Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Tohoku J Exp Med ; 261(1): 69-73, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37495524

RESUMO

X-linked Alport syndrome is a hereditary progressive renal disease resulting from the disruption of collagen α3α4α5 (IV) heterotrimerization caused by pathogenic variants in the COL4A5 gene. This study aimed to report a male case of X-linked Alport syndrome with a mild phenotype accompanied by an atypical expression pattern of type IV collagen α5 [α5 (IV)] chain in glomerulus. A 38-year-old male presented with proteinuria (2.3 g/day) and hematuria. He has been detected urinary protein and occult blood since childhood. A renal biopsy was performed at the age of 29 years; however, a diagnosis of Alport syndrome was not considered. A renal biopsy 9 years later revealed diffuse thinning and lamellation of the glomerular basement membrane. Α staining for α5 (IV) revealed a normal expression pattern in the glomerular basement membrane and a complete negative expression in Bowman's capsule and distal tubular basement membrane. Using next-generation sequencing, we detected a COL4A5 missense variant within exon 35 (NM_000495.5: c.3088G>A, p. G1030S). The possibility of X-linked Alport syndrome should be considered when negative expression of α5 (IV) staining on Bowman's capsule was observed.


Assuntos
Nefrite Hereditária , Masculino , Humanos , Criança , Adulto , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Colágeno Tipo IV/genética , Cápsula Glomerular/metabolismo , Cápsula Glomerular/patologia , Membrana Basal Glomerular/patologia , Éxons
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806283

RESUMO

Alport syndrome (AS) is the second most common cause of inherited chronic kidney disease. This disorder is caused by genetic variants on COL4A3, COL4A4 and COL4A5 genes. These genes encode the proteins that constitute collagen type IV of the glomerular basement membrane (GBM). The heterodimer COL4A3A4A5 constitutes the majority of the GBM, and it is essential for the normal function of the glomerular filtration barrier (GFB). Alterations in any of collagen type IV constituents cause disruption of the GMB structure, allowing leakage of red blood cells and albumin into the urine, and compromise the architecture of the GFB, inducing inflammation and fibrosis, thus resulting in kidney damage and loss of renal function. The advances in DNA sequencing technologies, such as next-generation sequencing, allow an accurate diagnose of AS. Due to the important risk of the development of progressive kidney disease in AS patients, which can be delayed or possibly prevented by timely initiation of therapy, an early diagnosis of this condition is mandatory. Conventional biomarkers such as albuminuria and serum creatinine increase relatively late in AS. A panel of biomarkers that might detect early renal damage, monitor therapy, and reflect the prognosis would have special interest in clinical practice. The aim of this systematic review is to summarize the biomarkers of renal damage in AS as described in the literature. We found that urinary Podocin and Vascular Endothelial Growth Factor A are important markers of podocyte injury. Urinary Epidermal Growth Factor has been related to tubular damage, interstitial fibrosis and rapid progression of the disease. Inflammatory markers such as Transforming Growth Factor Beta 1, High Motility Group Box 1 and Urinary Monocyte Chemoattractant Protein- 1 are also increased in AS and indicate a higher risk of kidney disease progression. Studies suggest that miRNA-21 is elevated when renal damage occurs. Novel techniques, such as proteomics and microRNAs, are promising.


Assuntos
Nefrite Hereditária , Biomarcadores , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Fibrose , Humanos , Rim/metabolismo , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Fator A de Crescimento do Endotélio Vascular
3.
J Am Chem Soc ; 143(33): 13044-13055, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387474

RESUMO

Reprogramming known medicines for a novel target with activity and selectivity over the canonical target is challenging. By studying the binding interactions between RNA folds and known small-molecule medicines and mining the resultant dataset across human RNAs, we identified that Dovitinib, a receptor tyrosine kinase (RTK) inhibitor, binds the precursor to microRNA-21 (pre-miR-21). Dovitinib was rationally reprogrammed for pre-miR-21 by using it as an RNA recognition element in a chimeric compound that also recruits RNase L to induce the RNA's catalytic degradation. By enhancing the inherent RNA-targeting activity and decreasing potency against canonical RTK protein targets in cells, the chimera shifted selectivity for pre-miR-21 by 2500-fold, alleviating disease progression in mouse models of triple-negative breast cancer and Alport Syndrome, both caused by miR-21 overexpression. Thus, targeted degradation can dramatically improve selectivity even across different biomolecules, i.e., protein versus RNA.


Assuntos
Benzimidazóis/farmacologia , MicroRNAs/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/farmacologia , Ribonucleases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Benzimidazóis/química , Humanos , MicroRNAs/metabolismo , Estrutura Molecular , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/metabolismo , Inibidores de Proteínas Quinases/química , Quinolonas/química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Ribonucleases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Neoplasias de Mama Triplo Negativas/metabolismo
4.
Acta Histochem ; 122(8): 151631, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33152540

RESUMO

BACKGROUND: In present study we investigated expression pattern of the special tissue markers. SATB1 and PTEN to evaluate possible influence in pathophysiology and development of various biopsy proven kidney diseases. METHODS: The 32 kidney biopsy samples were analysed using light, immunofluorescence and electron microscopy. There were 19 samples in proliferative and 13 samples in non- proliferative group of renal diseases. As control group, 9 specimens of healthy kidney tissue taken after surgery of kidney tumour were used. SATB1 and PTEN markers were used for immunofluorescence staining. Analysed tissue structures were glomeruli, proximal convoluted tubules (PCT) and distal convoluted tubules (DCT). The number of SATB1 and PTEN cells were calculated and the data compared between kidney structures, disease groups and control specimens. RESULTS: Both markers were positive in all investigated kidney structures, with expression generally, more prominent in tubular epithelial cells than in glomeruli, with the highest staining intensity rate as well as highest rate of both markers in DCT of proliferative diseases group (SATB1 64.5 %, PTEN 52 %). There was statistically significant difference in SATB1 expression in all tissue structures of interest in proliferative as well as non- proliferative group compared to control group (p < 0.01-p < 0.0001). PTEN expression were found significantly decreased in PCT of both disease groups in regard to control (PTEN 25.3 % and 23.8 % vs. 41.1 % (p < 0.01 and p < 0.001 respectively). CONCLUSION: SATB1 and PTEN could be considered as markers influenced in kidney disease development. SATB1/PTEN expression should be further investigated as useful markers of kidney disease activity as well as potential therapeutic target.


Assuntos
Glomerulonefrite por IGA/genética , Glomerulonefrite Membranoproliferativa/genética , Glomerulonefrite Membranosa/genética , Glomerulosclerose Segmentar e Focal/genética , Vasculite por IgA/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Nefrite/genética , PTEN Fosfo-Hidrolase/genética , Amiloidose/diagnóstico , Amiloidose/genética , Amiloidose/metabolismo , Amiloidose/patologia , Biomarcadores/metabolismo , Biópsia , Estudos de Casos e Controles , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite por IGA/metabolismo , Glomerulonefrite por IGA/patologia , Glomerulonefrite Membranoproliferativa/diagnóstico , Glomerulonefrite Membranoproliferativa/metabolismo , Glomerulonefrite Membranoproliferativa/patologia , Glomerulonefrite Membranosa/diagnóstico , Glomerulonefrite Membranosa/metabolismo , Glomerulonefrite Membranosa/patologia , Glomerulosclerose Segmentar e Focal/diagnóstico , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Vasculite por IgA/diagnóstico , Vasculite por IgA/metabolismo , Vasculite por IgA/patologia , Imuno-Histoquímica , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Túbulos Renais Distais/metabolismo , Túbulos Renais Distais/patologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Nefrite/diagnóstico , Nefrite/metabolismo , Nefrite/patologia , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , PTEN Fosfo-Hidrolase/metabolismo
5.
Int J Mol Sci ; 20(15)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390839

RESUMO

Despite the wide use of angiotensin II receptor blockers in the treatment of Alport syndrome (AS), the mechanism as to how angiotensin II receptor blockers prevent interstitial fibrosis remains unclear. Here, we report that treatment of olmesartan effectively targets the feedback loop between the renin-angiotensin system (RAS) and transforming growth factor ß (TGFß) signals in tubular epithelial cells and preserves renal angiotensin-converting enzyme 2 (ACE2) expression in the kidney of Col4a3-/- mice, a murine model of experimental AS. Morphology analyses revealed amelioration of kidney fibrosis in Col4a3-/- mice by olmesartan treatment. Upregulation of TGFß and activation of its downstream in Col4a3-/- mice were attenuated by olmesartan in Col4a3-/- mice. Intriguingly, TGFß expression was preferentially upregulated in damaged tubular epithelial cells in Col4a3-/- mice. Concurrent upregulation of TNFα-converting enzyme and downregulation of ACE2 suggested RAS activation in Col4a3-/- mice, which was prevented by olmesartan. Mechanistically, olmesartan suppressed TGFß-induced RAS activation in tubular epithelial cells in vitro. Collectively, we concluded that olmesartan effectively suppresses the progression of tubulointerstitial fibrosis in AS by interrupting RAS-TGFß feedback loop to counterbalance intrarenal RAS activation.


Assuntos
Anti-Hipertensivos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imidazóis/farmacologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Tetrazóis/farmacologia , Fator de Crescimento Transformador beta/genética , Enzima de Conversão de Angiotensina 2 , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Biópsia , Modelos Animais de Doenças , Fibrose , Túbulos Renais/patologia , Camundongos , Camundongos Knockout , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Resultado do Tratamento , Proteínas ras/genética , Proteínas ras/metabolismo
6.
Hum Gene Ther ; 30(7): 865-881, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30808234

RESUMO

Alport syndrome is a genetic disease caused by mutations in type IV collagen and is characterized by progressive kidney disease. The Col4α3-/- mouse model recapitulates the main features of human Alport syndrome. Previously, it was reported that kidney microRNA-21 (miR-21) expression is significantly increased in Col4α3-/- mice, and administration of anti-miR-21 oligonucleotides (anti-miR-21) attenuates kidney disease progression in Col4α3-/- mice, indicating that miR-21 is a viable therapeutic target for Alport syndrome. However, the expression pattern of miR-21 in the kidneys of patients with human Alport syndrome has not been evaluated. Paraffin-embedded kidney specimens were obtained from 27 patients with Alport syndrome and from 10 normal controls. They were evaluated for miR-21 expression and for in situ hybridization and mRNA expression by quantitative polymerase chain reaction. In addition, anti-miR-21 was administrated to Col4α3-/- mice at different stages of disease, and changes in proteinuria, kidney function, and survival were monitored. Transcriptomic analysis of mouse kidney was conducted using RNA sequencing. miR-21 expression was significantly elevated in kidney specimens from patients with Alport syndrome compared to normal controls. Elevated renal miR-21 expression positively correlated with 24 h urine protein, serum blood urea nitrogen, serum creatinine, and severity of kidney pathology. On histological evaluation, high levels of miR-21 were localized to damaged tubular epithelial cells and glomeruli. Kidney specimens from both humans and mice with Alport syndrome exhibited abnormal expression of genes involved in kidney injury, fibrosis, inflammation, mitochondrial function, and lipid metabolism. Administration of anti-miR-21 to Alport mice resulted in slowing of kidney function decline, partial reversal of abnormal gene expression associated with disease pathology, and improved survival. Increased levels of miR-21 in human Alport kidney samples showed a correlation with kidney disease severity measured by proteinuria, biomarkers of kidney function, and kidney histopathology scores. These human data, combined with the finding that a reduction of miR-21 in Col4α3-/- mice improves kidney phenotype and survival, support miR-21 as a viable therapeutic target for the treatment of Alport syndrome.


Assuntos
Regulação da Expressão Gênica , Predisposição Genética para Doença , MicroRNAs/genética , Nefrite Hereditária/genética , Adolescente , Animais , Autoantígenos , Biomarcadores , Biópsia , Criança , Colágeno Tipo IV/deficiência , Modelos Animais de Doenças , Feminino , Fibrose , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Knockout , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/metabolismo , Índice de Gravidade de Doença
7.
Kidney Int ; 94(6): 1151-1159, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30301568

RESUMO

Studies suggest that altered renal lipid metabolism plays a role in the pathogenesis of diabetic kidney disease and that genetic or pharmacological induction of cholesterol efflux protects from the development of diabetic kidney disease and focal segmental glomerulosclerosis (FSGS). Here we tested whether altered lipid metabolism contributes to renal failure in the Col4a3 knockout mouse model for Alport Syndrome. There was an eight-fold increase in the cholesterol content in renal cortexes of mice with Alport Syndrome. This was associated with increased glomerular lipid droplets and cholesterol crystals. Treatment of mice with Alport Syndrome with hydroxypropyl-ß-cyclodextrin (HPßCD) reduced cholesterol content in the kidneys of mice with Alport Syndrome and protected from the development of albuminuria, renal failure, inflammation and tubulointerstitial fibrosis. Cholesterol efflux and trafficking-related genes were primarily affected in mice with Alport Syndrome and were differentially regulated in the kidney cortex and isolated glomeruli. HPßCD also protected from proteinuria and mesangial expansion in a second model of non-metabolic kidney disease, adriamycin-induced nephropathy. Consistent with our experimental findings, microarray analysis confirmed dysregulation of several lipid-related genes in glomeruli isolated from kidney biopsies of patients with primary FSGS enrolled in the NEPTUNE study. Thus, lipid dysmetabolism occurs in non-metabolic glomerular disorders such as Alport Syndrome and FSGS, and HPßCD improves renal function in experimental Alport Syndrome and FSGS.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomérulos Renais/patologia , Nefrite Hereditária/tratamento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Animais , Autoantígenos/genética , Biópsia , Colesterol/metabolismo , Colágeno Tipo IV/genética , Doxorrubicina/toxicidade , Feminino , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Estudos Observacionais como Assunto
8.
JCI Insight ; 3(6)2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29563333

RESUMO

Alport syndrome is a rare hereditary renal disorder with no etiologic therapy. We found that osteopontin (OPN) is highly expressed in the renal tubules of the Alport mouse and plays a causative pathological role. OPN genetic deletion ameliorated albuminuria, hypertension, tubulointerstitial proliferation, renal apoptosis, and hearing and visual deficits in the Alport mouse. In Alport renal tubules we found extensive cholesterol accumulation and increased protein expression of dynamin-3 (DNM3) and LDL receptor (LDLR) in addition to dysmorphic mitochondria with defective bioenergetics. Increased pathological cholesterol influx was confirmed by a remarkably increased uptake of injected DiI-LDL cholesterol by Alport renal tubules, and by the improved lifespan of the Alport mice when crossed with the Ldlr-/- mice with defective cholesterol influx. Moreover, OPN-deficient Alport mice demonstrated significant reduction of DNM3 and LDLR expression. In human renal epithelial cells, overexpressing DNM3 resulted in elevated LDLR protein expression and defective mitochondrial respiration. Our results suggest a potentially new pathway in Alport pathology where tubular OPN causes DNM3- and LDLR-mediated enhanced cholesterol influx and impaired mitochondrial respiration.


Assuntos
Autoantígenos/metabolismo , Colágeno Tipo IV/metabolismo , Túbulos Renais/metabolismo , Mitocôndrias/metabolismo , Nefrite Hereditária/metabolismo , Osteopontina/metabolismo , Albuminúria/metabolismo , Animais , Apoptose , Autoantígenos/genética , Pressão Sanguínea , Colesterol/metabolismo , Colágeno/metabolismo , Colágeno Tipo IV/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Dinamina III/metabolismo , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Deleção de Genes , Testes Auditivos , Humanos , Hipertensão/metabolismo , Rim/metabolismo , Rim/patologia , Túbulos Renais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrite Hereditária/genética , Osteopontina/genética , Receptores de LDL , Smegmamorpha/metabolismo , Transcriptoma , Triglicerídeos/análise
9.
Kidney Int ; 93(1): 147-158, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28843411

RESUMO

We examined activin receptor type IIA (ActRIIA) activation in chronic kidney disease (CKD) by signal analysis and inhibition in mice with Alport syndrome using the ActRIIA ligand trap RAP-011 initiated in 75-day-old Alport mice. At 200 days of age, there was severe CKD and associated Mineral and Bone Disorder (CKD-MBD), consisting of osteodystrophy, vascular calcification, cardiac hypertrophy, hyperphosphatemia, hyperparathyroidism, elevated FGF23, and reduced klotho. The CKD-induced bone resorption and osteoblast dysfunction was reversed, and bone formation was increased by RAP-011. ActRIIA inhibition prevented the formation of calcium apatite deposits in the aortic adventitia and tunica media and significantly decreased the mean aortic calcium concentration from 0.59 in untreated to 0.36 mg/g in treated Alport mice. Aortic ActRIIA stimulation in untreated mice increased p-Smad2 levels and the transcription of sm22α and αSMA. ActRIIA inhibition reversed aortic expression of the osteoblast transition markers Runx2 and osterix. Heart weight was significantly increased by 26% in untreated mice but remained normal during RAP-011 treatment. In 150-day-old mice, GFR was significantly reduced by 55%, but only by 30% in the RAP-011-treated group. In 200-day-old mice, the mean BUN was 100 mg/dl in untreated mice compared to 60 mg/dl in the treated group. In the kidneys of 200-day-old mice, ActRIIA and p-Smad2 were induced and MCP-1, fibronectin, and interstitial fibrosis were stimulated; all were attenuated by RAP-011 treatment. Hence, the activation of ActRIIA signaling during early CKD contributes to the CKD-MBD components of osteodystrophy and cardiovascular disease and to renal fibrosis. Thus, the inhibition of ActRIIA signaling is efficacious in improving and delaying CKD-MBD in this model of Alport syndrome.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Reabsorção Óssea/metabolismo , Cardiomegalia/metabolismo , Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Nefrite Hereditária/metabolismo , Insuficiência Renal Crônica/metabolismo , Calcificação Vascular/metabolismo , Actinas/metabolismo , Receptores de Activinas Tipo II/antagonistas & inibidores , Receptores de Activinas Tipo II/genética , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiopatologia , Remodelação Óssea , Reabsorção Óssea/genética , Reabsorção Óssea/fisiopatologia , Reabsorção Óssea/prevenção & controle , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Distúrbio Mineral e Ósseo na Doença Renal Crônica/genética , Distúrbio Mineral e Ósseo na Doença Renal Crônica/fisiopatologia , Distúrbio Mineral e Ósseo na Doença Renal Crônica/prevenção & controle , Colágeno Tipo IV/deficiência , Colágeno Tipo IV/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Fibrose , Taxa de Filtração Glomerular , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/genética , Nefrite Hereditária/fisiopatologia , Fosforilação , Proteínas Recombinantes de Fusão/farmacologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/prevenção & controle , Transdução de Sinais , Proteína Smad2/metabolismo , Fator de Transcrição Sp7/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/fisiopatologia , Calcificação Vascular/prevenção & controle , Remodelação Vascular
10.
Stem Cell Res ; 25: 1-5, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29246570

RESUMO

A skin biopsy was obtained from a 25-year-old female patient with autosomal recessive Alport syndrome (ARAS) with the homozygous COL4A3 mutation c.345delG, p.(P166Lfs*37). Dermal fibroblasts were derived and reprogrammed by nucleofection with episomal plasmids carrying OCT3/4, SOX2, KLF4 LIN28, L-MYC and p53shRNA. The generated induced Pluripotent Stem Cell (iPSC) clone AS FiPS1 Ep6F-2 was free of genomically integrated reprogramming genes, had the specific homozygous mutation, a stable karyotype, expressed pluripotency markers and generated embryoid bodies which were differentiated towards the three germ layers in vitro. This iPSC line offers a useful resource to study Alport syndrome pathomechanisms and drug testing.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Nefrite Hereditária/metabolismo , Adulto , Células Cultivadas , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Éxons/genética , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Mutação/genética , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Plasmídeos/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Sci Rep ; 7(1): 16875, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203902

RESUMO

Injection of amniotic fluid stem cells (AFSC) delays the course of progression of renal fibrosis in animals with Alport Syndrome, enhancing kidney function and improving survival. The mechanisms responsible for these protective outcomes are still largely unknown. Here, we showed that vascular endothelial growth factor (VEGF) signaling within the glomeruli of Alport mice is strongly elevated early on in the disease, causing glomerular endothelial cell damage. Intraventricular injected AFSC that homed within the glomeruli showed strong modulation of the VEGF activity, particularly in glomerular endothelial cells. To investigate this phenomenon we hypothesized that extracellular vesicles (EVs) produced by the AFSC could be responsible for the observed renoprotection. AFSC derived EVs presented exosomal and stem cell markers on their surface membrane, including VEGFR1 and VEGFR2. EVs were able to modulate VEGF in glomerular endothelial cells by effectively trapping the excess VEGF through VEGFR1-binding preventing cellular damage. In contrast, VEGFR1/sVEGFR1 knockout EVs failed to show similar protection, thus indicating that VEGF trapping is a potentially viable mechanism for AFSC-EV mediated renoprotection. Taken together, our findings establish that EVs secreted by AFSC could target a specific signaling pathway within the glomerulus, thus representing a new potential glomerulus-specific targeted intervention.


Assuntos
Células Endoteliais/metabolismo , Vesículas Extracelulares , Células-Tronco/metabolismo , Líquido Amniótico/citologia , Animais , Células Cultivadas , Técnicas de Cocultura , Creatinina/sangue , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Glomérulos Renais/citologia , Camundongos , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Proteinúria/patologia , Transdução de Sinais , Células-Tronco/citologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Kidney Int ; 91(6): 1347-1361, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28249676

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase in the renin-angiotensin system that catalyzes the breakdown of angiotensin II to angiotensin 1-7. We have reported that ACE2 expression in the kidney is reduced in experimental Alport syndrome but the impact of this finding on disease progression has not been studied. Accordingly, we evaluated effects of murine recombinant ACE2 treatment in Col4a3 knockout mice, a model of Alport syndrome characterized by proteinuria and progressive renal injury. Murine recombinant ACE2 (0.5 mg/kg/day) was administered from four to seven weeks of age via osmotic mini-pump. Pathological changes were attenuated by murine recombinant ACE2 treatment which ameliorated kidney fibrosis as shown by decreased expression of COL1α1 mRNA, less accumulation of extracellular matrix proteins, and inhibition of transforming growth factor-ß signaling. Further, increases in proinflammatory cytokine expression, macrophage infiltration, inflammatory signaling pathway activation, and heme oxygenase-1 levels in Col4a3 knockout mice were also reduced by murine recombinant ACE2 treatment. Lastly, murine recombinant ACE2 influenced the turnover of renal ACE2, as it suppressed the expression of tumor necrosis factor-α converting enzyme, a negative regulator of ACE2. Thus, treatment with exogenous ACE2 alters angiotensin peptide metabolism in the kidneys of Col4a3 knockout mice and attenuates the progression of Alport syndrome nephropathy.


Assuntos
Rim/efeitos dos fármacos , Nefrite Hereditária/tratamento farmacológico , Peptidil Dipeptidase A/administração & dosagem , Albuminúria/tratamento farmacológico , Albuminúria/etiologia , Albuminúria/metabolismo , Enzima de Conversão de Angiotensina 2 , Angiotensinas/metabolismo , Animais , Autoantígenos/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo IV/deficiência , Colágeno Tipo IV/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Predisposição Genética para Doença , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrite Hereditária/complicações , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Proteínas Recombinantes/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
13.
Clin Exp Nephrol ; 21(6): 952-960, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28176019

RESUMO

BACKGROUND: Alport syndrome (AS) is a hereditary kidney disease caused by mutation of type IV collagen. Loss of collagen network induces collapse of glomerular basement membrane (GBM) structure. The previous studies showed that upregulation of some tyrosine kinase receptors signaling accompanied GBM disorder in AS mouse model. EGFR signaling is one of the well-known receptor kinase signaling that is involved in glomerular diseases. However, whether EGFR signaling is relevant to AS progression is still uninvestigated. Here, we determined the involvement of EGFR in AS and the effect of suppressing EGFR signaling by erlotinib treatment on AS progression. METHODS: Phosphorylated EGFR expression was investigated by Western blotting analysis and immunostaining of kidney tissues of Col4a5 mutant mice (a mouse model of X-linked AS). To check the effect of blocking EGFR signaling in AS, we administered erlotinib to AS mice once a day (10 mg/kg/day) orally for 18 weeks. Renal function parameters (proteinuria, serum creatinine, and BUN) and renal histology were assessed, and the gene expressions of inflammatory cytokines were analyzed in renal tissues. RESULTS: Phosphorylated EGFR expression was upregulated in AS mice kidney tissues. Erlotinib slightly reduced the urinary protein and suppressed the expression of renal injury markers (Lcn2, Lysozyme) and inflammatory cytokines (Il-6, Il-1ß and KC). Erlotinib did not improve renal pathology, such as glomerular sclerosis and fibrosis. CONCLUSION: These findings suggest that EGFR signaling is upregulated in kidney, but although inhibiting this signaling pathway suppressed renal inflammatory cytokines, it did not ameliorate renal dysfunction in AS mouse model.


Assuntos
Citocinas/metabolismo , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/uso terapêutico , Rim/efeitos dos fármacos , Nefrite Hereditária/tratamento farmacológico , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Feminino , Rim/patologia , Masculino , Camundongos , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia
14.
Matrix Biol ; 57-58: 334-346, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27575985

RESUMO

The outcome of tissue engineered organ transplants depends on the capacity of the biomaterial to promote a pro-healing response once implanted in vivo. Multiple studies, including ours, have demonstrated the possibility of using the extracellular matrix (ECM) of animal organs as platform for tissue engineering and more recently, discarded human organs have also been proposed as scaffold source. In contrast to artificial biomaterials, natural ECM has the advantage of undergoing continuous remodeling which allows adaptation to diverse conditions. It is known that natural matrices present diverse immune properties when compared to artificial biomaterials. However, how these properties compare between diseased and healthy ECM and artificial scaffolds has not yet been defined. To answer this question, we used decellularized renal ECM derived from WT mice and from mice affected by Alport Syndrome at different time-points of disease progression as a model of renal failure with extensive fibrosis. We characterized the morphology and composition of these ECMs and compared their in vitro effects on macrophage activation with that of synthetic scaffolds commonly used in the clinic (collagen type I and poly-L-(lactic) acid, PLLA). We showed that ECM derived from Alport kidneys differed in fibrous protein deposition and cytokine content when compared to ECM derived from WT kidneys. Yet, both WT and Alport renal ECM induced macrophage differentiation mainly towards a reparative (M2) phenotype, while artificial biomaterials towards an inflammatory (M1) phenotype. Anti-inflammatory properties of natural ECMs were lost when homogenized, hence three-dimensional structure of ECM seems crucial for generating an anti-inflammatory response. Together, these data support the notion that natural ECM, even if derived from diseased kidneys promote a M2 protolerogenic macrophage polarization, thus providing novel insights on the applicability of ECM obtained from discarded organs as ideal scaffold for tissue engineering.


Assuntos
Matriz Extracelular/química , Rim/química , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nefrite Hereditária/imunologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Colágeno Tipo I/química , Colágeno Tipo I/farmacologia , Citocinas/biossíntese , Modelos Animais de Doenças , Matriz Extracelular/imunologia , Matriz Extracelular/ultraestrutura , Humanos , Imuno-Histoquímica , Imunofenotipagem , Rim/imunologia , Macrófagos/classificação , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Fenótipo , Poliésteres/química , Poliésteres/farmacologia , Cultura Primária de Células , Engenharia Tecidual/métodos , Alicerces Teciduais
15.
Nephrol Dial Transplant ; 31(11): 1908-1914, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27190376

RESUMO

BACKGROUND: Hereditary microscopic haematuria often segregates with mutations of COL4A3, COL4A4 or COL4A5 but in half of families a gene is not identified. We investigated a Cypriot family with autosomal dominant microscopic haematuria with renal failure and kidney cysts. METHODS: We used genome-wide linkage analysis, whole exome sequencing and cosegregation analyses. RESULTS: We identified a novel frameshift mutation, c.4611_4612insG:p.T1537fs, in exon 49 of COL4A1. This mutation predicts truncation of the protein with disruption of the C-terminal part of the NC1 domain. We confirmed its presence in 20 family members, 17 with confirmed haematuria, 5 of whom also had stage 4 or 5 chronic kidney disease. Eleven family members exhibited kidney cysts (55% of those with the mutation), but muscle cramps or cerebral aneurysms were not observed and serum creatine kinase was normal in all individuals tested. CONCLUSIONS: Missense mutations of COL4A1 that encode the CB3 [IV] segment of the triple helical domain (exons 24 and 25) are associated with HANAC syndrome (hereditary angiopathy, nephropathy, aneurysms and cramps). Missense mutations of COL4A1 that disrupt the NC1 domain are associated with antenatal cerebral haemorrhage and porencephaly, but not kidney disease. Our findings extend the spectrum of COL4A1 mutations linked with renal disease and demonstrate that the highly conserved C-terminal part of the NC1 domain of the α1 chain of type IV collagen is important in the integrity of glomerular basement membrane in humans.


Assuntos
Colágeno Tipo IV/genética , DNA/genética , Mutação da Fase de Leitura , Nefrite Hereditária/genética , Colágeno Tipo IV/metabolismo , Análise Mutacional de DNA , Feminino , Ligação Genética , Genótipo , Humanos , Masculino , Nefrite Hereditária/metabolismo , Linhagem , Reação em Cadeia da Polimerase
16.
Vet Pathol ; 53(4): 803-12, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26917550

RESUMO

X-linked hereditary nephropathy (XLHN) in Navasota dogs is a spontaneously occurring disease caused by a mutation resulting in defective production of type IV collagen and juvenile-onset renal failure. The study was aimed at examining the evolution of renal damage and the expression of selected molecules potentially involved in the pathogenesis of XLHN. Clinical data and renal samples were obtained in 10 XLHN male dogs and 5 controls at 4 (T0), 6 (T1), and 9 (T2) months of age. Glomerular and tubulointerstitial lesions were scored by light microscopy, and the expression of 21 molecules was investigated by quantitative real-time polymerase chain reaction with selected proteins evaluated by immunohistochemistry. No significant histologic lesions or clinicopathologic abnormalities were identified in controls at any time-point. XLHN dogs had progressive proteinuria starting at T0. At T1, XLHN dogs had a mesangioproliferative glomerulopathy with glomerular loss, tubular necrosis, and interstitial fibrosis. At T2, glomerular and tubulointerstitial lesions were more severe, particularly glomerular loss, interstitial fibrosis, and inflammation. At T0, transforming growth factor ß, connective tissue growth factor, and platelet-derived growth factor α mRNA were overexpressed in XLHN dogs compared with controls. Clusterin and TIMP1 transcripts were upregulated in later stages of the disease. Transforming growth factor ß, connective tissue growth factor, and platelet-derived growth factor α should be considered as key players in the initial events of XHLN. Clusterin and TIMP1 appear to be more associated with the progression rather than initiation of tubulointerstitial damage in chronic renal disease.


Assuntos
Doenças do Cão/genética , Doenças Genéticas Ligadas ao Cromossomo X/veterinária , Nefropatias/veterinária , Nefrite Hereditária/veterinária , Animais , Colágeno Tipo IV/genética , Progressão da Doença , Doenças do Cão/metabolismo , Doenças do Cão/patologia , Cães , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Imuno-Histoquímica/veterinária , Rim/metabolismo , Rim/patologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteinúria/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Fator de Crescimento Transformador beta/metabolismo
17.
Clin Exp Nephrol ; 20(5): 699-702, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26581810

RESUMO

BACKGROUND: X-linked Alport syndrome (XLAS) is a progressive hereditary nephropathy caused by mutations in the type IV collagen alpha chain 5 gene (COL4A5). Although many COL4A5 mutations have previously been identified, pathogenic synonymous mutations have not yet been described. METHODS: A family with XLAS underwent mutational analyses of COL4A5 by PCR and direct sequencing, as well as transcript analysis of potential splice site mutations. In silico analysis was also conducted to predict the disruption of splicing factor binding sites. Immunohistochemistry (IHC) of kidney biopsies was used to detect α2 and α5 chain expression. RESULTS: We identified a hemizygous point mutation, c.876A>T, in exon 15 of COL4A5 in the proband and his brother, which is predicted to result in a synonymous amino acid change, p.(Gly292Gly). Transcript analysis showed that this mutation potentially altered splicing because it disrupted the splicing factor binding site. The kidney biopsy of the proband showed lamellation of the glomerular basement membrane (GBM), while IHC revealed negative α5(IV) staining in the GBM and Bowman's capsule, which is typical of XLAS. CONCLUSIONS: This is the first report of a synonymous COL4A5 substitution being responsible for XLAS. Our findings suggest that transcript analysis should be conducted for the future correct assessment of silent mutations.


Assuntos
Colágeno Tipo IV/genética , Nefrite Hereditária/genética , Mutação Puntual , Sítios de Splice de RNA , Biópsia , Cápsula Glomerular/química , Colágeno Tipo IV/metabolismo , Análise Mutacional de DNA , Progressão da Doença , Éxons , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Membrana Basal Glomerular/química , Humanos , Imuno-Histoquímica , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/genética , Falência Renal Crônica/metabolismo , Masculino , Pessoa de Meia-Idade , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/metabolismo , Linhagem , Fenótipo , Adulto Jovem
18.
PLoS One ; 10(8): e0135648, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26274923

RESUMO

The pathogenesis of proteinuria in Alport syndrome (AS) remains unclear. Vascular endothelial growth factor A (VEGFA) is a key regulator of the glomerular filtration barrier (GFB). This study explored the expression of VEGFA in the glomeruli and its accumulation in the glomerular basement membrane (GBM) and their relationship with podocyte injury and proteinuria in Alport syndrome (AS). Clinical data and renal tissues of control patients (11 cases) and AS patients (25 cases) were included. AS patients were further divided into 2 groups according to the quantities of their urinary protein: mild to moderate proteinuria group (proteinuria <50 mg/kg/d, 15 cases) and heavy proteinuria group (proteinuria ≥50 mg/kg/d, 10 cases). The expression and distribution of VEGFA and VEGF receptor 2 (VEGFR2) in the GFB, the phosphorylation of VEGFR2 (p-VEGFR2) and nephrin (p-nephrin), and the expression of synaptopodin and nephrin in the glomeruli were detected by immune electron microscopy and/or immunofluorescence, and their relationships to proteinuria in AS patients were analyzed. The accumulation of VEGFA in the GBM was increased in AS patients. The expression of VEGFA and the levels of p-VEGFR2 and p-nephrin in glomeruli were increased and were positively correlated with the degree of proteinuria in AS patients. The expression of synaptopodin and nephrin were decreased and were negatively correlated with the degree of proteinuria in AS patients. The over expressed VEGFA in the glomeruli and its accumulation in the GBM may activate the VEGFA-VEGFR2 and nephrin signaling pathways and lead to podocyte injury and occurrence of proteinuria in AS.


Assuntos
Membrana Basal Glomerular/metabolismo , Nefrite Hereditária/patologia , Podócitos/patologia , Proteinúria/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adolescente , Biomarcadores/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Membrana Basal Glomerular/patologia , Humanos , Masculino , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Nefrite Hereditária/metabolismo , Nefrite Hereditária/fisiopatologia , Fosforilação , Podócitos/metabolismo , Proteinúria/etiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
J Am Soc Nephrol ; 25(2): 260-75, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24262798

RESUMO

Thin-basement-membrane nephropathy (TBMN) and Alport syndrome (AS) are progressive collagen IV nephropathies caused by mutations in COL4A3/A4/A5 genes. These nephropathies invariably present with microscopic hematuria and frequently progress to proteinuria and CKD or ESRD during long-term follow-up. Nonetheless, the exact molecular mechanisms by which these mutations exert their deleterious effects on the glomerulus remain elusive. We hypothesized that defective trafficking of the COL4A3 chain causes a strong intracellular effect on the cell responsible for COL4A3 expression, the podocyte. To this end, we overexpressed normal and mutant COL4A3 chains (G1334E mutation) in human undifferentiated podocytes and tested their effects in various intracellular pathways using a microarray approach. COL4A3 overexpression in the podocyte caused chain retention in the endoplasmic reticulum (ER) that was associated with activation of unfolded protein response (UPR)-related markers of ER stress. Notably, the overexpression of normal or mutant COL4A3 chains differentially activated the UPR pathway. Similar results were observed in a novel knockin mouse carrying the Col4a3-G1332E mutation, which produced a phenotype consistent with AS, and in biopsy specimens from patients with TBMN carrying a heterozygous COL4A3-G1334E mutation. These results suggest that ER stress arising from defective localization of collagen IV chains in human podocytes contributes to the pathogenesis of TBMN and AS through activation of the UPR, a finding that may pave the way for novel therapeutic interventions for a variety of collagenopathies.


Assuntos
Colágeno Tipo IV/deficiência , Estresse do Retículo Endoplasmático/fisiologia , Membrana Basal Glomerular/metabolismo , Nefrite Hereditária/metabolismo , Podócitos/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Autoantígenos/genética , Autoantígenos/fisiologia , Biópsia , Células Cultivadas , Colágeno Tipo IV/genética , Colágeno Tipo IV/fisiologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Membrana Basal Glomerular/patologia , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Heterozigoto , Humanos , Rim/metabolismo , Rim/patologia , Camundongos , Mutação de Sentido Incorreto , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Podócitos/patologia , Mutação Puntual , Análise Serial de Proteínas , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA