Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.318
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725843

RESUMO

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína HMGA1a , Inibidores de MTOR , Proteína Proto-Oncogênica c-ets-1 , Humanos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Animais , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Camundongos Nus
2.
Med Oncol ; 41(6): 153, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743323

RESUMO

The mechanism by which DNMT3B facilitates esophageal cancer (ESCA) progression is currently unknown, despite its association with adverse prognoses in several cancer types. To investigate the potential therapeutic effects of the Chinese herbal medicine rhubarb on esophageal cancer (ESCA), we adopted an integrated bioinformatics approach. Gene Set Enrichment Analysis (GSEA) was first utilized to screen active anti-ESCA components in rhubarb. We then employed Weighted Gene Co-expression Network Analysis (WGCNA) to identify key molecular modules and targets related to the active components and ESCA pathogenesis. This system-level strategy integrating multi-omics data provides a powerful means to unravel the molecular mechanisms underlying the anticancer activities of natural products, like rhubarb. To investigate module gene functional enrichment, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. In addition, we evaluated the predictive impact of DNMT3B expression on ESCA patients utilizing the Kaplan-Meier method. Finally, we conducted experiments on cell proliferation and the cell cycle to explore the biological roles of DNMT3B. In this study, we identified Rhein as the main active ingredient of rhubarb that exhibited significant anti-ESCA activity. Rhein markedly suppressed ESCA cell proliferation. Utilizing Weighted Gene Co-expression Network Analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we determined that the blue module was associated with Rhein target genes and the cell cycle. Additionally, DNMT3B was identified as a Rhein target gene. Analysis of The Cancer Genome Atlas (TCGA) database revealed that higher DNMT3B levels were associated with poor prognosis in ESCA patients. Furthermore, Rhein partially reversed the overexpression of DNMT3B to inhibit ESCA cell proliferation. In vitro studies demonstrated that Rhein and DNMT3B inhibition disrupted the S phase of the cell cycle and affected the production of cell cycle-related proteins. In this study, we found that Rhein exerts its anti-proliferative effects in ESCA cells by targeting DNMT3B and regulating the cell cycle.


Assuntos
Antraquinonas , Ciclo Celular , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3B , Neoplasias Esofágicas , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Antraquinonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Rheum/química , Biologia Computacional
3.
PLoS One ; 19(5): e0302780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713738

RESUMO

Reticulocalbin 1 (RCN1) is a calcium-binding protein involved in the regulation of calcium homeostasis in the endoplasmic reticulum. The aim of this study was to explore the clinical value and biological role of RCN1 in esophageal squamous cell carcinoma (ESCC). In addition, we investigated the effect of RCN1 on the polarization of tumor-associated macrophages (TAMs). The GSE53625 dataset from the Gene Expression Omnibus database was used to analyze the expression of RCN1 mRNA and its relationship with clinical value and immune cell infiltration. Immunohistochemistry was used to validate the expression of RCN1 and its correlation with clinicopathological characteristics. Subsequently, transwell and cell scratch assays were conducted to evaluate the migration and invasion abilities of ESCC cells. The expression levels of epithelial-mesenchymal transition (EMT)-related proteins were evaluated by western blot, while apoptosis was detected by flow cytometry and western blot. Additionally, qRT‒PCR was utilized to evaluate the role of RCN1 in macrophage polarization. RCN1 was significantly upregulated in ESCC tissues and was closely associated with lymphatic metastasis and a poor prognosis, and was an independent prognostic factor for ESCC in patients. Knockdown of RCN1 significantly inhibited the migration, invasion, and EMT of ESCC cells, and promoted cell apoptosis. In addition, RCN1 downregulation inhibited M2 polarization. RCN1 is upregulated in ESCC patients and is negatively correlated with patient prognosis. Knocking down RCN1 inhibits ESCC progression and M2 polarization. RCN1 can serve as a potential diagnostic and prognostic indicator for ESCC, and targeting RCN1 is a very promising therapeutic strategy.


Assuntos
Proteínas de Ligação ao Cálcio , Regulação para Baixo , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Feminino , Masculino , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Movimento Celular/genética , Progressão da Doença , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Apoptose , Prognóstico , Macrófagos/metabolismo
4.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(5): 665-672, 2024 May 06.
Artigo em Chinês | MEDLINE | ID: mdl-38715507

RESUMO

To investigate the expression of mRNA in esophageal cancer (ESCA) tissues and its potential and diagnostic and prognostic value by high-throughput sequencing data. Using the Cancer Genome Atlas Program (TCGA) database in USA by integrative bioinformatics analysis methods, the gene expression profiles and clinical data of 173 patients with ECSA were collected. The mRNA expression levels in ESCA tissue and para-cancerous tissue samples were analyzed using DESeq2, edgeR and limma to screen the differentially expressed genes (DEGs). DEGs-related protein network diagrams were drawn. GO and KEGG function enrichment analysis were performed and the hub genes were screened and the survival analysis of hub genes was analyzed. Genes related to the prognosis of ESCA were selected and their prognostic value in ESCA was analyzed. Finally, the receiver operating characteristic curve was drawn to evaluate its diagnostic value. The results showed that using TCGA cancer data, a total of 620 up-regulated DEGs and 668 down-regulated DEGs with significant differential expression between ESCA and para-cancerous tissues were screened. DEGs were mainly involved in receptor complexes, ubiquitin ligase complexes, etc., playing GTPase activity, phospholipid binding, and other molecular functions, and participating in the regulation of intracellular substance transport, small molecule metabolism, and other biological processes. Protein functional enrichment analysis showed that these proteins were mainly enriched in the IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, Epstein-Barr virus infection, neutrophil extracellular trap formation, and other pathways involved in the formation and development process of ESCA. Survival analysis showed that the overall survival rate of ESCA patients with high expression of KIF4A, RAD51AP1, and CDKN3 was significantly shortened, and the difference was statistically significant (P<0.05). Furthermore, the areas under the curve (AUC) of KIF4A, RAD51AP1, and CDKN3 for diagnosing esophageal cancer were 0.956, 0.951 and 0.979, respectively, with sensitivities and specificities both exceeding 80%. Additionally, ROC results of the combined diagnostic model of these three genes showed an AUC of 0.979, with sensitivities and specificities of 0.914 and 1, respectively. This indicates that KIF4A, RAD51AP1 and CDKN3 have individual or combined auxiliary diagnostic value for ESCA. In conclusion, KIF4A, RAD51AP1 and CDKN3 have high diagnostic efficiency for ESCA, and their increased expression is closely related to the prognosis, suggesting that these three genes could be used as auxiliary diagnostic and prognostic factors for ESCA.


Assuntos
Neoplasias Esofágicas , Cinesinas , Humanos , Prognóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mapas de Interação de Proteínas , Proteínas de Ligação a RNA
5.
BMC Cancer ; 24(1): 557, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702629

RESUMO

BACKGROUND: While radiation therapy remains pivotal in esophageal squamous cell carcinoma (ESCC) treatment, the perplexing phenomenon of post-radiation metastasis presents a formidable clinical challenge. This study investigates the role of fibrinogen-like protein 1 (FGL1) in driving ESCC metastasis following radiation exposure. METHODS: FGL1 expression in post-radiation ESCC cells was meticulously examined using qRT-PCR, western blotting, and immunofluorescence. The impact of FGL1 on ESCC cell invasion and migration was assessed through Transwell and wound healing assays. In vivo, the metastatic potential of ESCC in response to FGL1 was scrutinized using nude mice models. Comprehensive RNA sequencing and functional experiments elucidated the intricate mechanism associated with FGL1. RESULTS: Radiation induced upregulation of FGL1 in ESCC cells through FOXO4, intensifying ESCC cell invasion and migration. Targeted knockdown of FGL1 effectively alleviated these characteristics both in vitro and in vivo. FGL1 depletion concurrently suppressed IMPDH1 expression. Rescue experiments underscored that IMPDH1 knockdown robustly reversed the pro-invasive effects induced by FGL1 in ESCC cells. ESCC tissues exhibited heightened IMPDH1 mRNA levels, demonstrating a correlation with patient survival. CONCLUSIONS: Radiation-induced upregulation of FGL1 propels ESCC metastasis through IMPDH1, proposing a potential therapeutic target to mitigate post-radiotherapy metastasis in ESCC patients.


Assuntos
Movimento Celular , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação para Cima , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/radioterapia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Animais , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Camundongos Nus , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Metástase Neoplásica , Invasividade Neoplásica/genética , Feminino , Masculino
6.
Cell Signal ; 119: 111155, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565413

RESUMO

BACKGROUND: Esophageal cancer (EC) is highly ranked among all cancers in terms of its incidence and mortality rates. MicroRNAs (miRNAs) are considered to play key regulatory parts in EC. Multiple research studies have indicated the involvement of miR-3682-3p and four and a half LIM domain protein 1 (FHL1) in the achievement of tumors. The aim of this research was to clarify the significance of these genes and their possible molecular mechanism in EC. METHODS: Data from a database and the tissue microarray were made to analyze the expression and clinical significance of miR-3682-3p or FHL1 in EC. Reverse transcription quantitative PCR and Western blotting were used to detect the expression levels of miR-3682-3p and FHL1 in EC cells. CCK8, EdU, wound healing, Transwell, flow cytometry, and Western blotting assays were performed to ascertain the biological roles of miR-3682-3p and FHL1 in EC cells. To confirm the impact of miR-3682-3p in vivo, a subcutaneous tumor model was created in nude mice. The direct interaction between miR-3682-3p and FHL1 was demonstrated through a luciferase assay, and the western blotting technique was employed to assess the levels of crucial proteins within the Wnt/ß-catenin pathway. RESULTS: The noticeable increase in the expression of miR-3682-3p and the decrease in the expression of FHL1 were observed, which correlated with a negative impact on the patients' overall survival. Upregulation of miR-3682-3p expression promoted the growth and metastasis of EC, while overexpression of FHL1 partially reversed these effects. Finally, miR-3682-3p motivates the Wnt/ß-catenin signal transduction by directly targeting FHL1. CONCLUSION: MiR-3682-3p along the FHL1 axis activated the Wnt/ß-catenin signaling pathway and thus promoted EC malignancy.


Assuntos
Proliferação de Células , Neoplasias Esofágicas , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Camundongos Nus , MicroRNAs , Proteínas Musculares , Via de Sinalização Wnt , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linhagem Celular Tumoral , Camundongos , Masculino , Feminino , Progressão da Doença , Pessoa de Meia-Idade , beta Catenina/metabolismo , Camundongos Endogâmicos BALB C , Movimento Celular/genética
7.
J Cell Mol Med ; 28(8): e18294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652109

RESUMO

Forkhead box protein 1 (FOXP1) serves as a tumour promoter or suppressor depending on different cancers, but its effect in oesophageal squamous cell carcinoma has not been fully elucidated. This study investigated the role of FOXP1 in oesophageal squamous cell carcinoma through bioinformatics analysis and experimental verification. We determined through public databases that FOXP1 expresses low in oesophageal squamous cell carcinoma compared with normal tissues, while high expression of FOXP1 indicates a better prognosis. We identified potential target genes regulated by FOXP1, and explored the potential biological processes and signalling pathways involved in FOXP1 in oesophageal squamous cell carcinoma through GO and KEGG enrichment, gene co-expression analysis, and protein interaction network construction. We also analysed the correlation between FOXP1 and tumour immune infiltration levels. We further validated the inhibitory effect of FOXP1 on the proliferation of oesophageal squamous cell carcinoma cells through CCK-8, colony formation and subcutaneous tumour formation assays. This study revealed the anticarcinogenic effect of FOXP1 in oesophageal squamous cell carcinoma, which may serve as a novel biological target for the treatment of tumour.


Assuntos
Proliferação de Células , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras , Humanos , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Animais , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Biologia Computacional/métodos , Camundongos , Prognóstico , Mapas de Interação de Proteínas/genética , Transdução de Sinais , Redes Reguladoras de Genes , Camundongos Nus
8.
Cell Death Differ ; 31(5): 558-573, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570607

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with notable metabolic reprogramming, yet the pivotal metabolic feature driving ESCC progression remains elusive. Here, we show that methionine cycle exhibits robust activation in ESCC and is reversely associated with patient survival. ESCC cells readily harness exogenous methionine to generate S-adenosyl-methionine (SAM), thus promoting cell proliferation. Mechanistically, methionine augments METTL3-mediated RNA m6A methylation through SAM and revises gene expression. Integrative omics analysis highlights the potent influence of methionine/SAM on NR4A2 expression in a tumor-specific manner, mediated by the IGF2BP2-dependent stabilization of methylated NR4A2 mRNA. We demonstrate that NR4A2 facilitates ESCC growth and negatively impacts patient survival. We further identify celecoxib as an effective inhibitor of NR4A2, offering promise as a new anti-ESCC agent. In summary, our findings underscore the active methionine cycle as a critical metabolic characteristic in ESCC, and pinpoint NR4A2 as a novel methionine-responsive oncogene, thereby presenting a compelling target potentially superior to methionine restriction.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Metionina , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Humanos , Metionina/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Linhagem Celular Tumoral , Animais , Oncogenes , Camundongos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Camundongos Nus
9.
Clin Cancer Res ; 30(10): 2193-2205, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592373

RESUMO

PURPOSE: TGFß signaling is implicated in the progression of most cancers, including esophageal adenocarcinoma (EAC). Emerging evidence indicates that TGFß signaling is a key factor in the development of resistance toward cancer therapy. EXPERIMENTAL DESIGN: In this study, we developed patient-derived organoids and patient-derived xenograft models of EAC and performed bioinformatics analysis combined with functional genetics to investigate the role of SMAD family member 3 (SMAD3) in EAC resistance to oxaliplatin. RESULTS: Chemotherapy nonresponding patients showed enrichment of SMAD3 gene expression when compared with responders. In a randomized patient-derived xenograft experiment, SMAD3 inhibition in combination with oxaliplatin effectively diminished tumor burden by impeding DNA repair. SMAD3 interacted directly with protein phosphatase 2A (PP2A), a key regulator of the DNA damage repair protein ataxia telangiectasia mutated (ATM). SMAD3 inhibition diminished ATM phosphorylation by enhancing the binding of PP2A to ATM, causing excessive levels of DNA damage. CONCLUSIONS: Our results identify SMAD3 as a promising therapeutic target for future combination strategies for the treatment of patients with EAC.


Assuntos
Adenocarcinoma , Proteínas Mutadas de Ataxia Telangiectasia , Reparo do DNA , Neoplasias Esofágicas , Oxaliplatina , Proteína Smad3 , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Proteína Smad3/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Reparo do DNA/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Camundongos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Transdução de Sinais/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Organoides/efeitos dos fármacos
10.
Sci Rep ; 14(1): 9167, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649770

RESUMO

Syndecan-binding protein (SDCBP) was reported to stimulate the advancement of esophageal squamous cell carcinoma (ESCC) and could potentially be a target for ESCC treatment. There is a growing corpus of research on the anti-tumor effects of iron chelators; however, very few studies have addressed the involvement of dexrazoxane in cancer. In this study, structure-based virtual screening was employed to select drugs targeting SDCBP from the Food and Drug Administration (FDA)-approved drug databases. The sepharose 4B beads pull-down assay revealed that dexrazoxane targeted SDCBP by interacting with its PDZ1 domain. Additionally, dexrazoxane inhibited ESCC cell proliferation and anchorage-independent colony formation via SDCBP. ESCC cell apoptosis and G2 phase arrest were induced as measured by the flow cytometry assay. Subsequent research revealed that dexrazoxane attenuated the binding ability between SDCBP and EGFR in an immunoprecipitation assay. Furthermore, dexrazoxane impaired EGFR membrane localization and inactivated the EGFR/PI3K/Akt pathway. In vivo, xenograft mouse experiments indicated that dexrazoxane suppressed ESCC tumor growth. These data indicate that dexrazoxane might be established as a potential anti-cancer agent in ESCC by targeting SDCBP.


Assuntos
Proliferação de Células , Receptores ErbB , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Sinteninas , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores ErbB/metabolismo , Animais , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Proliferação de Células/efeitos dos fármacos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinteninas/metabolismo , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Camundongos Nus , Antineoplásicos/farmacologia
11.
Cell Death Dis ; 15(4): 291, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658569

RESUMO

Annexin A2 (ANXA2) is a widely reported oncogene. However, the mechanism of ANXA2 in esophageal cancer is not fully understood. In this study, we provided evidence that ANXA2 promotes the progression of esophageal squamous cell carcinoma (ESCC) through the downstream target threonine tyrosine kinase (TTK). These results are consistent with the up-regulation of ANXA2 and TTK in ESCC. In vitro experiments by knockdown and overexpression of ANXA2 revealed that ANXA2 promotes the progression of ESCC by enhancing cancer cell proliferation, migration, and invasion. Subsequently, animal models also confirmed the role of ANXA2 in promoting the proliferation and metastasis of ESCC. Mechanistically, the ANXA2/TTK complex activates the Akt/mTOR signaling pathway and accelerates epithelial-mesenchymal transition (EMT), thereby promoting the invasion and metastasis of ESCC. Furthermore, we identified that TTK overexpression can reverse the inhibition of ESCC invasion after ANXA2 knockdown. Overall, these data indicate that the combination of ANXA2 and TTK regulates the activation of the Akt/mTOR pathway and accelerates the progression of ESCC. Therefore, the ANXA2/TTK/Akt/mTOR axis is a potential therapeutic target for ESCC.


Assuntos
Anexina A2 , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Anexina A2/metabolismo , Anexina A2/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Camundongos Nus , Camundongos , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Movimento Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Masculino , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Regulação Neoplásica da Expressão Gênica , Feminino
12.
J Exp Clin Cancer Res ; 43(1): 124, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658954

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a common gastrointestinal tumor and has become an important global health problem. The PI3K/AKT signaling pathway plays a key role in the development of ESCC. CircRNAs have been reported to be involved in the regulation of the PI3K/AKT pathway, but the underlying mechanisms are unclear. Therefore, this study aimed to identify protein-coding circRNAs and investigate their functions in ESCC. METHODS: Differential expression of circRNAs between ESCC tissues and adjacent normal tissues was identified using circRNA microarray analysis. Thereafter, LC-MS/MS was used to identify circPDE5A-encoded novel protein PDE5A-500aa. Molecular biological methods were used to explore the biological functions and regulatory mechanisms of circPDE5A and PDE5A-500aa in ESCC. Lastly, circRNA-loaded nanoplatforms were constructed to investigate the therapeutic translation value of circPDE5A. RESULTS: We found that circPDE5A expression was down-regulated in ESCC cells and tissues and that it was negatively associated with advanced clinicopathological stages and poorer prognosis in ESCC. Functionally, circPDE5A inhibited ESCC proliferation and metastasis in vitro and in vivo by encoding PDE5A-500aa, a key regulator of the PI3K/AKT signaling pathway in ESCC. Mechanistically, PDE5A-500aa interacted with PIK3IP1 and promoted USP14-mediated de-ubiquitination of the k48-linked polyubiquitin chain at its K198 residue, thereby attenuating the PI3K/AKT pathway in ESCC. In addition, Meo-PEG-S-S-PLGA-based reduction-responsive nanoplatforms loaded with circPDE5A and PDE5A-500aa plasmids were found to successfully inhibit the growth and metastasis of ESCC in vitro and in vivo. CONCLUSION: The novel protein PDE5A-500aa encoded by circPDE5A can act as an inhibitor of the PI3K/AKT signaling pathway to inhibit the progression of ESCC by promoting USP14-mediated de-ubiquitination of PIK3IP1 and may serve as a potential target for the development of therapeutic agents.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Circular , Ubiquitina Tiolesterase , Ubiquitinação , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Proliferação de Células , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Progressão da Doença , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Transdução de Sinais , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética
13.
Genome Med ; 16(1): 50, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566210

RESUMO

BACKGROUND: Mitochondria play essential roles in tumorigenesis; however, little is known about the contribution of mitochondrial DNA (mtDNA) to esophageal squamous cell carcinoma (ESCC). Whole-genome sequencing (WGS) is by far the most efficient technology to fully characterize the molecular features of mtDNA; however, due to the high redundancy and heterogeneity of mtDNA in regular WGS data, methods for mtDNA analysis are far from satisfactory. METHODS: Here, we developed a likelihood-based method dMTLV to identify low-heteroplasmic mtDNA variants. In addition, we described fNUMT, which can simultaneously detect non-reference nuclear sequences of mitochondrial origin (non-ref NUMTs) and their derived artifacts. Using these new methods, we explored the contribution of mtDNA to ESCC utilizing the multi-omics data of 663 paired tumor-normal samples. RESULTS: dMTLV outperformed the existing methods in sensitivity without sacrificing specificity. The verification using Nanopore long-read sequencing data showed that fNUMT has superior specificity and more accurate breakpoint identification than the current methods. Leveraging the new method, we identified a significant association between the ESCC overall survival and the ratio of mtDNA copy number of paired tumor-normal samples, which could be potentially explained by the differential expression of genes enriched in pathways related to metabolism, DNA damage repair, and cell cycle checkpoint. Additionally, we observed that the expression of CBWD1 was downregulated by the non-ref NUMTs inserted into its intron region, which might provide precursor conditions for the tumor cells to adapt to a hypoxic environment. Moreover, we identified a strong positive relationship between the number of mtDNA truncating mutations and the contribution of signatures linked to tumorigenesis and treatment response. CONCLUSIONS: Our new frameworks promote the characterization of mtDNA features, which enables the elucidation of the landscapes and roles of mtDNA in ESCC essential for extending the current understanding of ESCC etiology. dMTLV and fNUMT are freely available from https://github.com/sunnyzxh/dMTLV and https://github.com/sunnyzxh/fNUMT , respectively.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , DNA Mitocondrial/genética , DNA Mitocondrial/análise , DNA Mitocondrial/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Funções Verossimilhança , Mitocôndrias/genética , Carcinogênese
14.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673838

RESUMO

Oesophageal cancer (OC) is the sixth leading cause of cancer-related death worldwide. OC is highly aggressive, primarily due to its late stage of diagnosis and poor prognosis for patients' survival. Therefore, the establishment of new biomarkers that will be measured with non-invasive techniques at low cost is a critical issue in improving the diagnosis of OC. In this review, we summarize several original studies concerning the potential significance of selected chemokines and their receptors, including inflammatory proteins such as interleukin-6 (IL-6) and C-reactive protein (CRP), hematopoietic growth factors (HGFs), claudins (CLDNs), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), adamalysines (ADAMs), as well as DNA- and RNA-based biomarkers, in OC. The presented results indicate the significant correlation between the CXCL12, CXCR4, CXCL8/CXCR2, M-CSF, MMP-2, MMP-9 ADAM17, ADAMTS-6, and CLDN7 levels and tumor stage, as well as the clinicopathological parameters of OC, such as the presence of lymph node and/or distant metastases. CXCL12, CXCL8/CXCR2, IL-6, TIMP-2, ADAM9, and ADAMTS-6 were prognostic factors for the overall survival of OC patients. Furthermore, IL-6, CXCR4, CXCL8, and MMP-9 indicate higher diagnostic utility based on the area under the ROC curve (AUC) than well-established OC tumor markers, whereas CLDN18.2 can be used in novel targeted therapies for OC patients.


Assuntos
Biomarcadores Tumorais , Neoplasias Esofágicas , Humanos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/patologia , Biomarcadores Tumorais/metabolismo , Prognóstico
15.
Front Biosci (Landmark Ed) ; 29(4): 138, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38682192

RESUMO

BACKGROUND: Mounting evidence indicates that complement components play a crucial role in cancer progression. Recent findings indicate that certain complement components display a significant rise in expression within esophageal squamous cell carcinoma (ESCC). However, the specific tumorigenic functions of these components remain unclear. This study focuses on investigating the expression pattern of C1r, elucidating a role for C1r in ESCC, as well as exploring underlying mechanisms controlled by C1r. METHODS: The expression of C1r in ESCC tissues, malignant epithelial cells, and its relationship with survival were analyzed using the Gene Expression Omnibus (GEO) database and tissue microarrays. Single-cell RNA sequencing (scRNA-seq) was used to study the expression of C1r in malignant epithelial cells. C1r knockdown or C1r overexpression in cultured ESCC cells were used to assess the effects of C1r on proliferation, migration, invasion, cell-matrix adhesion, apoptosis, and growth of xenografted tumors in immunocompromised (nude) mice. Western blotting was used to detect the expression of MMP-1 and MMP-10 in C1r knockdown or C1r overexpressing ESCC cells. RESULTS: C1r was highly expressed in ESCC tissues, malignant epithelial cells, and cultured ESCC cell lines. High C1r expression indicated a poor prognosis. Knockdown of C1r significantly suppressed the proliferation, migration, invasion, cell-matrix adhesion, and promoted apoptosis in cultured ESCC cells. Additionally, knockdown of C1r markedly inhibited tumor growth in nude mice. Overexpression of C1r had the opposite effects. C1r induced the expression of MMP-1 and MMP-10. CONCLUSIONS: C1r is highly expressed in ESCC and promotes the progression of this tumor type. Our findings suggest that C1r may serve as a novel prognostic biomarker and therapeutic target in ESCC.


Assuntos
Biomarcadores Tumorais , Proliferação de Células , Complemento C1r , Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Camundongos Nus , Humanos , Animais , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Prognóstico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Complemento C1r/genética , Complemento C1r/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Apoptose/genética , Camundongos , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia
16.
ACS Nano ; 18(17): 11217-11233, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38627234

RESUMO

Due to its intrinsic tumor-targeting attribute, limited immunogenicity, and cage architecture, ferritin emerges as a highly promising nanocarrier for targeted drug delivery. In the effort to develop ferritin cage-encapsulated cisplatin (CDDP) as a therapeutic agent, we found unexpectedly that the encapsulation led to inactivation of the drug. Guided by the structural information, we deciphered the interactions between ferritin cages and CDDP, and we proposed a potential mechanism responsible for attenuating the antitumor efficacy of CDDP encapsulated within the cage. Six platinum prodrugs were then designed to avoid the inactivation. The antitumor activities of these ferritin-platinum prodrug complexes were then evaluated in cells of esophageal squamous cell carcinoma (ESCC). Compared with free CDDP, the complexes were more effective in delivering and retaining platinum in the cells, leading to increased DNA damage and enhanced cytotoxic action. They also exhibited improved pharmacokinetics and stronger antitumor activities in mice bearing ESCC cell-derived xenografts as well as patient-derived xenografts. The successful encapsulation also illustrates the critical significance of comprehending the interactions between small molecular drugs and ferritin cages for the development of precision-engineered nanocarriers.


Assuntos
Antineoplásicos , Cisplatino , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferritinas , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Humanos , Ferritinas/química , Ferritinas/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Camundongos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Cisplatino/farmacologia , Cisplatino/química , Desenho de Fármacos , Platina/química , Platina/farmacologia , Camundongos Nus , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sistemas de Liberação de Medicamentos
17.
Front Immunol ; 15: 1337489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566988

RESUMO

Introduction: Chimeric antigen receptor natural killer (CAR-NK) cells have been found to be successful in treating hematologic malignancies and present potential for usage in solid tumors. Methods: In this study, we created CD276-targeted CAR-expressing NK cells from pluripotent stem cells (iPSC CD276-targeted CAR-NK cells) and evaluated their cytotoxicity against esophageal squamous cell carcinoma (ESCC) using patient-specific organoid (PSO) models comprising of both CD276-positive and CD276-negative adjacent epithelium PSO models (normal control PSO, NC PSO) as well as primary culture of ESCC cell models. In addition, in vitro and in vivo models such as KYSE-150 were also examined. iPSC NK cells and NK-free media were used as the CAR-free and NK-free controls, respectively. Results: The positive CD276 staining was specifically detected on the ESCC membrane in 51.43% (54/105) of the patients of all stages, and in 51.35% (38/74) of stages III and IV. The iPS CD276-targeted CAR-NK cells, comparing with the iPS NK cells and the NK-free medium, exhibited specific and significant cytotoxic activity against CD276-positive ESCC PSO rather than CD276-negative NC PSO, and exhibited significant cytotoxicity against CD276-expressing cultured ESCC cells, as well as against CD276-expressing KYSE-150 in vitro and in BNDG mouse xenograft. Discussion: The efficacy of the iPSC CD276-targeted CAR-NK cells demonstrated by their successful treatment of CD276-expressing ESCC in a multitude of pre-clinical models implied that they hold tremendous therapeutic potential for treating patients with CD276-expressing ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Células-Tronco Pluripotentes Induzidas , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/terapia , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/metabolismo , Células Matadoras Naturais , Antígenos B7/metabolismo
18.
Pathol Res Pract ; 257: 155323, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653091

RESUMO

PURPOSE: Esophageal squamous cell carcinoma (ESCC) is a dominant pathological type in China. NUPR1 is a complex molecule implicated in various physiological and biological functions whose expression is upregulated in response to stress. Furthermore, autophagy is a vital physiological mechanism in the onset and metastasis of malignancies. This study aims to uncover the influence of NUPR1 on ESCC occurrence and development by regulating autophagy while also exploring its association with the MAPK signaling pathway. METHODS: First, the differences in NUPR1 between ESCC and normal tissues were analyzed through online databases. Subsequently, the pathological tissues of clinical samples were stained and scored using immunohistochemistry. And NUPR1 expression in ESCC cells was investigated, as was the function of NUPR1 in the modulation of ESCC's malignant behavior. Furthermore, a nude mouse ESCC xenograft model was developed. Finally, RNA sequencing was performed on NUPR1-downregulated ESCC cells, which was verified using WB. RESULTS: Our findings initially uncovered differences in the expression of NUPR1 in ESCC and normal tissues. In vitro experiments demonstrated that NUPR1 downregulation significantly inhibited ESCC cell proliferation, invasion, and migration, as well as promoted their apoptosis. Our xenograft model exhibited significant inhibition of ESCC tumors upon NUPR1 downregulation. Subsequently, RNA sequencing uncovered that NUPR1 regulates its malignant biological behavior through MAPK-mTOR signaling pathway. Finally, we found that NUPR1 downregulation can inhibit autophagic flux in ESCC. CONCLUSION: Collectively, our findings show that NUPR1 enhances the progression of ESCC by triggering autophagy and is associated with the MAPK-mTOR signaling pathway.


Assuntos
Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Camundongos Nus , Proteínas de Neoplasias , Serina-Treonina Quinases TOR , Humanos , Autofagia/fisiologia , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Proliferação de Células/fisiologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais/fisiologia , Masculino , Feminino , Apoptose/fisiologia , Camundongos Endogâmicos BALB C , Movimento Celular
19.
Cell Rep ; 43(4): 114104, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602872

RESUMO

Clinical evidence has revealed that high-level activation of NRF2 caused by somatic mutations in NRF2 (NFE2L2) is frequently detected in esophageal squamous cell carcinoma (ESCC), whereas that caused by somatic mutations in KEAP1, a negative regulator of NRF2, is not. Here, we aspire to generate a mouse model of NRF2-activated ESCC using the cancer-derived NRF2L30F mutation and cancer driver mutant TRP53R172H. Concomitant expression of NRF2L30F and TRP53R172H results in formation of NRF2-activated ESCC-like lesions. In contrast, while squamous-cell-specific deletion of KEAP1 induces similar NRF2 hyperactivation, the loss of KEAP1 combined with expression of TRP53R172H does not elicit the formation of ESCC-like lesions. Instead, KEAP1-deleted cells disappear from the esophageal epithelium over time. These findings demonstrate that, while cellular NRF2 levels are similarly induced, NRF2 gain of function and KEAP1 loss of function elicits distinct fates of squamous cells. The NRF2L30F mutant mouse model developed here will be instrumental in elucidating the mechanistic basis leading to NRF2-activated ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Mutação com Ganho de Função , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Mutação com Perda de Função
20.
Anticancer Res ; 44(5): 1915-1924, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677747

RESUMO

BACKGROUND/AIM: NAD(P)H dehydrogenase [quinone] 1 (NQO1), an antioxidant enzyme, confers resistance to anticancer agents. NQO1 C609T is a single-nucleotide polymorphism associated with reduced protein expression in the non-neoplastic esophageal squamous epithelium (ESE). This study aimed to investigate immunohistochemical NQO1 expression in non-neoplastic ESE and to elucidate its prognostic significance in patients with esophageal squamous cell carcinoma (ESCC) undergoing neoadjuvant therapy followed by esophagectomy. MATERIALS AND METHODS: NQO1 expression in non-neoplastic ESE was determined in surgical specimens from 83 patients with ESCC using immunohistochemistry. The association between NQO1 expression and clinicopathological factors, and the prognostic significance of NQO1 expression for relapse-free survival (RFS) were statistically evaluated. RESULTS: Patients with complete loss or weak NQO1 expression and patients with moderate or strong NQO1 expression were classified into the NQO1-negative (n=29) and NQO1-positive (n=54) groups, respectively. The downstaging of T classification status after neoadjuvant therapy was significantly more frequent in the NQO1-negative group than in the NQO1-positive group (59% vs. 33%; p=0.036). The NQO1-negative group had significantly more favorable RFS than the NQO1-positive group (p=0.035). Multivariate survival analysis demonstrated that NQO1 negative expression had a favorable prognostic impact on RFS (HR=0.332; 95%CI=0.136-0.812; p=0.016). CONCLUSION: Immunohistochemical evaluation of NQO1 expression in non-neoplastic ESE has clinical utility for predicting patient prognosis after neoadjuvant therapy followed by esophagectomy and might be helpful for selecting candidates for adjuvant therapy to treat ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , NAD(P)H Desidrogenase (Quinona) , Humanos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Feminino , Masculino , Pessoa de Meia-Idade , Prognóstico , Idoso , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Esofagectomia , Terapia Neoadjuvante , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Adulto , Imuno-Histoquímica , Intervalo Livre de Doença , Idoso de 80 Anos ou mais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA