suggested that both mice and swine could induce high levels SVA neutralizing antibodies and IgG antibodies after two doses immunization. In addition, the swine challenge protection experiment showed that the protection rate of immune SVA nanoparticle vaccine and SVA inactivated vaccine both were 80 %, while the negative control had no protection effect. It demonstrated that SVA nanoparticle vaccine effectively prevented SVA infection in swine. In summary, the preparation of SVA vaccine by using ß-annulus peptide is a promising candidate vaccine for prevent SVA transmission, and provides a new idea for the development of novel SVA vaccines.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Nanovacinas , Infecções por Picornaviridae , Picornaviridae , Doenças dos Suínos , Vacinas Virais , Animais , Feminino , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Proteínas do Capsídeo/imunologia , Camundongos Endogâmicos BALB C , Nanovacinas/administração & dosagem , Nanovacinas/imunologia , Picornaviridae/imunologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/prevenção & controle , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Proteínas Estruturais Virais/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem
18.
Front Immunol ; 15: 1419634, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081325

RESUMO

Herpes zoster (HZ), also known as shingles, remains a significant global health issue and most commonly seen in elderly individuals with an early exposure history to varicella-zoster virus (VZV). Currently, the licensed vaccine Shingrix, which comprises a recombinant VZV glycoprotein E (gE) formulated with a potent adjuvant AS01B, is the most effective shingles vaccine on the market. However, undesired reactogenicity and increasing global demand causing vaccine shortage, prompting the development of novel shingles vaccines. Here, we developed novel vaccine candidates utilising multiple nanoparticle (NP) platforms to display the recombinant gE antigen, formulated in an MF59-biosimilar adjuvant. In naïve mice, all tested NP vaccines induced higher humoral and cellular immune responses than Shingrix, among which, the gEM candidate induced the highest cellular response. In live attenuated VZV (VZV LAV)-primed mouse and rhesus macaque models, the gEM candidate elicited superior cell-mediated immunity (CMI) over Shingrix. Collectively, we demonstrated that NP technology remains a suitable tool for developing shingles vaccine, and the reported gEM construct is a highly promising candidate in the next-generation shingles vaccine development.


Assuntos
Vacina contra Herpes Zoster , Herpesvirus Humano 3 , Imunidade Celular , Nanopartículas , Proteínas do Envelope Viral , Animais , Camundongos , Herpesvirus Humano 3/imunologia , Proteínas do Envelope Viral/imunologia , Vacina contra Herpes Zoster/imunologia , Vacina contra Herpes Zoster/administração & dosagem , Macaca mulatta , Herpes Zoster/prevenção & controle , Herpes Zoster/imunologia , Feminino , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Adjuvantes Imunológicos/administração & dosagem , Humanos , Antígenos Virais/imunologia , Imunogenicidade da Vacina , Camundongos Endogâmicos BALB C , Nanovacinas
19.
Viruses ; 16(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38932282

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) presents a significant threat to the global swine industry. The development of highly effective subunit nanovaccines is a promising strategy for preventing PRRSV variant infections. In this study, two different types of ferritin (Ft) nanovaccines targeting the major glycoprotein GP5, named GP5m-Ft and (Bp-IVp)3-Ft, were constructed and evaluated as vaccine candidates for PRRSV. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) demonstrated that both purified GP5m-Ft and (Bp-IVp)3-Ft proteins could self-assemble into nanospheres. A comparison of the immunogenicity of GP5m-Ft and (Bp-IVp)3-Ft with an inactivated PRRSV vaccine in BALB/c mice revealed that mice immunized with GP5m-Ft exhibited the highest ELISA antibody levels, neutralizing antibody titers, the lymphocyte proliferation index, and IFN-γ levels. Furthermore, vaccination with the GP5m-Ft nanoparticle effectively protected piglets against a highly pathogenic PRRSV challenge. These findings suggest that GP5m-Ft is a promising vaccine candidate for controlling PRRS.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Ferritinas , Camundongos Endogâmicos BALB C , Nanopartículas , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas do Envelope Viral , Vacinas Virais , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Ferritinas/imunologia , Suínos , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Nanopartículas/química , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Feminino , Interferon gama/metabolismo , Nanovacinas
20.
Drug Resist Updat ; 75: 101098, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833804

RESUMO

Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.


Assuntos
Células Apresentadoras de Antígenos , Vacinas Anticâncer , Imunoterapia , Nanopartículas , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia/métodos , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Nanopartículas/administração & dosagem , Células Apresentadoras de Antígenos/imunologia , Biomimética/métodos , Materiais Biomiméticos/administração & dosagem , Animais , Lipossomos , Nanovacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA