Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.202
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3882, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719809

RESUMO

In this randomized phase II clinical trial, we evaluated the effectiveness of adding the TLR agonists, poly-ICLC or resiquimod, to autologous tumor lysate-pulsed dendritic cell (ATL-DC) vaccination in patients with newly-diagnosed or recurrent WHO Grade III-IV malignant gliomas. The primary endpoints were to assess the most effective combination of vaccine and adjuvant in order to enhance the immune potency, along with safety. The combination of ATL-DC vaccination and TLR agonist was safe and found to enhance systemic immune responses, as indicated by increased interferon gene expression and changes in immune cell activation. Specifically, PD-1 expression increases on CD4+ T-cells, while CD38 and CD39 expression are reduced on CD8+ T cells, alongside an increase in monocytes. Poly-ICLC treatment amplifies the induction of interferon-induced genes in monocytes and T lymphocytes. Patients that exhibit higher interferon response gene expression demonstrate prolonged survival and delayed disease progression. These findings suggest that combining ATL-DC with poly-ICLC can induce a polarized interferon response in circulating monocytes and CD8+ T cells, which may represent an important blood biomarker for immunotherapy in this patient population.Trial Registration: ClinicalTrials.gov Identifier: NCT01204684.


Assuntos
Linfócitos T CD8-Positivos , Vacinas Anticâncer , Carboximetilcelulose Sódica/análogos & derivados , Células Dendríticas , Glioma , Interferons , Poli I-C , Polilisina/análogos & derivados , Humanos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Glioma/imunologia , Glioma/terapia , Feminino , Masculino , Pessoa de Meia-Idade , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Poli I-C/administração & dosagem , Poli I-C/farmacologia , Adulto , Receptores Toll-Like/agonistas , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Idoso , Vacinação , Monócitos/imunologia , Monócitos/efeitos dos fármacos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Imunoterapia/métodos , Agonistas do Receptor Semelhante a Toll
2.
J Hematol Oncol ; 17(1): 31, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720342

RESUMO

Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.


Assuntos
Neoplasias Encefálicas , Células Supressoras Mieloides , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Células Supressoras Mieloides/imunologia , Glioma/imunologia , Glioma/terapia , Glioma/patologia , Glioblastoma/imunologia , Glioblastoma/terapia , Glioblastoma/patologia , Animais , Imunoterapia/métodos , Linfócitos T Reguladores/imunologia
3.
Front Immunol ; 15: 1388769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726003

RESUMO

Background: Newer 3D culturing approaches are a promising way to better mimic the in vivo tumor microenvironment and to study the interactions between the heterogeneous cell populations of glioblastoma multiforme. Like many other tumors, glioblastoma uses extracellular vesicles as an intercellular communication system to prepare surrounding tissue for invasive tumor growth. However, little is known about the effects of 3D culture on extracellular vesicles. The aim of this study was to comprehensively characterize extracellular vesicles in 3D organoid models and compare them to conventional 2D cell culture systems. Methods: Primary glioblastoma cells were cultured as 2D and 3D organoid models. Extracellular vesicles were obtained by precipitation and immunoaffinity, with the latter allowing targeted isolation of the CD9/CD63/CD81 vesicle subpopulation. Comprehensive vesicle characterization was performed and miRNA expression profiles were generated by smallRNA-sequencing. In silico analysis of differentially regulated miRNAs was performed to identify mRNA targets and corresponding signaling pathways. The tumor cell media and extracellular vesicle proteome were analyzed by high-resolution mass spectrometry. Results: We observed an increased concentration of extracellular vesicles in 3D organoid cultures. Differential gene expression analysis further revealed the regulation of twelve miRNAs in 3D tumor organoid cultures (with nine miRNAs down and three miRNAs upregulated). MiR-23a-3p, known to be involved in glioblastoma invasion, was significantly increased in 3D. MiR-7-5p, which counteracts glioblastoma malignancy, was significantly decreased. Moreover, we identified four miRNAs (miR-323a-3p, miR-382-5p, miR-370-3p, miR-134-5p) located within the DLK1-DIO3 domain, a cancer-associated genomic region, suggesting a possible importance of this region in glioblastoma progression. Overrepresentation analysis identified alterations of extracellular vesicle cargo in 3D organoids, including representation of several miRNA targets and proteins primarily implicated in the immune response. Conclusion: Our results show that 3D glioblastoma organoid models secrete extracellular vesicles with an altered cargo compared to corresponding conventional 2D cultures. Extracellular vesicles from 3D cultures were found to contain signaling molecules associated with the immune regulatory signaling pathways and as such could potentially change the surrounding microenvironment towards tumor progression and immunosuppressive conditions. These findings suggest the use of 3D glioblastoma models for further clinical biomarker studies as well as investigation of new therapeutic options.


Assuntos
Vesículas Extracelulares , Glioblastoma , MicroRNAs , Organoides , Microambiente Tumoral , Humanos , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Organoides/imunologia , MicroRNAs/genética , Microambiente Tumoral/imunologia , Transdução de Sinais , Células Tumorais Cultivadas , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Técnicas de Cultura de Células em Três Dimensões/métodos
4.
Front Immunol ; 15: 1388574, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726015

RESUMO

Background: Extracellular vesicles (EVs) are small, transparent vesicles that can be found in various biological fluids and are derived from the amplification of cell membranes. Recent studies have increasingly demonstrated that EVs play a crucial regulatory role in tumorigenesis and development, including the progression of metastatic tumors in distant organs. Brain metastases (BMs) are highly prevalent in patients with lung cancer, breast cancer, and melanoma, and patients often experience serious complications and are often associated with a poor prognosis. The immune microenvironment of brain metastases was different from that of the primary tumor. Nevertheless, the existing review on the role and therapeutic potential of EVs in immune microenvironment of BMs is relatively limited. Main body: This review provides a comprehensive analysis of the published research literature, summarizing the vital role of EVs in BMs. Studies have demonstrated that EVs participate in the regulation of the BMs immune microenvironment, exemplified by their ability to modify the permeability of the blood-brain barrier, change immune cell infiltration, and activate associated cells for promoting tumor cell survival and proliferation. Furthermore, EVs have the potential to serve as biomarkers for disease surveillance and prediction of BMs. Conclusion: Overall, EVs play a key role in the regulation of the immune microenvironment of brain metastasis and are expected to make advances in immunotherapy and disease diagnosis. Future studies will help reveal the specific mechanisms of EVs in brain metastases and use them as new therapeutic strategies.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Microambiente Tumoral , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/imunologia , Microambiente Tumoral/imunologia , Animais , Biomarcadores Tumorais/metabolismo , Barreira Hematoencefálica/metabolismo
5.
J Immunother Cancer ; 12(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724464

RESUMO

BACKGROUND: Glioblastoma (GBM) almost invariably becomes resistant towards conventional treatment of radiotherapy and temozolomide (TMZ) chemotherapy, partly due to subpopulations of intrinsically resistant glioma stem-like cells (GSC). The oncolytic herpes simplex virus-1 G207 is a promising approach for GBM virotherapy although its efficacy in patients with GBM is often limited. Natural killer group 2 member D ligands (NKG2DLs) are minimally expressed by healthy cells but are upregulated by the DNA damage response (DDR) and in malignant cells with chronic DDR signaling, resulting in innate immune activation. METHODS: We have designed a bispecific T-cell engager (BiTE) capable of cross-linking CD3 on T cells with NKG2DL-expressing GBM cells. We then engineered the G207 virus to express the NKG2D BiTE and secrete it from infected cells. The efficacy of the free BiTE and BiTE delivered by G207 was evaluated in combination with conventional therapies in GBM cells and against patient-derived GSCs in the context of T-cell activation and target cell viability. RESULTS: NKG2D BiTE-mediated cross-linking of GBM cells and T cells causes antigen-independent T-cell activation, pro-inflammatory cytokine release, and tumor cell death, thereby combining direct viral oncolysis with BiTE-mediated cytotoxicity. Surface NKG2DL expression was further elevated on GBM cells following pretreatment with sublethal doses of TMZ and radiation to induce the DDR, increasing sensitivity towards G207-NKG2D BiTE and achieving synergistic cytotoxicity. We also demonstrate a novel strategy for targeting GSCs that are non-permissive to G207 infection but remain sensitive to NKG2D BiTE. CONCLUSIONS: We propose a potential model for targeting GSCs in heterogeneous tumors, whereby differentiated GBM cells infected with G207-NKG2D BiTE produce NKG2D BiTE locally, directing T-cell cytotoxicity towards the GSC subpopulations in the tumor microenvironment.


Assuntos
Glioblastoma , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Células-Tronco Neoplásicas , Terapia Viral Oncolítica , Humanos , Glioblastoma/terapia , Glioblastoma/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células-Tronco Neoplásicas/metabolismo , Terapia Viral Oncolítica/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral
6.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727262

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain tumor, with a median overall survival of less than 2 years and a nearly 100% mortality rate under standard therapy that consists of surgery followed by combined radiochemotherapy. Therefore, new therapeutic strategies are urgently needed. The success of chimeric antigen receptor (CAR) T cells in hematological cancers has prompted preclinical and clinical investigations into CAR-T-cell treatment for GBM. However, recent trials have not demonstrated any major success. Here, we delineate existing challenges impeding the effectiveness of CAR-T-cell therapy for GBM, encompassing the cold (immunosuppressive) microenvironment, tumor heterogeneity, T-cell exhaustion, local and systemic immunosuppression, and the immune privilege inherent to the central nervous system (CNS) parenchyma. Additionally, we deliberate on the progress made in developing next-generation CAR-T cells and novel innovative approaches, such as low-intensity pulsed focused ultrasound, aimed at surmounting current roadblocks in GBM CAR-T-cell therapy.


Assuntos
Glioblastoma , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Glioblastoma/terapia , Glioblastoma/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Microambiente Tumoral/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Linfócitos T/imunologia , Animais
7.
Medicine (Baltimore) ; 103(19): e38091, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728467

RESUMO

To screen immune-related prognostic biomarkers in low-grade glioma (LGG), and reveal the potential regulatory mechanism. The differential expressed genes (DEGs) between alive and dead patients were initially identified, then the key common genes between DEGs and immune-related genes were obtained. Regarding the key DEGs associated with the overall survival (OS), their clinical value was assessed by Kaplan-Meier, RCS, logistic regression, ROC, and decision curve analysis methods. We also assessed the role of immune infiltration on the association between key DEGs and OS. All the analyses were based on the TGCA-LGG data. Finally, we conducted the molecular docking analysis to explore the targeting binding of key DEGs with the therapeutic agents in LGG. Among 146 DEGs, only interleukin-6 (IL-6) was finally screened as an immune-related biomarker. High expression of IL-6 significantly correlated with poor OS time (all P < .05), showing a linear relationship. The combination of IL-6 with IDH1 mutation had the most favorable prediction performance on survival status and they achieved a good clinical net benefit. Next, we found a significant relationship between IL-6 and immune microenvironment score, and the immune microenvironment played a mediating effect on the association of IL-6 with survival (all P < .05). Detailly, IL-6 was positively related to M1 macrophage infiltration abundance and its biomarkers (all P < .05). Finally, we obtained 4 therapeutic agents in LGG targeting IL-6, and their targeting binding relationships were all verified. IL6, as an immune-related biomarker, was associated with the prognosis in LGG, and it can be a therapeutic target in LGG.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Glioma , Interleucina-6 , Microambiente Tumoral , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Glioma/imunologia , Glioma/genética , Glioma/mortalidade , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Prognóstico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Biomarcadores Tumorais/genética , Feminino , Estimativa de Kaplan-Meier , Regulação Neoplásica da Expressão Gênica
8.
Front Immunol ; 15: 1369972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690285

RESUMO

Background: Temozolomide (TMZ) is a key component in the treatment of gliomas. Hypermutation induced by TMZ can be encountered in routine clinical practice, and its significance is progressively gaining recognition. However, the relationship between TMZ-induced hypermutation and the immunologic response remains controversial. Case presentation: We present the case of a 38-year-old male patient who underwent five surgeries for glioma. Initially diagnosed with IDH-mutant astrocytoma (WHO grade 2) during the first two surgeries, the disease progressed to grade 4 in subsequent interventions. Prior to the fourth surgery, the patient received 3 cycles of standard TMZ chemotherapy and 9 cycles of dose-dense TMZ regimens. Genomic and immunologic analyses of the tumor tissue obtained during the fourth surgery revealed a relatively favorable immune microenvironment, as indicated by an immunophenoscore of 5, suggesting potential benefits from immunotherapy. Consequently, the patient underwent low-dose irradiation combined with immunoadjuvant treatment. After completing 4 cycles of immunotherapy, the tumor significantly shrank, resulting in a partial response. However, after a 6-month duration of response, the patient experienced disease progression. Subsequent analysis of the tumor tissue obtained during the fifth surgery revealed the occurrence of hypermutation, with mutation signature analysis attributing TMZ treatment as the primary cause. Unfortunately, the patient succumbed shortly thereafter, with a survival period of 126 months. Conclusion: Patients subjected to a prolonged regimen of TMZ treatment may exhibit heightened vulnerability to hypermutation. This hypermutation induced by TMZ holds the potential to function as an indicator associated with unfavorable response to immunotherapy in gliomas.


Assuntos
Antineoplásicos Alquilantes , Neoplasias Encefálicas , Glioma , Mutação , Temozolomida , Humanos , Temozolomida/uso terapêutico , Masculino , Adulto , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Glioma/genética , Glioma/terapia , Glioma/tratamento farmacológico , Antineoplásicos Alquilantes/uso terapêutico , Imunoterapia/métodos , Evolução Fatal , Microambiente Tumoral/imunologia
10.
Neurol India ; 72(2): 297-303, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691473

RESUMO

BACKGROUND: Immune microenvironment is involved in tumor initiation and progression, and its effect on glioblastoma (GBM) is still unknown. OBJECT: We sought to investigate the association between immune status and GBM. METHODS: Transcriptome data and the relevant clinical data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases, and we identified two immune subtypes based on 29 immune-associated gene sets. RESULTS: Through single-sample gene set enrichment analysis (ssGSEA), we found that the high-immunity subtype had the most tumor-infiltrating immune cells and immune checkpoint molecules in GBM patients. Furthermore, we could more effectively identify immune signature pathways in GBM. CONCLUSION: After validation with the GEO dataset, we conclude that the identified GBM high-immune subtypes may be amenable to the application of novel immune therapy for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Microambiente Tumoral , Humanos , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/patologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Perfilação da Expressão Gênica , Transcriptoma , Proteínas de Checkpoint Imunológico/genética , Regulação Neoplásica da Expressão Gênica
11.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732225

RESUMO

Oncolytic viruses (OVs) are characterised by their preference for infecting and replicating in tumour cells either naturally or after genetic modification, resulting in oncolysis. Furthermore, OVs can elicit both local and systemic anticancer immune responses while specifically infecting and lysing tumour cells. These characteristics render them a promising therapeutic approach for paediatric brain tumours (PBTs). PBTs are frequently marked by a cold tumour immune microenvironment (TIME), which suppresses immunotherapies. Recent preclinical and clinical studies have demonstrated the capability of OVs to induce a proinflammatory immune response, thereby modifying the TIME. In-depth insights into the effect of OVs on different cell types in the TIME may therefore provide a compelling basis for using OVs in combination with other immunotherapy modalities. However, certain limitations persist in our understanding of oncolytic viruses' ability to regulate the TIME to enhance anti-tumour activity. These limitations primarily stem from the translational limitations of model systems, the difficulties associated with tracking reliable markers of efficacy throughout the course of treatment and the role of pre-existing viral immunity. In this review, we describe the different alterations observed in the TIME in PBTs due to OV treatment, combination therapies of OVs with different immunotherapies and the hurdles limiting the development of effective OV therapies while suggesting future directions based on existing evidence.


Assuntos
Neoplasias Encefálicas , Terapia Viral Oncolítica , Vírus Oncolíticos , Microambiente Tumoral , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Terapia Viral Oncolítica/métodos , Microambiente Tumoral/imunologia , Vírus Oncolíticos/fisiologia , Vírus Oncolíticos/genética , Criança , Imunoterapia/métodos , Terapia Combinada/métodos , Animais
12.
Cancer Med ; 13(9): e7218, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733169

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) are a promising immunotherapy approach, but glioblastoma clinical trials have not yielded satisfactory results. OBJECTIVE: To screen glioblastoma patients who may benefit from immunotherapy. METHODS: Eighty-one patients receiving anti-PD1/PD-L1 treatment from a large-scale clinical trial and 364 patients without immunotherapy from The Cancer Genome Atlas (TCGA) were included. Patients in the ICI-treated cohort were divided into responders and nonresponders according to overall survival (OS), and the most critical responder-relevant features were screened using random forest (RF). We constructed an artificial neural network (ANN) model and verified its predictive value with immunotherapy response and OS. RESULTS: We defined two groups of ICI-treated glioblastoma patients with large differences in survival benefits as nonresponders (OS ≤6 months, n = 18) and responders (OS ≥17 months, n = 8). No differentially mutated genes were observed between responders and nonresponders. We performed RF analysis to select the most critical responder-relevant features and developed an ANN with 20 input variables, five hidden neurons and one output neuron. Receiver operating characteristic analysis and the DeLong test demonstrated that the ANN had the best performance in predicting responders, with an AUC of 0.97. Survival analysis indicated that ANN-predicted responders had significantly better OS rates than nonresponders. CONCLUSION: The 20-gene panel developed by the ANN could be a promising biomarker for predicting immunotherapy response and prognostic benefits in ICI-treated GBM patients and may guide oncologists to accurately select potential responders for the preferential use of ICIs.


Assuntos
Antígeno B7-H1 , Glioblastoma , Inibidores de Checkpoint Imunológico , Imunoterapia , Redes Neurais de Computação , Receptor de Morte Celular Programada 1 , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/imunologia , Glioblastoma/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Feminino , Imunoterapia/métodos , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Antígeno B7-H1/antagonistas & inibidores , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/imunologia , Idoso , Adulto , Prognóstico , Resultado do Tratamento
13.
Comput Biol Med ; 175: 108532, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703547

RESUMO

BACKGROUND: Glioma is a malignant brain tumor originating from glial cells, and there still a challenge to accurately predict the prognosis. Programmed cell death (PCD) plays a key role in tumorigenesis and immune response. However, the crosstalk and potential role of various PCDs in prognosis and tumor microenvironment remains unknown. Therefore, we comprehensively discussed the relationship between different models of PCD and the prognosis of glioma and provided new ideas for the optimal targeted therapy of glioma. MATERIALS AND METHODS: We compared and analyzed the role of 14 PCD patterns on the prognosis from different levels. We constructed the cell death risk score (CDRS) index and conducted a comprehensive analysis of CDRS and TME characteristics, clinical characteristics, and drug response. RESULTS: Effects of different PCDs at the genomic, functional, and immune microenvironment levels were discussed. CDRS index containing 6 gene signatures and a nomogram were established. High CDRS is associated with a worse prognosis. Through transcriptome and single-cell data, we found that patients with high CDRS showed stronger immunosuppressive characteristics. Moreover, the high-CDRS group was resistant to the traditional glioma chemotherapy drug Vincristine, but more sensitive to the Temozolomide and the clinical experimental drug Bortezomib. In addition, we identified 19 key potential therapeutic targets during malignant differentiation of tumor cells. CONCLUSION: Overall, we provide the first systematic description of the role of 14 PCDs in glioma. A new CDRS model was built to predict the prognosis and to provide a new idea for the targeted therapy of glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Humanos , Glioma/genética , Glioma/tratamento farmacológico , Glioma/imunologia , Glioma/patologia , Glioma/mortalidade , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Prognóstico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Transcriptoma , Apoptose/efeitos dos fármacos
14.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38697107

RESUMO

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Assuntos
Imunoterapia , Microambiente Tumoral , Animais , Imunoterapia/métodos , Camundongos , Cães , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citocinas/metabolismo , Glioblastoma/terapia , Glioblastoma/imunologia , Camundongos Endogâmicos C57BL , Feminino , Glioma/terapia , Glioma/imunologia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA/metabolismo , RNA/uso terapêutico , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia
15.
Nat Commun ; 15(1): 3732, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702309

RESUMO

Immunotherapy with chimeric antigen receptor T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify cancer specific exon targets, here we analyze 1532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow. We find 2933 exons in 157 genes encoding proteins of the surfaceome or matrisome with high cancer specificity either at the gene (n = 148) or the alternatively spliced isoform (n = 9) level. Expression of selected alternatively spliced targets, including the EDB domain of fibronectin 1, and gene targets, such as COL11A1, are validated in pediatric patient derived xenograft tumors. We generate T cells expressing chimeric antigen receptors specific for the EDB domain or COL11A1 and demonstrate that these have antitumor activity. The full target list, explorable via an interactive web portal ( https://cseminer.stjude.org/ ), provides a rich resource for developing immunotherapy of pediatric solid and brain tumors using gene or AS targets with high expression specificity in cancer.


Assuntos
Neoplasias Encefálicas , Éxons , Receptores de Antígenos Quiméricos , Humanos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Animais , Éxons/genética , Criança , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Camundongos , Imunoterapia/métodos , Processamento Alternativo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica , RNA-Seq , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos
16.
Int Immunopharmacol ; 133: 112074, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38615383

RESUMO

The tumor microenvironment plays a vital role in glioblastoma growth and invasion. PD-1 and PD-L1 modulate the immunity in the brain tumor microenvironment. However, the underlying mechanisms remain unclear. In the present study, in vivo and in vitro experiments were conducted to reveal the effects of PD-1/PD-L1 on the crosstalk between microglia and glioma. Results showed that glioma cells secreted PD-L1 to the peritumoral areas, particularly microglia containing highly expressed PD-1. In the early stages of glioma, microglia mainly polarized into the pro-inflammatory subtype (M1). Subsequently, the secreted PD-L1 accumulated and bound to PD-1 on microglia, facilitating their polarization toward the microglial anti-inflammatory (M2) subtype primarily via the STAT3 signaling pathway. The role of PD-1/PD-L1 in M2 polarization of microglia was partially due to PD-1/PD-L1 depletion or application of BMS-1166, a novel inhibitor of PD-1/PD-L1. Consistently, co-culturing with microglia promoted glioma cell growth and invasion, and blocking PD-1/PD-L1 significantly suppressed these processes. Our findings reveal that the PD-1/PD-L1 axis engages in the microglial M2 polarization in the glioma microenvironment and promotes tumor growth and invasion.


Assuntos
Antígeno B7-H1 , Neoplasias Encefálicas , Glioma , Microglia , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Microglia/metabolismo , Microglia/imunologia , Antígeno B7-H1/metabolismo , Animais , Receptor de Morte Celular Programada 1/metabolismo , Glioma/metabolismo , Glioma/patologia , Glioma/imunologia , Humanos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Camundongos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Técnicas de Cocultura , Masculino , Proliferação de Células/efeitos dos fármacos
17.
J Immunother Cancer ; 12(4)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688579

RESUMO

BACKGROUND: Glioblastoma (GBM) is a fatal primary brain malignancy in adults. Previous studies have shown that cytomegalovirus (CMV) is a risk factor for tumorigenesis and aggressiveness for glioblastoma. However, little is known about how CMV infection affects immune cells in the tumor microenvironment of GBM. Furthermore, there has been almost no engineered T-cell receptor (TCR)-T targeting CMV for GBM research to date. METHODS: We evaluated the CMV infection status of patients with GBM's tumor tissue by immune electron microscopy, immunofluorescence, and droplet digital PCR. We performed single-cell RNA sequencing for CMV-infected GBM to investigate the effects of CMV on the GBM immune microenvironment. CellChat was applied to analyze the interaction between cells in the GBM tumor microenvironment. Additionally, we conducted single-cell TCR/B cell receptor (BCR) sequencing and Grouping of Lymphocyte Interactions with Paratope Hotspots 2 algorithms to acquire specific CMV-TCR sequences. Genetic engineering was used to introduce CMV-TCR into primary T cells derived from patients with CMV-infected GBM. Flow cytometry was used to measure the proportion and cytotoxicity status of T cells in vitro. RESULTS: We identified two novel immune cell subpopulations in CMV-infected GBM, which were bipositive CD68+SOX2+ tumor-associated macrophages and FXYD6+ T cells. We highlighted that the interaction between bipositive TAMs or cancer cells and T cells was predominantly focused on FXYD6+ T cells rather than regulatory T cells (Tregs), whereas, FXYD6+ T cells were further identified as a group of novel immunosuppressive T cells. CMV-TCR-T cells showed significant therapeutic effects on the human-derived orthotopic GBM mice model. CONCLUSIONS: These findings provided an insight into the underlying mechanism of CMV infection promoting the GBM immunosuppression, and provided a novel potential immunotherapy strategy for patients with GBM.


Assuntos
Citomegalovirus , Glioblastoma , Humanos , Glioblastoma/imunologia , Glioblastoma/virologia , Glioblastoma/patologia , Camundongos , Citomegalovirus/imunologia , Animais , Infecções por Citomegalovirus/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Neoplasias Encefálicas/imunologia , Microambiente Tumoral/imunologia , RNA-Seq , Feminino , Masculino , Análise da Expressão Gênica de Célula Única
18.
Biochem Biophys Res Commun ; 711: 149894, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38603834

RESUMO

BACKGROUND: Low-grade glioma (LGG) has an extremely poor prognosis, and the mechanism leading to malignant development has not been determined. The aim of our study was to clarify the function and mechanism of anoikis and TIMP1 in the malignant progression of LGG. METHODS: We screened 7 anoikis-related genes from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to construct a prognostic-predicting model. The study assessed the clinical prognosis, pathological characteristics, and immune cell infiltration in both high- and low-risk groups. Additionally, the potential modulatory effects of TIMP1 on proliferation, migration, and anoikis in LGG were investigated both in vivo and in vitro. RESULTS: In this study, we identified seven critical genes, namely, PTGS2, CCND1, TIMP1, PDK4, LGALS3, CDKN1A, and CDKN2A. Kaplan‒Meier (K‒M) curves demonstrated a significant correlation between clinical features and overall survival (OS), and single-cell analysis and mutation examination emphasized the heterogeneity and pivotal role of hub gene expression imbalances in LGG development. Immune cell infiltration and microenvironment analysis further elucidated the relationships between key genes and immune cells. In addition, TIMP1 promoted the malignant progression of LGG in both in vitro and in vivo models. CONCLUSIONS: This study confirmed that TIMP1 promoted the malignant progression of LGG by inhibiting anoikis, providing insights into LGG pathogenesis and potential therapeutic targets.


Assuntos
Anoikis , Glioma , Inibidor Tecidual de Metaloproteinase-1 , Humanos , Anoikis/genética , Glioma/genética , Glioma/imunologia , Glioma/patologia , Prognóstico , Inibidor Tecidual de Metaloproteinase-1/genética , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Camundongos , Masculino , Proliferação de Células/genética , Feminino , Camundongos Nus , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Gradação de Tumores
19.
Comput Biol Med ; 174: 108457, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599071

RESUMO

Glioma is a common malignant brain tumor with great heterogeneity and huge difference in clinical outcomes. Although lymphotoxin (LT) beta receptor (LTBR) has been linked to immune system and response development for decades, the expression and function in glioma have not been investigated. To confirm the expression profile of LTBR, integrated RNA-seq data from glioma and normal brain tissues were analyzed. Functional enrichment analysis, TMEscore analysis, immune infiltration, the correlation of LTBR with immune checkpoints and ferroptosis, and scRNAseq data analysis in gliomas were in turn performed, which pointed out that LTBR was pertinent to immune functions of macrophages in gliomas. In addition, after being trained and validated in the tissue samples of the integrated dataset, an LTBR DNA methylation-based prediction model succeeded to distinguish gliomas from non-gliomas, as well as the grades of glioma. Moreover, by virtue of the candidate LTBR CpG sites, a prognostic risk-score model was finally constructed to guide the chemotherapy, radiotherapy, and immunotherapy for glioma patients. Taken together, LTBR is closely correlated with immune functions in gliomas, and LTBR DNA methylation could serve as a biomarker for diagnosis and prognosis of gliomas.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Glioma , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Metilação de DNA/genética , Glioma/imunologia , Glioma/genética , Glioma/metabolismo
20.
Anticancer Res ; 44(5): 1983-1994, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677762

RESUMO

BACKGROUND/AIM: Brain metastasis, a leading cause of cancer death, is a clinical challenge. Recently, genetic characterization of brain metastatic lesions based on next generation sequencing-based advanced technologies, such as single-cell RNA sequencing, has been performed to develop novel efficient therapies. The present study aimed to investigate brain-metastasis-specific biomarkers as well as relevant prognostic factors. PATIENTS AND METHODS: The genetic profiles and expression levels of immune response-associated genes and 820 cancer-associated genes were compared between primary cancer lesions and metastatic cancer lesions obtained from nine cancer patients at the Shizuoka Cancer Center. Cytokine and chemokine marker genes were analyzed via quantitative PCR. T-cell receptor (TCR) repertoire profiling was performed for the same patients. For survival analysis, survival data of 52 cancer patients with brain metastases were utilized. RESULTS: Comparison of driver mutation profiling between primary and metastatic lesions revealed shared core mutations in both lesions and a few new mutations in metastatic lesions. A high tumor mutation burden (TMB) was detected in metastatic lesions. Volcano plot analysis revealed specific features of the metastatic tumor microenvironment, such as cancer signaling promotion and immune suppression due to decreased immune cell infiltration. Survival analysis revealed that three genes, the TREML2 gene, the BTLA gene on activated microglia and the CERS2 gene on metastatic tumor, were potent prognostic factors. CONCLUSION: High TMB in metastatic lesions indicates potential benefit from immune checkpoint inhibitor usage for brain metastasis and TREML2 and BTLA are factors associated with poor prognosis. Activated microglia may be novel targets for the treatment of brain metastasis.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Feminino , Masculino , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Prognóstico , Idoso , Mutação , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA