Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 24(1): 346, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354554

RESUMO

BACKGROUND: Nanostructured materials used have unique properties and many uses in nanotechnology. The most striking of these is using herbal compounds for the green synthesis of nanoparticles. Among the nanoparticle types used for green synthesis, gold nanoparticles (AuNPs) are used for cancer therapy due to their stable structure and non-cytotoxic. Lung cancer is the most common and most dangerous cancer worldwide in terms of survival and prognosis. In this study, Nasturtium officinale (L.) extract (NO), which contains biomolecules with antioxidant and anticancer effects, was used to biosynthesize AuNPs, and after their characterization, the effect of the green-synthesized AuNPs against lung cancer was evaluated in vitro. METHODS: Ultraviolet‒visible (UV‒Vis) spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), multiple analysis platform (MAP), and Fourier transform infrared (FT-IR) spectroscopy analyses were performed to characterize the AuNPs prepared from the N. officinale plant extract. Moreover, the antioxidant activity, total phenolic and flavonoid contents and DNA interactions were examined. Additionally, A549 lung cancer cells were treated with 2-48 µg/mL Nasturtium officinale gold nanoparticles (NOAuNPs) for 24 and 48 h to determine the effects on cell viability. The toxicity of the synthesized NOAuNPs to lung cancer cells was determined by the 3-(4,5-dimethylthiazol-2-il)-2,5-diphenyltetrazolium bromide (MTT) assay, and the anticancer effect of the NOAuNPs was evaluated by apoptosis and cell cycle analyses using flow cytometry. RESULTS: The average size of the NPs was 56.4 nm. The intensities of the Au peaks from EDS analysis indicated that the AuNPs were synthesized successfully. Moreover, the in vitro antioxidant activities of the NO and NOAuNPs were evaluated; these materials gave values of 31.78 ± 1.71% and 31.62 ± 0.46%, respectively, in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay at 200 g/mL and values of 25.89 ± 1.90% and 33.81 ± 0.62%, respectively, in the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. The NO and NOAuNPs gave values of 0.389 ± 0.027 and 0.308 ± 0.005, respectively, in the ferrous ion reducing antioxidant capacity (FRAP) assay and values of 0.078 ± 0.009 and 0.172 ± 0.027, respectively, in the copper ion reducing antioxidant capacity (CUPRAC) assay. When the DNA cleavage activities of NO and the NOAuNPs were evaluated via hydrolysis, both samples cleaved DNA starting at a concentration of 25 g/mL in the cell culture analysis, while the nanoformulation of the NO components gave greater therapeutic and anticancer effects. We determined that the Au nanoparticles were not toxic to A549 cells. Moreover, after treatment with the half-maximal inhibitory concentration (IC50), determined by the MTT assay with A549 cells, we found that at 24 and 48 h, while the necrosis rates were high in cells treated with NO, the rates of apoptosis were greater in cells treated with NOAuNPs. Notably, for anticancer treatment, activating apoptotic pathways that do not cause inflammation is preferred. We believe that these results will pave the way for the use of NOAuNPs in in vitro studies of other types of cancer. CONCLUSION: In this study, AuNPs were successfully synthesized from N. officinale extract. The biosynthesized AuNPs exhibited toxicity to and apoptotic effects on A549 lung cancer cells. Based on these findings, we suggest that green-synthesized AuNPs are promising new therapeutic agents for lung cancer treatment. However, since this was an in vitro study, further research should be performed in in vivo lung cancer models to support our findings and to explain the mechanism of action at the molecular level.


Assuntos
Ouro , Química Verde , Nanopartículas Metálicas , Nasturtium , Extratos Vegetais , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células A549 , Nasturtium/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antioxidantes/farmacologia , Antioxidantes/química , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico
2.
Molecules ; 26(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361814

RESUMO

The study demonstrated the effects of precursor feeding on the production of glucosinolates (GSLs), flavonoids, polyphenols, saccharides, and photosynthetic pigments in Nasturtium officinale microshoot cultures grown in Plantform bioreactors. It also evaluated the antioxidant and antimicrobial activities of extracts. L-phenylalanine (Phe) and L-tryptophan (Trp) as precursors were tested at 0.05, 0.1, 0.5, 1.0, and 3.0 mM. They were added at the beginning (day 0) or on day 10 of the culture. Microshoots were harvested after 20 days. Microshoots treated with 3.0 mM Phe (day 0) had the highest total GSL content (269.20 mg/100 g DW). The qualitative and quantitative profiles of the GSLs (UHPLC-DAD-MS/MS) were influenced by precursor feeding. Phe at 3.0 mM stimulated the best production of 4-methoxyglucobrassicin (149.99 mg/100 g DW) and gluconasturtiin (36.17 mg/100 g DW). Total flavonoids increased to a maximum of 1364.38 mg/100 g DW with 3.0 mM Phe (day 0), and polyphenols to a maximum of 1062.76 mg/100 g DW with 3.0 mM Trp (day 0). The precursors also increased the amounts of p-coumaric and ferulic acids, and rutoside, and generally increased the production of active photosynthetic pigments. Antioxidant potential increased the most with 0.1 mM Phe (day 0) (CUPRAC, FRAP), and with 0.5 mM Trp (day 10) (DPPH). The extracts of microshoots treated with 3.0 mM Phe (day 0) showed the most promising bacteriostatic activity against microaerobic Gram-positive acne strains (MIC 250-500 µg/mL, 20-21 mm inhibition zones). No extract was cytotoxic to normal human fibroblasts over the tested concentration range (up to 250 µg/mL).


Assuntos
Antioxidantes/química , Nasturtium/química , Extratos Vegetais/química , Brotos de Planta/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Biomassa , Reatores Biológicos , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Humanos , Nasturtium/metabolismo , Extratos Vegetais/farmacologia , Brotos de Planta/crescimento & desenvolvimento , Schisandra/química , Espectrometria de Massas em Tandem
3.
Molecules ; 25(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187324

RESUMO

The main compounds in both extracts were gluconasturtiin, 4-methoxyglucobrassicin and rutoside, the amounts of which were, respectively, determined as 182.93, 58.86 and 23.24 mg/100 g dry weight (DW) in biomass extracts and 640.94, 23.47 and 7.20 mg/100 g DW in plant herb extracts. The antioxidant potential of all the studied extracts evaluated using CUPRAC (CUPric Reducing Antioxidant Activity), FRAP (Ferric Reducing Ability of Plasma), and DPPH (1,1-diphenyl-2-picrylhydrazyl) assays was comparable. The anti-inflammatory activity of the extracts was tested based on the inhibition of 15-lipoxygenase, cyclooxygenase-1, cyclooxygenase-2 (COX-2), and phospholipase A2. The results demonstrate significantly higher inhibition of COX-2 for in vitro cultured biomass compared with the herb extracts (75.4 and 41.1%, respectively). Moreover, all the studied extracts showed almost similar antibacterial and antifungal potential. Based on these findings, and due to the fact that the growth of in vitro microshoots is independent of environmental conditions and unaffected by environmental pollution, we propose that biomass that can be rapidly grown in RITA® bioreactors can serve as an alternative source of bioactive compounds with valuable biological properties.


Assuntos
Antioxidantes/farmacologia , Glucosinolatos/química , Nasturtium/química , Extratos Vegetais/química , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antifúngicos/farmacologia , Biomassa , Reatores Biológicos , Compostos de Bifenilo/química , Cromatografia Líquida de Alta Pressão , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 2/química , Flavonoides/química , Imersão , Nasturtium/crescimento & desenvolvimento , Compostos Fitoquímicos/química , Picratos/química , Brotos de Planta/química , Brotos de Planta/crescimento & desenvolvimento
4.
Mol Biol Rep ; 47(7): 5001-5012, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32533401

RESUMO

Cyclophosphamide (CPA) is used in the management of autoimmune conditions and malignant illnesses. However, its therapeutic use is limited because of its severe side effects, especially hepatotoxicity attributed to oxidative stress. Nasturtium officinale R. Br (watercress or WC) has pharmacological properties, such as anti-inflammation, and antioxidant activities. Therefore, the present study was design to assess effects of WC or its active ingredient, quercetin (QE), against CPA-induced hepatotoxicity. For this study, 49 male Wistar rats (200-250 g) were randomly selected and categorized into seven equal groups. The animals were pre- and post-treated with both hydroalcoholic extract of WC (500 mg/kg) and quercetin (75 mg/kg) for 10 consecutive days, and intraperitoneal administration of CPA (200 mg/kg) was performed on only day 10, one hour before the last dose of WC or quercetin. On day 11, all the animals were sacrificed, and their blood and liver were gathered for evaluation of the liver enzyme, hepatic oxidative stress markers, antioxidant enzymes activity, and hematoxylin and eosin staining. CPA significantly increased malondialdehyde (MDA), protein carbonyl (PCO) and nitric oxide (NO) levels and liver biomarkers. Otherwise, hepatic catalase (CAT), reduced glutathione (GSH), total thiol content (tSH), and ferric reducing antioxidant power (FRAP) were considerably lower than the control group. Results showed that WC has the ability to reduce the changes (MDA, PCO, FRAP, CAT, ALT and AST) and QE (MDA, PCO, AST) induced by CPA (p < 0.05). Histopathological finding confirmed the indicated results. These findings propose that WC and QE have protective effect against the CPA-induced hepatotoxicity by decreasing oxidative stress.


Assuntos
Antioxidantes/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Nasturtium/química , Extratos Vegetais/uso terapêutico , Quercetina/uso terapêutico , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Ciclofosfamida/toxicidade , Imunossupressores/toxicidade , Injeções Intraperitoneais , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Estresse Oxidativo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Quercetina/administração & dosagem , Quercetina/farmacologia , Ratos , Ratos Wistar
5.
BMC Complement Med Ther ; 20(1): 156, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448381

RESUMO

BACKGROUND: The present study examines the antimicrobial activity of nasturtium herb (Tropaeoli maji herba) and horseradish root (Armoraciae rusticanae radix) against clinically important oral bacterial pathogens involved in periodontitis, gingivitis, pulpitis, implantitis and other infectious diseases. METHODS: A total of 15 oral pathogens, including members of the genera Campylobacter, Fusobacterium, Prevotella, Parvimonas, Porphyromonas, Tanerella, Veillonella, and HACEK organisms, were exposed to [1] a combination of herbal nasturtium and horseradish using a standardized gas test and [2] a mixture of synthetic Isothiocyantes (ITCs) using an agardilution test. Headspace gas chromatography mass spectrometry was employed to quantify the amount of allyl-, benzyl-, and 2- phenyl- ethyl-ITC. RESULTS: With exception of Veillonella parvula, all tested species were highly susceptible to herbal nasturtium and horseradish in the gas test with minimal inhibitory concentrations (MICs) between 50/20 mg and 200/80 mg and to synthetic ITCs in the agardilution with MICs between 0.0025 and 0.08 mg ITC/mL, respectively. Minimal bactericidal concentrations extended from 0.005 mg ITC/mL to 0.34 mg ITC/mL. CONCLUSIONS: ITCs may be considered an interesting alternative to antibiotics for prevention and treatment of oropharyngeal infections, periodontitis and related diseases. Furthermore, the suitability of ITCs for endocarditis prophylaxis in dental procedures might be worth further investigation.


Assuntos
Anti-Infecciosos/farmacologia , Armoracia/química , Bactérias/efeitos dos fármacos , Nasturtium/química , Óleos de Plantas/farmacologia , Mostardeira , Raízes de Plantas/química , Pós
6.
Ultrason Sonochem ; 58: 104613, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31450359

RESUMO

The leaf extract of a medicinally important plant, watercress (Nasturtium officinale), was obtained through an ultrasound-facilitated method and utilized for the preparation of ZnO nanoparticles via a joint ultrasound-microwave assisted procedure. The characteristics of the extract enriched nanoparticles (Ext/ZnO) were determined by SEM, TEM, XRD, EDX, BET, FTIR, TGA, and UV-Vis DRS analyses and compared to that of ZnO prepared in the absence of the extract (ZnO). The presence of carbon and carbonaceous bonds, changes in the morphology, size, band gap energy, and weight-decay percentage were a number of differences between ZnO and Ext/ZnO that confirmed the link of extract over nanoparticles. Ext/ZnO, watercress leaf extract, ZnO, and insulin therapies were administrated to treat alloxan-diabetic Wister rats and their healing effectiveness results were compared to one another. The serum levels of the main diabetic indices such as insulin, fasting blood glucose, and lipid profile (total triglyceride, total cholesterol, and high-density lipoprotein cholesterol) were estimated for healthy, diabetic, and the rats rehabilitated with the studied therapeutic agents. The watercress extract-enriched ZnO nanoparticles offered the best performance and suppressed the diabetic status of rats. Moreover, both ZnO samples satisfactory inhibited the activities of Staphylococcus aureus and Escherichia coli bacteria. Based on the results, the application of Nasturtium officinale leaf extract can strongly empower ZnO nanoparticles towards superior antidiabetic and enhanced antibacterial activities.


Assuntos
Micro-Ondas , Nanopartículas/química , Nasturtium/química , Extratos Vegetais/síntese química , Extratos Vegetais/farmacologia , Ondas Ultrassônicas , Óxido de Zinco/química , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Técnicas de Química Sintética , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Ratos , Ratos Wistar , Staphylococcus aureus/efeitos dos fármacos
7.
J Food Biochem ; 43(4): e12783, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31353578

RESUMO

Betong watercress (Nasturtium officinale R.Br.) contains phenethyl isothiocyanate (PEITC), derived from myrosinase-mediated hydrolysis of glucosinolates. Effects of fresh and cooked Betong watercress (FBW & CBW) on N-demethylation and C-8-hydroxylation of caffeine (CF) in rats were investigated. Wistar rats received a single dose of CF before and after pretreatments with a single or five-day administration of PEITC, FBW, and CBW dry powders. Plasma CF metabolic ratios (CMRs) were compared between before and after pretreatments. Single pretreatment with PEITC, FBW, but not CBW, significantly decreased CMRs. Five-day pretreatment with PEITC, FBW, and CBW significantly decreased CMRs. The decreases in CMRs after multiple doses of PEITC, FBW, and CBW were significantly higher than after a single dose. The decrease in CMRs caused by CBW was significantly lower than those by FBW, both single- and multiple doses. Cooking decreases the activity of FBW in inhibition of CYP1A2 mediating CF metabolism. PRACTICAL APPLICATIONS: PEITC and fresh watercress possess chemoprotective effects due to the inhibitory activity of PEITC on cytochrome P450s mediated bioactivation of carcinogens. Several clinical trials of the therapeutic uses of PEITC for cancer and other diseases are still in the pipeline. Betong watercress is a common ingredient in hot soup and stir-fried Thai recipes. Cooking heat inactivates plant myrosinase involving the production of PEITC. Consumption of watercress in cooked form may contribute less chemoprotective benefit. More appropriate preparation to deliver PEITC is needed to be evaluated.


Assuntos
Anticarcinógenos/administração & dosagem , Nasturtium/química , Neoplasias/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Anticarcinógenos/química , Culinária , Sistema Enzimático do Citocromo P-450/metabolismo , Temperatura Alta , Hidroxilação , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Ratos , Ratos Wistar
8.
Andrologia ; 51(7): e13294, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31025410

RESUMO

Testicular tissue and sex hormones are sensitive to the anabolic steroids (oxymetholone/OM) due to increased free radical damage and hormonal changes. The Nasturtium officinale L. have various antioxidant compounds. The aim of the present study was to investigate N. officinale effect on OM-induced oxidative injury in mouse testis and sperm parameters. Thirty BALB/c mice were divided into five groups, including control, OM (5 ml/kg) and three N. officinale doses (25, 50 and 100 mg/kg) + OM. At the end of the study (40 days), serum luteinising hormone (LH), follicle-stimulating hormone (FSH), testosterone, nitric oxide (NO) levels, ferric reducing ability of power (FRAP) and testis stereological factors were measured. The sperm parameters were evaluated. Liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI/MS) analysis was yielded a fingerprint of N. officinale phenolic constituents. 100 mg/kg of N. officinale extract significantly reduced the serum level of testosterone and a significant increase in LH and FSH in comparison with the control group. This dose also significantly improved the stereological factors and sperm parameters. 50 and 100 mg/kg of N. officinale extract significantly increased the testis tissue FRAP levels, and 100 doses reduced the serum levels of NO. Fourteen compounds and 34 peaks were identified in the extract with LC-ESI/MS. Nasturtium officinale extract has protective effects against testicular toxicity caused by OM.


Assuntos
Anabolizantes/toxicidade , Antioxidantes/administração & dosagem , Nasturtium/química , Oximetolona/toxicidade , Extratos Vegetais/administração & dosagem , Testículo/efeitos dos fármacos , Animais , Antioxidantes/análise , Antioxidantes/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Masculino , Camundongos , Modelos Animais , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Contagem de Espermatozoides , Espermatozoides/efeitos dos fármacos , Espectrometria de Massas em Tandem , Testículo/patologia , Testosterona/sangue
9.
Environ Sci Pollut Res Int ; 26(15): 15436-15442, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30937751

RESUMO

The growth and cadmium (Cd) accumulation of emergent plant Nasturtium officinale R. Br. cuttings taken from plants grafted onto rootstocks of four terrestrial Cruciferae species were studied in a pot experiment. Scions from N. officinale seedlings were grafted onto rootstocks of Brassica chinensis L., Raphanus sativus L., Brassica napus L., and Rorippa dubia (Pers.) H. Hara. Cuttings were taken after 1 month and grown in Cd-contaminated soil (10 mg Cd kg-1) for 60 days. Compared with non-grafted N. officinale, grafting onto R. sativus and B. napus rootstocks increased the root, shoot, and whole plant biomasses of N. officinale cuttings. Brassica napus rootstock was more effective than R. sativus rootstock for increasing the biomass of N. officinale cuttings. The four rootstocks decreased or had no significant effect on photosynthetic pigment contents in N. officinale cuttings compared with non-grafted N. officinale. Only grafting onto B. napus rootstock enhanced antioxidant enzyme activities. Compared with non-grafted N. officinale, R. sativus and B. napus rootstocks decreased the Cd contents in roots and shoots of N. officinale cuttings, whereas the other rootstocks had no significant effect on the shoot Cd content. The four rootstocks had no increase effects on Cd extraction by N. officinale cuttings. Therefore, cutting after grafting did not enhance the phytoremediation ability of N. officinale for growth in Cd-contaminated soil. However, R. sativus and B. napus rootstocks decreased the Cd content in N. officinale cuttings, which offers a potential approach for N. officinale safety production as a wild vegetable in Cd-contaminated soils.


Assuntos
Antioxidantes/química , Cádmio/química , Nasturtium/química , Plântula/química , Poluentes do Solo/análise , Biodegradação Ambiental , Biomassa , Brassica napus , Cádmio/análise , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
10.
Electron. j. biotechnol ; Electron. j. biotechnol;34: 9-16, july. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1026852

RESUMO

Background: Epigenetic modifications are key factors modulating the expression of genes involved in the synthesis of phytochemicals. The knowledge of plant epigenetic and genetic variations can contribute to enhance the production of bioactive compounds. These issues have been little explored thus far in Rorippa nasturtium var. aquaticum L. (watercress), an edible and medicinal plant. The aim of the current study was to determine and compare the phenolic composition and epigenetic and genetic variations between wild and cultivated watercress. Results: Significant differences were found in the quantitative phenolic composition between wild and cultivated watercress. The eight primer combinations used in the methylation-sensitive amplification polymorphism (MSAP) method revealed different epigenetic status for each watercress type, the cultivated one being the most epigenetically variable. The genetic variability revealed by the EcoRI/MspI amplification profile and also by eight inter-simple sequence repeat (ISSR) primers was different between the two types of watercress. The results of the Mantel test showed that the correlation between genetic and epigenetic variations has diminished in the cultivated type. Cluster analyses showed that the epigenetic and genetic characterizations clearly discriminated between wild and cultivated watercress. Conclusions: Relevant chemical, epigenetic, and genetic differences have emerged between wild and cultivated watercress. These differences can contribute to fingerprint and develop quality control tools for the integral and safety use and the commercialization of watercress. The richness of epialleles could support the development of tools to manipulate the watercress epigenome to develop high bioproduct­producing cultivars


Assuntos
Nasturtium/genética , Nasturtium/química , Plantas Comestíveis , Variação Genética , Análise por Conglomerados , Repetições de Microssatélites , Metilação de DNA , Brassicaceae/genética , Brassicaceae/química , Citosina/metabolismo , Compostos Fenólicos/análise , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Epigenômica , Compostos Fitoquímicos
11.
Fitoterapia ; 129: 283-292, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29852261

RESUMO

The herb of Nasturtium officinale is a raw material that has long been used in the traditional medicine of Iran, Azerbaijan, Morocco and Mauritius. Nowadays, this raw material is the object of numerous professional pharmacological studies that have demonstrated its antioxidant, anticancer, antibacterial, anti-inflammatory and cardioprotective properties. These therapeutic effects are caused by glucosinolates present in the plant, isothiocyanates, polyphenols (flavonoids, phenolic acids, proanthocyanidins), terpenes (including carotenoids), vitamins (B1, B2, B3, B6, E, C) and bioelements. The article presents the current state of phytochemical research on the generative and vegetative organs of the plant. A special spotlight is put on the main N. officinale secondary metabolites - glucosinolates. Attention is drawn to the important position of N. officinale in the production of healthy foods and in the production of cosmetics. A large part of the article is devoted to the importance of this species in phytoremediation processes used in the protection of soil environments and water reservoirs. The biotechnological research on this species has also been reviewed. Those studies are of particular importance not only due to the attractiveness of this species in phytotherapy and cosmetology, but also due to the deteriorating natural state of this species and the threat of extinction. The aim of this review is to promote N. officinale as a very valuable species, not yet fully discovered by global medicine.


Assuntos
Biodegradação Ambiental , Cosméticos , Alimentos , Nasturtium/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Humanos , Medicina Tradicional , Extratos Vegetais/química
12.
Mol Nutr Food Res ; 62(18): e1700908, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29710398

RESUMO

Cruciferous vegetables are rich sources of glucosinolates which are the biogenic precursor molecules of isothiocyanates (ITCs). The relationship between the consumption of cruciferous vegetables and chemoprotection has been widely documented in epidemiological studies. Phenethyl isothiocyanate (PEITC) occurs as its glucosinolate precursor gluconasturtiin in the cruciferous vegetable watercress (Nasturtium officinale). PEITC has multiple biological effects, including activation of cytoprotective pathways, such as those mediated by the transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) and the transcription factor heat shock factor 1 (HSF1), and can cause changes in the epigenome. However, at high concentrations, PEITC leads to accumulation of reactive oxygen species and cytoskeletal changes, resulting in cytotoxicity. Underlying these activities is the sulfhydryl reactivity of PEITC with cysteine residues in its protein targets. This chemical reactivity highlights the critical importance of the dose of PEITC for achieving on-target selectivity, which should be carefully considered in the design of future clinical trials.


Assuntos
Fatores de Transcrição de Choque Térmico/metabolismo , Isotiocianatos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Verduras/química , Animais , Linhagem Celular Tumoral , Citoproteção , Epigênese Genética , Regulação da Expressão Gênica , Glucosinolatos/farmacologia , Fatores de Transcrição de Choque Térmico/genética , Humanos , Subunidade p45 do Fator de Transcrição NF-E2/genética , Subunidade p45 do Fator de Transcrição NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Nasturtium/química , Espécies Reativas de Oxigênio/metabolismo
13.
Nano Lett ; 17(12): 7951-7961, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29148804

RESUMO

The engineering of living plants for visible light emission and sustainable illumination is compelling because plants possess independent energy generation and storage mechanisms and autonomous self-repair. Herein, we demonstrate a plant nanobionic approach that enables exceptional luminosity and lifetime utilizing four chemically interacting nanoparticles, including firefly luciferase conjugated silica (SNP-Luc), d-luciferin releasing poly(lactic-co-glycolic acid) (PLGA-LH2), coenzyme A functionalized chitosan (CS-CoA) and semiconductor nanocrystal phosphors for longer wavelength modulation. An in vitro kinetic model incorporating the release rates of the nanoparticles is developed to maximize the chemiluminescent lifetimes to exceed 21.5 h. In watercress (Nasturtium officinale) and other species, the nanoparticles circumvent limitations such as luciferin toxicity above 400 µM and colocalization of enzymatic reactions near high adenosine triphosphate (ATP) production. Pressurized bath infusion of nanoparticles (PBIN) is introduced to deliver a mixture of nanoparticles to the entire living plant, well described using a nanofluidic mathematical model. We rationally design nanoparticle size and charge to control localization within distinct tissues compartments with 10 nm nanoparticles localizing within the leaf mesophyll and stomata guard cells, and those larger than 100 nm segregated in the leaf mesophyll. The results are mature watercress plants that emit greater than 1.44 × 1012 photons/sec or 50% of 1 µW commercial luminescent diodes and modulate "off" and "on" states by chemical addition of dehydroluciferin and coenzyme A, respectively. We show that CdSe nanocrystals can shift the chemiluminescent emission to 760 nm enabling near-infrared (nIR) signaling. These results advance the viability of nanobionic plants as self-powered photonics, direct and indirect light sources.


Assuntos
Brassicaceae/metabolismo , Substâncias Luminescentes/química , Nanopartículas/química , Nasturtium/metabolismo , Spinacia oleracea/metabolismo , Brassicaceae/química , Compostos de Cádmio/química , Compostos de Cádmio/metabolismo , Quitosana/análogos & derivados , Quitosana/química , Quitosana/metabolismo , Coenzima A/química , Coenzima A/metabolismo , Luciferina de Vaga-Lumes/química , Luciferina de Vaga-Lumes/metabolismo , Luz , Luciferases/química , Luciferases/metabolismo , Luminescência , Substâncias Luminescentes/metabolismo , Nasturtium/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Radiação , Compostos de Selênio/química , Compostos de Selênio/metabolismo , Spinacia oleracea/química
14.
Environ Monit Assess ; 189(8): 374, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28681323

RESUMO

With the development of economy, the heavy metal contamination has become an increasingly serious problem, especially the cadmium (Cd) contamination. The emergent plant Nasturtium officinale R. Br. is a Cd-accumulator with low phytoremediation ability. To improve Cd phytoextraction efficiency of N. officinale, the straw from Cd-hyperaccumulator plants Youngia erythrocarpa, Galinsoga parviflora, Siegesbeckia orientalis, and Bidens pilosa was applied to Cd-contaminated soil and N. officinale was then planted; the study assessed the effect of hyperaccumulator straw on the growth and Cd accumulation of N. officinale. The results showed that application of hyperaccumulator species straws increased the biomass and photosynthetic pigment content and reduced the root/shoot ratio of N. officinale. All straw treatments significantly increased Cd content in roots, but significantly decreased Cd content in shoots of N. officinale. Applying hyperaccumulator straw significantly increased the total Cd accumulation in the roots, shoots, and whole plants of N. officinale. Therefore, application of straw from four hyperaccumulator species promoted the growth of N. officinale and improved the phytoextraction efficiency of N. officinale in Cd-contaminated paddy field soil; the straw of Y. erythrocarpa provided the most improvement.


Assuntos
Biodegradação Ambiental , Cádmio/análise , Poluentes do Solo/análise , Biomassa , Monitoramento Ambiental , Metais Pesados , Nasturtium/química , Raízes de Plantas/química , Solo
15.
Medicina (B Aires) ; 77(3): 201-206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28643677

RESUMO

Watercress (Nasturtium officinale, Cruciferae; W. Aiton) is a vegetable widely consumed in our country, with nutritional and potentially chemopreventive properties. Previous reports from our laboratory demonstrated the protective effect of watercress juice against DNA damage induced by cyclophosphamide in vivo. In this study, we evaluated the in vivo effect of cress plant on the oxidative stress in mice. Animals were treated by gavage with different doses of watercress juice (0.5 and 1g/kg body weight) for 15 consecutive days before intraperitoneal injection of cyclophosphamide (100 mg/kg body weight). After 24 h, mice were killed by cervical dislocation. The effect of watercress was investigated by assessing the following oxidative stress biomarkers: catalase activity, superoxide dismutase activity, lipid peroxidation, and glutathione balance. Intake of watercress prior to cyclophosphamide administration enhanced superoxide dismutase activity in erythrocytes with no effect on catalase activity. In bone marrow and liver tissues, watercress juice counteracted the effect of cyclophosphamide. Glutathione balance rose by watercress supplementation and lipid oxidation diminished in all matrixes when compared to the respective control groups. Our results support the role of watercress as a diet component with promising properties to be used as health promoter or protective agent against oxidative damage.


Assuntos
Antioxidantes/farmacologia , Ciclofosfamida/farmacologia , Nasturtium/química , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/isolamento & purificação , Dano ao DNA , Glutationa , Peroxidação de Lipídeos , Camundongos , Folhas de Planta
16.
Medicina (B.Aires) ; Medicina (B.Aires);77(3): 201-206, jun. 2017. tab
Artigo em Inglês | LILACS | ID: biblio-894458

RESUMO

Watercress (Nasturtium officinale, Cruciferae; W. Aiton) is a vegetable widely consumed in our country, with nutritional and potentially chemopreventive properties. Previous reports from our laboratory demonstrated the protective effect of watercress juice against DNA damage induced by cyclophosphamide in vivo. In this study, we evaluated the in vivo effect of cress plant on the oxidative stress in mice. Animals were treated by gavage with different doses of watercress juice (0.5 and 1g/kg body weight) for 15 consecutive days before intraperitoneal injection of cyclophosphamide (100 mg/kg body weight). After 24 h, mice were killed by cervical dislocation. The effect of watercress was investigated by assessing the following oxidative stress biomarkers: catalase activity, superoxide dismutase activity, lipid peroxidation, and glutathione balance. Intake of watercress prior to cyclophosphamide administration enhanced superoxide dismutase activity in erythrocytes with no effect on catalase activity. In bone marrow and liver tissues, watercress juice counteracted the effect of cyclophosphamide. Glutathione balance rose by watercress supplementation and lipid oxidation diminished in all matrixes when compared to the respective control groups. Our results support the role of watercress as a diet component with promising properties to be used as health promoter or protective agent against oxidative damage.


El berro (Nasturtium officinale, crucíferas; W. Aiton) es una hortaliza ampliamente consumida en nuestro país, con valor nutricional y propiedades potencialmente quimiopreventivas. En trabajos previos demostramos que el jugo de berro tiene efecto protector in vivo contra el daño del ADN inducido por ciclofosfamida en tejidos del ratón. En el presente trabajo evaluamos, también in vivo, los efectos del jugo sobre el estrés oxidativo en diferentes tejidos del ratón. Los siguientes biomarcadores fueron investigados: actividad de superóxido dismutasa, actividad de catalasa, peroxidación lipídica y balance de glutatión. Los animales fueron tratados con diferentes dosis de jugo (0.5 y 1 g/kg de peso corporal) por alimentación forzada durante 15 días consecutivos antes de la inyección intraperitoneal con ciclofosfamida (100 mg/kg). La ingesta de berro antes de la administración de ciclofosfamida mejoró la actividad de superóxido dismutasa en los eritrocitos sin efecto sobre la actividad de la catalasa. En médula ósea e hígado, el jugo de berro contrarrestó el efecto deletéreo de la ciclofosfamida. En todas las matrices, el balance de glutatión fue mayor y la oxidación de lípidos menor que los valores encontrados en los grupos control. Nuestros resultados demuestran que el berro es un componente de la dieta con propiedades prometedoras como promotor de la salud o como agente protector contra el daño oxidativo.


Assuntos
Animais , Coelhos , Estresse Oxidativo/efeitos dos fármacos , Ciclofosfamida/farmacologia , Nasturtium/química , Antioxidantes/farmacologia , Dano ao DNA , Peroxidação de Lipídeos , Folhas de Planta , Glutationa , Antioxidantes/isolamento & purificação
17.
Nutrients ; 9(4)2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394276

RESUMO

Colorectal cancer (CRC) recurrence is often attributable to circulating tumor cells and/or cancer stem cells (CSCs) that resist to conventional therapies and foster tumor progression. Isothiocyanates (ITCs) derived from Brassicaceae vegetables have demonstrated anticancer effects in CRC, however little is known about their effect in CSCs and tumor initiation properties. Here we examined the effect of ITCs-enriched Brassicaceae extracts derived from watercress and broccoli in cell proliferation, CSC phenotype and metastasis using a previously developed three-dimensional HT29 cell model with CSC-like traits. Both extracts were phytochemically characterized and their antiproliferative effect in HT29 monolayers was explored. Next, we performed cell proliferation assays and flow cytometry analysis in HT29 spheroids treated with watercress and broccoli extracts and respective main ITCs, phenethyl isothiocyanate (PEITC) and sulforaphane (SFN). Soft agar assays and relative quantitative expression analysis of stemness markers and Wnt/ß-catenin signaling players were performed to evaluate the effect of these phytochemicals in stemness and metastasis. Our results showed that both Brassicaceae extracts and ITCs exert antiproliferative effects in HT29 spheroids, arresting cell cycle at G2/M, possibly due to ITC-induced DNA damage. Colony formation and expression of LGR5 and CD133 cancer stemness markers were significantly reduced. Only watercress extract and PEITC decreased ALDH1 activity in a dose-dependent manner, as well as ß-catenin expression. Our research provides new insights on CRC therapy using ITC-enriched Brassicaceae extracts, specially watercress extract, to target CSCs and circulating tumor cells by impairing cell proliferation, ALDH1-mediated chemo-resistance, anoikis evasion, self-renewal and metastatic potential.


Assuntos
Anticarcinógenos/metabolismo , Brassica/química , Neoplasias Colorretais/prevenção & controle , Isotiocianatos/metabolismo , Nasturtium/química , Metástase Neoplásica/prevenção & controle , Extratos Vegetais/metabolismo , Anticarcinógenos/análise , Anticarcinógenos/química , Anticarcinógenos/isolamento & purificação , Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Brassica/economia , Células CACO-2 , Dióxido de Carbono/química , Diferenciação Celular , Proliferação de Células , Neoplasias Colorretais/dietoterapia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Suplementos Nutricionais/análise , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Isotiocianatos/análise , Isotiocianatos/isolamento & purificação , Metástase Neoplásica/patologia , Metástase Neoplásica/terapia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Solventes/química , Esferoides Celulares , Sulfóxidos
18.
Toxicol Mech Methods ; 27(2): 107-114, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27825290

RESUMO

BACKGROUND AND PURPOSE: Gentamicin (GM) is used against bacterial infections. The aim of our investigation was to evaluate the role of inflammation and also oxidative damage in nephrotoxic potential of GM and protective effects of Nasturtium officinale (watercress) against GM-induced nephrotoxicity in Wistar rats. MATERIAL AND METHODS: The animals were divided into eight groups: control, solvent, GM (80 mg/kg IP), GM with three doses (50, 100 and 200 mg/kg/d) of hydroalcoholic extract of watercress and one group only received high dose of extract and a group which received GM plus vitamin E for 10 consecutive days. Then, the animals were killed and kidney tissues were separated. Finally reactive oxygen species (ROS), glutathione (GSH) content, lipid peroxidation (LPO), protein carbonyl (PCO), nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) were evaluated. Also, pathological examination and measuring of blood urea nitrogen (BUN) and creatinine (Cr) were done. RESULTS: The administration of GM for 10 d resulted in an increase in kidney markers (BUN and Cr) and pathological changes in kidney tissue. Also, oxidative stress was evident in GM group by increased ROS, LPO and PCO level and GSH oxidation. Increased in inflammation process was shown by increase in NO and TNF-α. Administration of watercress extract was able to protect against deterioration in nephrotoxic markers and suppressed the increase in oxidative stress and inflammation markers. CONCLUSIONS: Our study showed the critical role of oxidative damage and inflammation in GM-induced nephrotoxicity that markedly inhibited by administration of watercress. Therefore, watercress can be suggested for prevention of GM-induced nephrotoxicity.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Gentamicinas/toxicidade , Nefropatias/prevenção & controle , Nasturtium/química , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios/isolamento & purificação , Relação Dose-Resposta a Droga , Rim/efeitos dos fármacos , Rim/enzimologia , Rim/imunologia , Nefropatias/induzido quimicamente , Nefropatias/enzimologia , Nefropatias/imunologia , Testes de Função Renal , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Carbonilação Proteica , Ratos Wistar
19.
Oncotarget ; 7(9): 10271-82, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26848531

RESUMO

Biliary tract cancer (BTC) is a highly malignant cancer. BTC exhibits a low response rate to cisplatin (CDDP) treatment, and therefore, an understanding of the mechanism of CDDP resistance is urgently needed. Here, we show that BTC cells develop CDDP resistance due, in part, to upregulation of myeloid cell leukemia 1 (Mcl-1). Phenylethyl isothiocyanate (PEITC), a natural compound found in watercress, could enhance the efficacy of CDDP by degrading Mcl-1. PEITC-CDDP co-treatment also increased the rate of apoptosis of cancer stem-like side population (SP) cells and inhibited xenograft tumor growth without obvious toxic effects. In vitro, PEITC decreased reduced glutathione (GSH), which resulted in decreased GSH/oxidized glutathione (GSSG) ratio and increased glutathionylation of Mcl-1, leading to rapid proteasomal degradation of Mcl-1. Furthermore, we identified Cys16 and Cys286 as Mcl-1 glutathionylation sites, and mutating them resulted in PEITC-mediated degradation resistant Mcl-1 protein. In conclusion, we demonstrate for the first time that CDDP resistance is partially associated with Mcl-1 in BTC cells and we identify a novel mechanism that PEITC can enhance CDDP-induced apoptosis via glutathionylation-dependent degradation of Mcl-1. Hence, our results provide support that dietary intake of watercress may help reverse CDDP resistance in BTC patients.


Assuntos
Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Cisplatino/farmacologia , Neoplasias da Vesícula Biliar/tratamento farmacológico , Glutationa/metabolismo , Isotiocianatos/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Vesícula Biliar/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nasturtium/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Pharm Biol ; 52(2): 169-74, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24160746

RESUMO

CONTEXT: Nasturtium officinale R. Br. (watercress) has long been used in Iranian folk medicine to treat hypertension, hyperglycemia, and renal colic. Moreover, anticancer, antioxidant, and hepatoprotective properties of N. officinale have been reported. OBJECTIVE: In this study, anti-inflammatory activity of the hydro-alcoholic extract from aerial parts of N. officinale was investigated. MATERIALS AND METHODS: Oral administration of the hydro-alcoholic extract of N. officinale (250, 500 and 750 mg kg(-1)) was investigated on two well-characterized animal models of inflammation, including carrageenan- or formalin-induced paw edema in rats. Then, the topical anti-inflammatory effect of N. officinale (2 and 5 mg/ear) was studied on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema. Finally, biopsy of the paw or ear was performed for pathological evaluation. RESULTS: Acute toxicity tests of N. officinale in rats established an oral LD50 of >5 g kg(-1). The extract of watercress (250, 500 and 750 mg kg(-1)) significantly inhibited carrageenan-induced paw edema 1, 2, 3 and 4 h after carrageenan challenge (p < 0.001). The extract (500 mg kg(-1)) also showed considerable activity against formalin-evoked paw edema over a period of 24 h (p < 0.001). Furthermore, topical application of N. officinale (5 mg/ear) reduced TPA-induced ear edema (p < 0.05). Histopathologically, the extract decreased swelling and the tissue damage induced by carrageenan or TPA. DISCUSSION AND CONCLUSION: Our findings indicate potent anti-inflammatory activity of N. officinale in systemic and topical application and propose its potential as an anti-inflammatory agent for treatment of inflammatory conditions.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Nasturtium/química , Extratos Vegetais/farmacologia , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Carragenina/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Edema/tratamento farmacológico , Edema/patologia , Inflamação/patologia , Dose Letal Mediana , Masculino , Camundongos , Componentes Aéreos da Planta , Extratos Vegetais/administração & dosagem , Extratos Vegetais/toxicidade , Ratos , Ratos Wistar , Acetato de Tetradecanoilforbol/toxicidade , Fatores de Tempo , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA