Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673861

RESUMO

Plant-parasitic nematodes (PPNs) are among the most serious phytopathogens and cause widespread and serious damage in major crops. In this study, using a genome mining method, we identified nonribosomal peptide synthetase (NRPS)-like enzymes in genomes of plant-parasitic nematodes, which are conserved with two consecutive reducing domains at the N-terminus (A-T-R1-R2) and homologous to fungal NRPS-like ATRR. We experimentally investigated the roles of the NRPS-like enzyme (MiATRR) in nematode (Meloidogyne incognita) parasitism. Heterologous expression of Miatrr in Saccharomyces cerevisiae can overcome the growth inhibition caused by high concentrations of glycine betaine. RT-qPCR detection shows that Miatrr is significantly upregulated at the early parasitic life stage (J2s in plants) of M. incognita. Host-derived Miatrr RNA interference (RNAi) in Arabidopsis thaliana can significantly decrease the number of galls and egg masses of M. incognita, as well as retard development and reduce the body size of the nematode. Although exogenous glycine betaine and choline have no obvious impact on the survival of free-living M. incognita J2s (pre-parasitic J2s), they impact the performance of the nematode in planta, especially in Miatrr-RNAi plants. Following application of exogenous glycine betaine and choline in the rhizosphere soil of A. thaliana, the numbers of galls and egg masses were obviously reduced by glycine betaine but increased by choline. Based on the knowledge about the function of fungal NRPS-like ATRR and the roles of glycine betaine in host plants and nematodes, we suggest that MiATRR is involved in nematode-plant interaction by acting as a glycine betaine reductase, converting glycine betaine to choline. This may be a universal strategy in plant-parasitic nematodes utilizing NRPS-like ATRR to promote their parasitism on host plants.


Assuntos
Arabidopsis , Betaína , Peptídeo Sintases , Tylenchoidea , Betaína/metabolismo , Animais , Tylenchoidea/metabolismo , Tylenchoidea/genética , Arabidopsis/parasitologia , Arabidopsis/metabolismo , Arabidopsis/genética , Peptídeo Sintases/metabolismo , Peptídeo Sintases/genética , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Nematoides/metabolismo , Nematoides/genética
2.
FEBS J ; 291(2): 323-337, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37811683

RESUMO

Two amino acid variants in soybean serine hydroxymethyltransferase 8 (SHMT8) are associated with resistance to the soybean cyst nematode (SCN), a devastating agricultural pathogen with worldwide economic impacts on soybean production. SHMT8 is a cytoplasmic enzyme that catalyzes the pyridoxal 5-phosphate-dependent conversion of serine and tetrahydrofolate (THF) to glycine and 5,10-methylenetetrahydrofolate. A previous study of the P130R/N358Y double variant of SHMT8, identified in the SCN-resistant soybean cultivar (cv.) Forrest, showed profound impairment of folate binding affinity and reduced THF-dependent enzyme activity, relative to the highly active SHMT8 in cv. Essex, which is susceptible to SCN. Given the importance of SCN-resistance in soybean agriculture, we report here the biochemical and structural characterization of the P130R and N358Y single variants to elucidate their individual effects on soybean SHMT8. We find that both single variants have reduced THF-dependent catalytic activity relative to Essex SHMT8 (10- to 50-fold decrease in kcat /Km ) but are significantly more active than the P130R/N368Y double variant. The kinetic data also show that the single variants lack THF-substrate inhibition as found in Essex SHMT8, an observation with implications for regulation of the folate cycle. Five crystal structures of the P130R and N358Y variants in complex with various ligands (resolutions from 1.49 to 2.30 Å) reveal distinct structural impacts of the mutations and provide new insights into allosterism. Our results support the notion that the P130R/N358Y double variant in Forrest SHMT8 produces unique and unexpected effects on the enzyme, which cannot be easily predicted from the behavior of the individual variants.


Assuntos
Cistos , Nematoides , Animais , Glycine max/genética , Glicina Hidroximetiltransferase/química , Nematoides/metabolismo , Ácido Fólico , Doenças das Plantas
3.
New Phytol ; 237(4): 1374-1390, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349395

RESUMO

Autophagy, an intracellular degradation system conserved in eukaryotes, has been increasingly recognized as a key battlefield in plant-pathogen interactions. However, the role of plant autophagy in nematode parasitism is mostly unknown. We report here the identification of a novel and conserved effector, Nematode Manipulator of Autophagy System 1 (NMAS1), from plant-parasitic cyst nematodes (Heterodera and Globodera spp.). We used molecular and genetic analyses to demonstrate that NMAS1 is required for nematode parasitism. The NMAS1 effectors are potent suppressors of reactive oxygen species (ROS) induced by flg22 and cell death mediated by immune receptors in Nicotiana benthamiana, suggesting a key role of NMAS1 effectors in nematode virulence. Arabidopsis atg mutants defective in autophagy showed reduced susceptibility to nematode infection. The NMAS1 effectors contain predicted AuTophaGy-related protein 8 (ATG8)-interacting motif (AIM) sequences. In planta protein-protein interaction assays further demonstrated that NMAS1 effectors specifically interact with host plant ATG8 proteins. Interestingly, mutation in AIM2 of GrNMAS1 from the potato cyst nematode Globodera rostochiensis abolishes its interaction with potato StATG8 proteins and its activity in ROS suppression. Collectively, our results reveal for the first time that cyst nematodes employ a conserved AIM-containing virulence effector capable of targeting a key component of host autophagy to promote disease.


Assuntos
Arabidopsis , Nematoides , Tylenchoidea , Animais , Virulência , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Helminto/metabolismo , Nematoides/metabolismo , Proteínas de Plantas/metabolismo , Autofagia , Tylenchoidea/fisiologia , Doenças das Plantas/genética
4.
J Adv Res ; 47: 27-40, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35872350

RESUMO

INTRODUCTION: Plant parasitic cyst nematodes secrete a number of effectors into hosts to initiate formation of syncytia and infection causing huge yield losses. OBJECTIVES: The identified cyst nematode effectors are still limited, and the cyst nematode effectors-involved interaction mechanisms between cyst nematodes and plants remain largely unknown. METHODS: The t-SNARE domain-containing effector in beet cyst nematode (BCN) was identified by In situ hybridization and immunohistochemistry analyses. The mutant of effector gene was designed by protein structure modeling analysis. The functions of effector gene and its mutant were analyzed by genetic transformation in Arabidopsis and infection by BCN. The protein-protein interaction was analyzed by yeast two hybrid, BiFC and pulldown assays. Gene expression was assayed by quantitative real-time PCR. RESULTS: A t-SNARE domain-containing BCN HsSNARE1 was identified as an effector, and its mutant HsSNARE1-M1 carrying three mutations (E141D, A143T and -148S) that altered regional structure from random coils to α-helixes was designed and constructed. Transgenic analyses indicated that expression of HsSNARE1 significantly enhanced while expression of HsSNARE1-M1 and highly homologous HgSNARE1 remarkably suppressed BCN susceptibility of Arabidopsis. HsSNARE1 interacted with AtSNAP2 and AtPR1 via its t-SNARE domain and N-terminal, respectively, while HsSNARE1-M1/HgSNARE1 could not interact with AtPR1 but bound AtSNAP2. AtSNAP2, AtSHMT4 and AtPR1 interacted pairwise, but neither HsSNARE1 nor HsSNARE1-M1/HgSNARE1 could interact with AtSHMT4. Expression of HsSNARE1 significantly suppressed while expression of HsSNARE1-M1/HgSNARE1 considerably induced both AtSHMT4 and AtPR1 in transgenic Arabidopsis infected with BCN. Overexpression of AtPR1 significantly suppressed BCN susceptibility of Arabidopsis. CONCLUSIONS: This work identified a t-SNARE-domain containing cyst nematode effector HsSNARE1 and deciphered a molecular mode of action of the t-SNARE-domain containing cyst nematode effectors that HsSNARE1 promotes cyst nematode disease by interaction with both AtSNAP2 and AtPR1 and significant suppression of both AtSHMT4 and AtPR1, which is mediated by three structure change-causing amino acid residues.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Beta vulgaris , Nematoides , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Beta vulgaris/metabolismo , Beta vulgaris/parasitologia , Nematoides/metabolismo , Mutação
5.
Commun Biol ; 5(1): 646, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778602

RESUMO

The Plasminogen-Apple-Nematode (PAN) domain, with a core of four to six cysteine residues, is found in > 28,000 proteins across 959 genera. Still, its role in protein function is not fully understood. The PAN domain was initially characterized in numerous proteins, including HGF. Dysregulation of HGF-mediated signaling results in multiple deadly cancers. The binding of HGF to its cell surface receptor, c-MET, triggers all biological impacts. Here, we show that mutating four core cysteine residues in the HGF PAN domain reduces c-MET interaction, subsequent c-MET autophosphorylation, and phosphorylation of its downstream targets, perinuclear localization, cellular internalization of HGF, and its receptor, c-MET, and c-MET ubiquitination. Furthermore, transcriptional activation of HGF/c-MET signaling-related genes involved in cancer progression, invasion, metastasis, and cell survival were impaired. Thus, targeting the PAN domain of HGF may represent a mechanism for selectively regulating the binding and activation of the c-MET pathway.


Assuntos
Malus , Nematoides , Neoplasias , Animais , Cisteína/genética , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Malus/metabolismo , Nematoides/metabolismo , Plasminogênio , Serina Proteases
6.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830273

RESUMO

Classic metabolomic methods have proven to be very useful to study functional biology and variation in the chemical composition of different tissues. However, they do not provide any information in terms of spatial localization within fine structures. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) does and reaches at best a spatial resolution of 0.25 µm depending on the laser setup, making it a very powerful tool to analyze the local complexity of biological samples at the cellular level. Here, we intend to give an overview of the diversity of the molecules and localizations analyzed using this method as well as to update on the latest adaptations made to circumvent the complexity of samples. MALDI MSI has been widely used in medical sciences and is now developing in research areas as diverse as entomology, microbiology, plant biology, and plant-microbe interactions, the rhizobia symbiosis being the most exhaustively described so far. Those are the fields of interest on which we will focus to demonstrate MALDI MSI strengths in characterizing the spatial distributions of metabolites, lipids, and peptides in relation to biological questions.


Assuntos
Fungos/metabolismo , Interações entre Hospedeiro e Microrganismos , Metabolismo dos Lipídeos , Lipidômica/métodos , Metaboloma , Plantas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Diagnóstico por Imagem/métodos , Humanos , Insetos/metabolismo , Nematoides/metabolismo , Peptídeos/metabolismo , Simbiose
7.
J Cell Mol Med ; 25(17): 8338-8351, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302428

RESUMO

A novel polysaccharide was extracted from Sipunculus nudus (SNP). The molecular weight (MW) of SNP was determined to be 9223 Da by high-performance gel permeation chromatography analyses, and the structure of the SNP repeat units was determined to be →3,4-ß-D-GlcpNAC (1→ and →4) -α-D-Glcp (1→ in the ratio of 15:1; →2) -α -D-Galp - (1→ as a side chain; and ß-D-Galp-(1→ and α- D-Glcp - (1→ as end groups by GC-MS analysis and NMR assays. The effect of SNP on hepatoma HepG2-bearing mice was analysed to verify its potential in the clinical treatment of liver cancer. A total of 90 male athymic nu/nu mice were divided into therapeutic and preventive groups and fed with different amounts of SNP. The antitumour effect of SNP on HepG2-bearing mice and mechanism of such were studied by analysing the tumour size, spleen index, thymus index, immune factors in the blood, tumour apoptosis factors, etc. The results suggest that SNP not only increased the index of immune organs in the body, but also enhanced the secretion of immune factors, including interleukin-2, interferon gamma and tumour necrosis factor-alpha in the serum. SNP induced the apoptosis of tumour cells via the mitochondrial apoptosis pathway, which upregulated caspase-3, caspase-8, caspase-9 and BCL2-associated X, but downregulated B-cell lymphoma-2 and vascular endothelial growth factor protein expression. In conclusion, SNP inhibited tumour growth by enhancing immune function and inducing tumour cell apoptosis in HepG2-bearing mice. Therefore, SNP may be further investigated as a promising candidate for future antitumour drugs.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Fatores Imunológicos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Nematoides/metabolismo , Polissacarídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Nus
8.
New Phytol ; 232(1): 318-331, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34133755

RESUMO

Reactive oxygen species (ROS) generated in response to infections often activate immune responses in eukaryotes including plants. In plants, ROS are primarily produced by plasma membrane-bound NADPH oxidases called respiratory burst oxidase homologue (Rboh). Surprisingly, Rbohs can also promote the infection of plants by certain pathogens, including plant parasitic cyst nematodes. The Arabidopsis genome contains 10 Rboh genes (RbohA-RbohJ). Previously, we showed that cyst nematode infection causes a localised ROS burst in roots, mediated primarily by RbohD and RbohF. We also found that plants deficient in RbohD and RbohF (rbohD/F) exhibit strongly decreased susceptibility to cyst nematodes, suggesting that Rboh-mediated ROS plays a role in promoting infection. However, little information is known of the mechanism by which Rbohs promote cyst nematode infection. Here, using detailed genetic and biochemical analyses, we identified WALLS ARE THIN1 (WAT1), an auxin transporter, as a downstream target of Rboh-mediated ROS during parasitic infections. We found that WAT1 is required to modulate the host's indole metabolism, including indole-3-acetic acid levels, in infected cells and that this reprogramming is necessary for successful establishment of the parasite. In conclusion, this work clarifies a unique mechanism that enables cyst nematodes to use the host's ROS for their own benefit.


Assuntos
Proteínas de Arabidopsis , Cistos , Nematoides , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Indóis , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Nematoides/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Sci Rep ; 11(1): 3908, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594100

RESUMO

The third-stage dispersal juvenile (DJ3) of pinewood nematode (PWN) is highly associated with low-temperature survival and spread of the nematode. Oil-Red-O staining showed that its lipid content was significantly higher compared with other PWN stages. Weighted gene coexpression network analysis identified that genes in the pink module were highly related to DJ3 induced in the laboratory (DJ3-lab). These genes were arranged according to their gene significance (GS) to DJ3-lab. Of the top 30 genes with the highest GS, seven were found to be highly homologous to the cysteine protease family cathepsin 1 (CATH1). The top 30 genes with the highest weight value to each of the seven genes in the pink module were selected, and finally 35 genes were obtained. Between these seven CATH1 homologous genes and their 35 highly related genes, 15 were related to fat metabolism or autophagy. These autophagy-related genes were also found to be highly correlated with other genes in the pink module, suggesting that autophagy might be involved in the mechanism of longevity in DJ3 and the formation of DJ3 by regulating genes related to fat metabolism.


Assuntos
Autofagia/genética , Metabolismo dos Lipídeos/genética , Nematoides/genética , Distribuição Animal , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Nematoides/metabolismo , Pinus/parasitologia
10.
Elife ; 92020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32744503

RESUMO

Parasitic helminths use two benzoquinones as electron carriers in the electron transport chain. In normoxia, they use ubiquinone (UQ), but in anaerobic conditions inside the host, they require rhodoquinone (RQ) and greatly increase RQ levels. We previously showed the switch from UQ to RQ synthesis is driven by a change of substrates by the polyprenyltransferase COQ-2 (Del Borrello et al., 2019; Roberts Buceta et al., 2019); however, the mechanism of substrate selection is not known. Here, we show helminths synthesize two coq-2 splice forms, coq-2a and coq-2e, and the coq-2e-specific exon is only found in species that synthesize RQ. We show that in Caenorhabditis elegans COQ-2e is required for efficient RQ synthesis and survival in cyanide. Importantly, parasites switch from COQ-2a to COQ-2e as they transit into anaerobic environments. We conclude helminths switch from UQ to RQ synthesis principally via changes in the alternative splicing of coq-2.


Assuntos
Alquil e Aril Transferases/genética , Processamento Alternativo , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Ubiquinona/análogos & derivados , Alquil e Aril Transferases/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Nematoides/enzimologia , Nematoides/genética , Nematoides/metabolismo , Oxirredução , Platelmintos/enzimologia , Platelmintos/genética , Platelmintos/metabolismo , Ubiquinona/metabolismo
11.
Sci Rep ; 10(1): 9025, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493993

RESUMO

Cyst nematodes induce host-plant root cells to form syncytia from which the nematodes feed. Comprehensive histological investigation of these feeding sites is complicated by their variable shape and their positions deep within root tissue. Using tissue clearing and confocal microscopy, we examined thick (up to 150 µm) sections of wheat roots infected by cereal cyst nematodes (Heterodera avenae). This approach provided clear views of feeding sites and surrounding tissues, with resolution sufficient to reveal spatial relationships among nematodes, syncytia and host vascular tissues at the cellular level. Regions of metaxylem vessels near syncytia were found to have deviated from classical developmental patterns. Xylem vessel elements in these regions had failed to elongate but had undergone radial expansion, becoming short and plump rather than long and cylindrical. Further investigation revealed that vessel elements cease to elongate shortly after infection and that they later experience delays in secondary thickening (lignification) of their outer cell walls. Some of these elements were eventually incorporated into syncytial feeding sites. By interfering with a developmental program that normally leads to programmed cell death, H. avenae may permit xylem vessel elements to remain alive for later exploitation by the parasite.


Assuntos
Infecções por Nematoides/metabolismo , Triticum/metabolismo , Xilema/citologia , Animais , Parede Celular/metabolismo , Cistos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Células Gigantes/citologia , Infecções , Microscopia Confocal/métodos , Nematoides/metabolismo , Infecções por Nematoides/fisiopatologia , Doenças das Plantas/parasitologia , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Triticum/parasitologia , Tylenchoidea/parasitologia , Tylenchoidea/fisiologia
12.
Genome Biol Evol ; 12(8): 1240-1255, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32426804

RESUMO

Zona pellucida (ZP) modules mediate extracellular protein-protein interactions and contribute to important biological processes including syngamy and cellular morphogenesis. Although some biomedically relevant ZP modules are well studied, little is known about the protein family's broad-scale diversity and evolution. The increasing availability of sequenced genomes from "nonmodel" systems provides a valuable opportunity to address this issue and to use comparative approaches to gain new insights into ZP module biology. Here, through phylogenetic and structural exploration of ZP module diversity across the nematode phylum, I report evidence that speaks to two important aspects of ZP module biology. First, I show that ZP-C domains-which in some modules act as regulators of ZP-N domain-mediated polymerization activity, and which have never before been found in isolation-can indeed be found as standalone domains. These standalone ZP-C domain proteins originated in independent (paralogous) lineages prior to the diversification of extant nematodes, after which they evolved under strong stabilizing selection, suggesting the presence of ZP-N domain-independent functionality. Second, I provide a much-needed phylogenetic perspective on disulfide bond variability, uncovering evidence for both convergent evolution and disulfide-bond reshuffling. This result has implications for our evolutionary understanding and classification of ZP module structural diversity and highlights the usefulness of phylogenetics and diverse sampling for protein structural biology. All told, these findings set the stage for broad-scale (cross-phyla) evolutionary analysis of ZP modules and position Caenorhabditis elegans and other nematodes as important experimental systems for exploring the evolution of ZP modules and their constituent domains.


Assuntos
Proteínas do Ovo/genética , Evolução Molecular , Nematoides/genética , Domínios Proteicos , Zona Pelúcida/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Proteínas do Ovo/química , Proteínas do Ovo/metabolismo , Nematoides/química , Nematoides/metabolismo , Filogenia
13.
Biopreserv Biobank ; 18(4): 290-296, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32423228

RESUMO

Recently, many studies have found that late embryogenesis abundant (LEA) proteins could protect cells from drought, high salinity, and other stress conditions. Because LEA proteins maintain the integrity and stability of cell membranes, LEA proteins increase the cell's tolerance to dehydration stress, and reduce the osmotic and freezing damage during freezing. Whether LEA proteins could reduce cryopreservation damage and improve cell viability remains to be confirmed. In this study, we purified the recombinant AavLEA1 proteins, examined their thermal solubility and the effect of AavLEA1 proteins on the osmotic stress of cells, and studied the effects of the AavLEA1 protein on cryopreservation of human umbilical cord matrix mesenchymal stem cells (hUCM-MSCs). We utilized three concentrations of AavLEA1 protein (0.1, 0.5, and 2 mg/mL) to cryopreserve hUCM-MSCs and analyzed cell viability and apoptosis of MSCs after slow-cooling cryopreservation. We also examined the cryopreservation effect of AavLEA1 protein on hUCM-MSCs survival with 0%, 2%, 5%, and 10% (v/v) dimethyl sulfoxide (DMSO). We found that the survival rate of hUCM-MSCs supplemented with AavLEA1 protein was significantly higher than that of MSCs cryopreserved with low concentration of DMSO solution, and the apoptosis and necrosis rates were correspondingly reduced. In conclusion, recombinant AavLEA1 protein can improve the efficiency of MSC cryopreservation, increase the hUCM-MSCs viability, and partly replace DMSO during cryopreservation.


Assuntos
Dimetil Sulfóxido/farmacologia , Proteínas de Helminto/farmacologia , Nematoides/genética , Cordão Umbilical/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Criopreservação , Proteínas de Helminto/genética , Humanos , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nematoides/metabolismo , Pressão Osmótica/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Cordão Umbilical/química , Cordão Umbilical/efeitos dos fármacos
14.
EMBO J ; 38(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31061171

RESUMO

Plants are exposed to cellular damage by mechanical stresses, herbivore feeding, or invading microbes. Primary wound responses are communicated to neighboring and distal tissues by mobile signals. In leaves, crushing of large cell populations activates a long-distance signal, causing jasmonate production in distal organs. This is mediated by a cation channel-mediated depolarization wave and is associated with cytosolic Ca2+ transient currents. Here, we report that much more restricted, single-cell wounding in roots by laser ablation elicits non-systemic, regional surface potential changes, calcium waves, and reactive oxygen species (ROS) production. Surprisingly, laser ablation does not induce a robust jasmonate response, but regionally activates ethylene production and ethylene-response markers. This ethylene activation depends on calcium channel activities distinct from those in leaves, as well as a specific set of NADPH oxidases. Intriguingly, nematode attack elicits very similar responses, including membrane depolarization and regional upregulation of ethylene markers. Moreover, ethylene signaling antagonizes nematode feeding, delaying initial syncytial-phase establishment. Regional signals caused by single-cell wounding thus appear to constitute a relevant root immune response against small invaders.


Assuntos
Etilenos/biossíntese , Nematoides/metabolismo , Raízes de Plantas/metabolismo , Estresse Mecânico , Estresse Fisiológico/fisiologia , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Sinalização do Cálcio/fisiologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Oxilipinas/metabolismo , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Análise de Célula Única , Imagem com Lapso de Tempo
15.
PLoS Pathog ; 15(2): e1007503, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30707749

RESUMO

Plant parasitic nematodes must be able to locate and feed from their host in order to survive. Here we show that Pratylenchus coffeae regulates the expression of selected cell-wall degrading enzyme genes relative to the abundance of substrate in root exudates, thereby tailoring gene expression for root entry of the immediate host. The concentration of cellulose or xylan within the exudate determined the level of ß-1,4-endoglucanase (Pc-eng-1) and ß-1,4-endoxylanase (Pc-xyl) upregulation respectively. Treatment of P. coffeae with cellulose or xylan or with root exudates deficient in cellulose or xylan conferred a specific gene expression response of Pc-eng-1 or Pc-xyl respectively with no effect on expression of another cell wall degrading enzyme gene, a pectate lyase (Pc-pel). RNA interference confirmed the importance of regulating these genes as lowered transcript levels reduced root penetration by the nematode. Gene expression in this plant parasitic nematode is therefore influenced, in a host-specific manner, by cell wall components that are either secreted by the plant or released by degradation of root tissue. Transcriptional plasticity may have evolved as an adaptation for host recognition and increased root invasion by this polyphagous species.


Assuntos
Nematoides/genética , Exsudatos de Plantas/fisiologia , Animais , Celulase/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Interações Hospedeiro-Parasita/genética , Nematoides/metabolismo , Infecções por Nematoides/genética , Doenças das Plantas/genética , Exsudatos de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas , Polissacarídeo-Liases , Regulação para Cima
16.
Rev. biol. trop ; 66(4): 1709-1720, oct.-dic. 2018. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-1003358

RESUMO

Resumen El estudio de las comunidades bióticas que habitan el suelo y que representan un 25 % de la diversidad existente, es importante para su conservación y aprovechamiento sostenible. Entre la biota edáfica los nematodos se consideran de importancia ecológica como indicadores ambientales. Herramientas como los índices de madurez, los índices de la red trófica y las huellas metabólicas, basadas en la comunidad de nematodos, son utilizadas para evaluar la condición del ecosistema con relación al impacto de contaminantes y otros factores estresantes en los ecosistemas. Los cambios en la estructura y funcionamiento de las redes tróficas del suelo y más recientemente el efecto de los factores climáticos, también tienen impacto en la comunidad nematológica. Costa Rica es un país tropical donde se pueden encontrar gran variedad de microclimas en un área pequeña, esta característica se ve reflejada en las diferentes zonas de vida descritas por Holdridge para el territorio nacional, las cuales difieren en sus patrones de precipitación, temperatura y evapotranspiración. En esta investigación, se aprovechó la diversidad de climas para contribuir con el conocimiento de las comunidades de nematodos de varios ecosistemas en diferentes zonas de vida. Para esto se recolectaron muestras en distintas zonas de vida en la Región Huetar Norte de Costa Rica. Los nematodos presentes en las muestras fueron extraídos e identificados a nivel de familia o género, y con los datos obtenidos se calcularon índices de diversidad, de madurez, de la red trófica y huellas metabólicas. Se obtuvo una gran variación en la abundancia de taxa entre los diferentes tipos de manejo dentro de los ecosistemas; sin embargo, la baja disponibilidad de repeticiones para analizar estadísticamente de manera precisa, hizo que las estimaciones de una media fueran indemostrables numéricamente. No fue posible establecer diferencias significativas entre los ecosistemas con diferentes tipos de manejo respecto a las variables calculadas, lo que se atribuye a la variabilidad de los datos. En cuanto a las zonas de vida, los índices de madurez y de la red trófica no mostraron diferencias entre las mismas, mientras que las huellas metabólicas, así como la biomasa de nematodos se correlacionaron positivamente con éstas. En el bosque húmedo montano bajo, la zona con menor temperatura media anual, la huella metabólica fue mayor, luego la huella metabólica disminuyó en las diferentes zonas de vida en correspondencia con el aumento de la temperatura media anual reportada para cada una. Las huellas metabólicas relacionadas con la descomposición de la materia orgánica del suelo (fungívoros, bacterívoros y enriquecimiento) manifestaron correlaciones altamente significativas. Se plantea que el aumento de las huellas metabólicas conforme disminuye la temperatura evidencia un cambio en la dinámica de la descomposición química y biológica de la materia orgánica del suelo y en el flujo de energía de la red trófica. En otros estudios también se ha concluido que la temperatura es un factor determinante en la distribución de las especies en ecosistemas edáficos, y por lo tanto debería ser objeto de mayor investigación.(AU)


Abstract Soil biotic communities represent 25 % of the existing global diversity, therefore their study is important for their conservation and sustainable use. Among edaphic biota, nematodes are considered ecologically important as environmental indicators. Tools like the maturity indexes, food web diagnostics and metabolic footprints are used in assessing the ecosystem in relation to the impact contaminants and other stressors, as well as monitoring and measuring changes in the structure and dynamics of the food webs and, more recently, to study the impact of climate factors on the nematode community. Costa Rica is a tropical country with a variety of miroclimates in a small area; this attribute is reflected in the different life zones described by Holdridge for Costa Rica, which differ in their patterns of precipitation, temperature and evapotranspiration. In this research, the diversity of climates was exploited in order to contribute with the knowledge of the nematode communities of several ecosystems within different life zones. For this purpose, samples were taken in several ecosystems located in different life zones in the Region Huetar Norte from Costa Rica. High variation in taxa abundance between different management types within ecosystems was obtained. However, the low availability of replicates for proper statistical analyzes made the mean estimations numerically unprovable. The maturity indexes and the food web diagnosis did not show statistical differences between the studied zones, while, the metabolic footprints were positively correlated to life zones. The metabolic footprint decreased in the different life zones in correspondence with the increase of the average annual temperature reported for each one. The metabolic footprints associated with the decomposition of organic matter (fungivores, bacterivores, and enrichment) had the strongest correlations. The proposition is that the increase in metabolic footprints while the temperature decreases, reflects a change in the dynamics of chemical and biological decomposition of organic matter and in the energy flow in the food networks. This research supports finding in other studies, suggesting that the temperature is a key factor in the species distribution in edaphic ecosystems, and therefore it should be subject to further investigation.(AU)


Assuntos
Biodiversidade , Microclima , Nematoides/metabolismo , Costa Rica
17.
Mol Pharmacol ; 94(5): 1289-1297, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30194106

RESUMO

Nematodes exhibit a vast array of cys-loop ligand-gated ion channels with unique pharmacologic characteristics. However, many of the structural components that govern the binding of various ligands are unknown. The nematode cys-loop GABA receptor uncoordinated 49 (UNC-49) is an important receptor found at neuromuscular junctions that plays an important role in the sinusoidal movement of worms. The unique pharmacologic features of this receptor suggest that there are structural differences in the agonist binding site when compared with mammalian receptors. In this study, we examined each amino acid in one of the main agonist binding loops (loop E) via the substituted cysteine accessibility method (SCAM) and analyzed the interaction of various residues by molecular dynamic simulations. We found that of the 18 loop E mutants analyzed, H142C, R147C, and S157C had significant changes in GABA EC50 and were accessible to modification by a methanethiosulfonate reagent (MTSET) resulting in a change in I GABA In addition, the residue H142, which is unique to nematode UNC-49 GABA receptors, appears to play a negative role in GABA sensitivity as its mutation to cysteine increased sensitivity to GABA and caused the UNC-49 receptor partial agonist 5-aminovaleric acid (DAVA) to behave as a full agonist. Overall, this study has revealed potential differences in the agonist binding pocket between nematode UNC-49 and mammalian GABA receptors that could be exploited in the design of novel anthelmintics.


Assuntos
Cisteína/metabolismo , Nematoides/metabolismo , Receptores de GABA/metabolismo , Sequência de Aminoácidos , Animais , Anti-Helmínticos/metabolismo , Anti-Helmínticos/farmacologia , Sítios de Ligação , Desenho de Fármacos , Mutagênese Sítio-Dirigida , Nematoides/efeitos dos fármacos , Receptores de GABA/química , Receptores de GABA/efeitos dos fármacos , Homologia de Sequência de Aminoácidos
18.
Dev Comp Immunol ; 87: 90-97, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29894713

RESUMO

Drosomycin-type antifungal peptides (DTAFPs) are natural effectors of the innate immune system, which are restrictedly distributed in plants and ecdysozoans. Mehamycin is a bi-domain DTAFP (abbreviated as bDTAFP) firstly found in the Northern root-knot nematode Meloidogyne hapla. Here, we report its structural and functional features and the evolution of bDTAFPs in nematodes. Different from classical DTAFPs, mehamycin contains an insertion, called single Disulfide Bridge-linked Domain (abbreviated as sDBD), located in a loop region of the drosomycin scaffold. Despite this, recombinant mehamycin likely adopts a similar fold to drosomycin, as revealed by the circular dichroism spectral analysis. Functionally, it showed some weak activity against three species of fungi but relatively stronger activity against seven species of Gram-positive bacteria, indicative of functional diversification between mehamycin and classical DTAFPs. By computational data mining of the nematode databases, we identified polymorphic genes encoding mehamycin and a new multigene family of bDTAFPs (named roremycins) from Rotylenchulus reniformis. A combination of data suggests that the origination of sDBDs from M. hapla and R. reniformis is a consequence of convergent evolution, in which some probably suffered positive selection during evolution. Our study may be valuable in understanding the role of these unique antimicrobial peptides in the innate immunity of nematodes.


Assuntos
Antifúngicos/metabolismo , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Nematoides/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Antifúngicos/classificação , Antifúngicos/farmacologia , Evolução Molecular , Fungos/classificação , Fungos/efeitos dos fármacos , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/efeitos dos fármacos , Proteínas de Helminto/genética , Modelos Moleculares , Nematoides/genética , Peptídeos/química , Peptídeos/genética , Filogenia , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Tylenchoidea/genética , Tylenchoidea/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-29209592

RESUMO

Resistance to anthelmintic drugs is a major problem in the global fight against parasitic nematodes infecting humans and animals. While previous studies have identified mutations in drug target genes in resistant parasites, changes in the expression levels of both targets and transporters have also been reported. The mechanisms underlying these changes in gene expression are unresolved. Here, we take a novel approach to this problem by investigating the role of small regulatory RNAs in drug resistant strains of the important parasite Haemonchus contortus. microRNAs (miRNAs) are small (22 nt) non-coding RNAs that regulate gene expression by binding predominantly to the 3' UTR of mRNAs. Changes in miRNA expression have been implicated in drug resistance in a variety of tumor cells. In this study, we focused on two geographically distinct ivermectin resistant strains of H. contortus and two lines generated by multiple rounds of backcrossing between susceptible and resistant parents, with ivermectin selection. All four resistant strains showed significantly increased expression of a single miRNA, hco-miR-9551, compared to the susceptible strain. This same miRNA is also upregulated in a multi-drug-resistant strain of the related nematode Teladorsagia circumcincta. hco-miR-9551 is enriched in female worms, is likely to be located on the X chromosome and is restricted to clade V parasitic nematodes. Genes containing predicted binding sites for hco-miR-9551 were identified computationally and refined based on differential expression in a transcriptomic dataset prepared from the same drug resistant and susceptible strains. This analysis identified three putative target mRNAs, one of which, a CHAC domain containing protein, is located in a region of the H. contortus genome introgressed from the resistant parent. hco-miR-9551 was shown to interact with the 3' UTR of this gene by dual luciferase assay. This study is the first to suggest a role for miRNAs and the genes they regulate in drug resistant parasitic nematodes. miR-9551 also has potential as a biomarker of resistance in different nematode species.


Assuntos
Anti-Helmínticos/farmacologia , Resistência a Medicamentos/genética , Expressão Gênica , MicroRNAs/genética , Nematoides/genética , Animais , Biomarcadores , Resistência a Medicamentos/fisiologia , Feminino , Células HEK293 , Haemonchus/genética , Haemonchus/metabolismo , Humanos , Ivermectina/farmacologia , MicroRNAs/metabolismo , Nematoides/metabolismo , RNA Mensageiro/metabolismo
20.
Sci Rep ; 7(1): 6874, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28761178

RESUMO

The beet cyst nematode Heterodera schachtii causes major yield losses in sugar beet. Understanding the interaction between H. schachtii and its host plant is important for developing a sustainable management system. Nematode effectors play a crucial role in initializing and sustaining successful parasitism. In our study, we identified a gene (Hs-Tyr) encoding a tyrosinase functional domain (PF00264). We describe Hs-Tyr as a novel nematode effector. Hs-Tyr is localized in the nematode esophageal gland. Up-regulation of its expression coincided with the parasitic developmental stages of the nematode. Silencing Hs-Tyr by RNA interference made the treated nematodes less virulent. When RNAi-treated nematodes succeeded in infecting the plant, developing females and their associated syncytial nurse cells were significantly smaller than in control plants. Ectopically expressing the Hs-Tyr effector in Arabidopsis increased plant susceptibility to H. schachtii, but not to the root-knot nematode Meloidogyne incognita. Interestingly, Hs-Tyr in the plant promoted plant growth and changed the root architecture. Additionally, the expression of Hs-Tyr in Arabidopsis caused changes in the homeostasis of several plant hormones especially auxin and the ethylene precursor aminocyclopropane-carboxylic acid.


Assuntos
Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita , Monofenol Mono-Oxigenase/metabolismo , Nematoides/patogenicidade , Reguladores de Crescimento de Plantas/metabolismo , Animais , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Esôfago/metabolismo , Feminino , Proteínas de Helminto/genética , Monofenol Mono-Oxigenase/genética , Nematoides/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA