RESUMO
Acute myeloid leukemia (AML) is a predominant form of leukemia. Central nervous system (CNS) involvement complicates its diagnosis due to limited diagnostic tools, as well as its treatment due to inadequate therapeutic methodologies and poor prognosis. Furthermore, its incidence rate is unclear. The mechanisms of AML cell mobilization from the bone marrow (BM) to the CNS are not fully elucidated, and the molecular factors contributing to CNS infiltration are insufficiently recognized. The present review aimed to enhance the understanding of CNS involvement of AML and its impact on CNS. The latest research on the pathways and mechanisms facilitating AML cells to escape the BM and infiltrate the CNS was reviewed. Additionally, novel therapeutic strategies targeting specific molecules and genes for treating CNS involvement in AML were examined.
Assuntos
Neoplasias do Sistema Nervoso Central , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/terapia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/metabolismo , Medula Óssea/patologia , Medula Óssea/metabolismoRESUMO
Primary diffuse large B-cell lymphoma of the central nervous system (CNS-DLBCL) can be difficult to diagnose because of the limited amount of biopsy tissue. Here, we analyzed the utility of insulin-like growth factor II mRNA binding protein 3 (IMP3) immunohistochemistry (IHC) as an adjunctive diagnostic tool for CNS-DLBCL. IHC was performed on 57 biopsy samples (55 brain biopsy samples and two vitreous cell blocks) from 54 patients with CNS-DLBCL, including three biopsy samples initially diagnosed as negative or indeterminate for CNS-DLBCL. Additionally, IMP3 IHC was performed on 68 DLBCLs other than CNS-DLBCL and 12 inflammatory brain diseases. Cytoplasmic IMP3 expression was noted in ≥50% of tumor cells in 100% (57/57) of CNS-DLBCLs and 88.2% (60/68) of non-CNS-DLBCLs. In contrast, no IMP3-positive CD20-positive B cells were observed in the inflammatory brain disease (P < 0.0001). In conclusion, IMP3 is highly expressed in CNS-DLBCL. However, it is also expressed in other types of DLBCLs, making it less specific. Most CNS-DLBCL cases can be diagnosed without performing IHC for IMP3 expression, but it may be a useful adjunctive tool to differentiate from reactive lesions when tumor cells are few or deformed.
Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma Difuso de Grandes Células B , Proteínas de Ligação a RNA , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Adulto , Imuno-Histoquímica , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Regulação Neoplásica da Expressão GênicaRESUMO
The central nervous system (CNS) represents a site of sanctuary for many metastatic tumors when systemic therapies that control the primary tumor cannot effectively penetrate intracranial lesions. Non-small cell lung cancers (NSCLCs) are the most likely of all neoplasms to metastasize to the brain, with up to 60% of patients developing CNS metastases during the disease process. Targeted therapies such as tyrosine kinase inhibitors (TKIs) have helped reduce lung cancer mortality but vary considerably in their capacity to control CNS metastases. The ability of these therapies to effectively target lesions in the CNS depends on several of their pharmacokinetic properties, including blood-brain barrier permeability, affinity for efflux transporters, and binding affinity for both plasma and brain tissue. Despite the existence of numerous preclinical models with which to characterize these properties, many targeted therapies have not been rigorously tested for CNS penetration during the discovery process, whereas some made it through preclinical testing despite poor brain penetration kinetics. Several TKIs have now been engineered with the characteristics of CNS-penetrant drugs, with clinical trials proving these efforts fruitful. This Review outlines the extent and variability of preclinical evidence for the efficacy of NSCLC-targeted therapies, which have been approved by the US Food and Drug Administration (FDA) or are in development, for treating CNS metastases, and how these data correlate with clinical outcomes.
Assuntos
Neoplasias do Sistema Nervoso Central , Terapia de Alvo Molecular , Humanos , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/secundário , Neoplasias do Sistema Nervoso Central/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologiaRESUMO
Glioblastoma (GBM) is a disease of the whole brain, with infiltrative tumor cells protected by an intact blood-brain barrier (BBB). GBM has a poor prognosis despite aggressive treatment, in part due to the lack of adequate drug permeability at the BBB. Standard of care GBM therapies include radiation and cytotoxic chemotherapy that lead to DNA damage. Subsequent activation of DNA damage response (DDR) pathways can induce resistance. Various DDR inhibitors, targeting the key regulators of these pathways such as ataxia telangiectasia mutated and Rad3-related (ATR), are being explored as radio- and chemosensitizers. Elimusertib, a novel ATR kinase inhibitor, can prevent repair of damaged DNA, increasing efficacy of DNA-damaging cytotoxic therapies. Robust synergy was observed in vitro when elimusertib was combined with the DNA-damaging agent temozolomide; however, we did not observe improvement with this combination in in vivo efficacy studies in GBM orthotopic tumor-bearing mice. This in vitro-in vivo disconnect was explored to understand factors influencing central nervous system (CNS) distribution of elimusertib and reasons for lack of efficacy. We observed that elimusertib is rapidly cleared from systemic circulation in mice and would not maintain adequate exposure in the CNS for efficacious combination therapy with temozolomide. CNS distribution of elimusertib is partially limited by P-glycoprotein efflux at the BBB, and high binding to CNS tissues leads to low levels of pharmacologically active (unbound) drug in the brain. Acknowledging the potential for interspecies differences in pharmacokinetics, these data suggest that clinical translation of elimusertib in combination with temozolomide for treatment of GBM may be limited. SIGNIFICANCE STATEMENT: This study examined the disconnect between the in vitro synergy and in vivo efficacy of elimusertib/temozolomide combination therapy by exploring systemic and central nervous system (CNS) distributional pharmacokinetics. Results indicate that the lack of improvement in in vivo efficacy in glioblastoma (GBM) patient-derived xenograft (PDX) models could be attributed to inadequate exposure of pharmacologically active drug concentrations in the CNS. These observations can guide further exploration of elimusertib for the treatment of GBM or other CNS tumors.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Animais , Camundongos , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Temozolomida/uso terapêutico , Temozolomida/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/metabolismo , Distribuição Tecidual , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Feminino , Neoplasias Encefálicas/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Pirimidinas/farmacologiaAssuntos
Neoplasias do Sistema Nervoso Central , Histonas , Proteínas Repressoras , Humanos , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Histonas/metabolismo , Histonas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismoRESUMO
OBJECTIVE: To assess whether diffusion and perfusion MRI derived parameters could non-invasively predict PD-L1 and Ki-67 status in primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL). METHODS: We retrospectively analyzed DWI, DSC-PWI, and morphological MRI (mMRI) in 88 patients with PCNS-DLBCL. The mMRI features were compared using chi-square tests or Fisher exact test. Minimum ADC (ADCmin), mean ADC(ADCmean), relative minimum ADC (rADCmin), relative mean ADC (rADCmean), and relative maximum CBV (rCBVmax) values were compared in PCNS-DLBCL with different molecular status by using the Mann-Whitney U test. The diagnostic performances were evaluated by receiver operating characteristic curves. RESULTS: PCNS-DLBCL with high PD-L1 expression demonstrated a significantly higher ADCmin value than those with low PD-L1. The ADCmean and rADCmean values were significantly lower in PCNS-DLBCL with high Ki-67 status compared with those in low Ki-67 status. Other ADC, CBV parameters, and mMRI features did not show any association with these molecular statuses The diagnostic efficacy of ADC values in assessing PD-L1 and Ki-67 status was relatively low, with area under the curves (AUCs) values less than 0.7. CONCLUSIONS: DWI-derived ADC values can provide some relevant information about PD-L1 and Ki-67 status in PCNS-DLBCL, but may not be sufficient to predict their expression due to the rather low diagnostic performance.
Assuntos
Antígeno B7-H1 , Neoplasias do Sistema Nervoso Central , Imagem de Difusão por Ressonância Magnética , Antígeno Ki-67 , Linfoma Difuso de Grandes Células B , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Antígeno Ki-67/metabolismo , Antígeno B7-H1/metabolismo , Imagem de Difusão por Ressonância Magnética/métodos , Idoso , Adulto , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/metabolismo , Idoso de 80 Anos ou mais , Angiografia por Ressonância Magnética/métodos , Curva ROCRESUMO
PURPOSE: The aim of this study was to develop and validate radiomics signatures based on MRI for preoperative prediction of Ki-67 proliferative index (PI) expression in primary central nervous system lymphoma (PCNSL). METHODS: A total of 341 patients with PCNSL were retrospectively analyzed, including 286 patients in one center as the training set and 55 patients in another two centers as the external validation set. Radiomics features were extracted and selected from preoperative contrast-enhanced T1-weighted images, fluid attenuation inversion recovery to build radiomics signatures according to the Ki-67 PI. The predictive performances of the radiomics model were evaluated using four classifiers including random forest, K-Nearest Neighbors, Neural Network and Decision Tree. A combined model was built by incorporating radiomics signature, clinical variables and MRI radiological characteristics using multivariate logistic regression analysis, and a nomogram was established to predict the expression of Ki-67 individually. The predictive performances of the models were evaluated using area under receiver operating characteristic curve (AUC) and decision curve analysis (DCA). RESULTS: Radiomics signatures were independent predictors of the expression level of Ki-67 (OR: 2.523, P < 0.001). RF radiomics models had the highest accuracy (0.934 in the training set and 0.811 in the external validation set) and F1 Score (0.920 in the training set and 0.836 in the external validation set). The clinic-radiologic-radiomics nomogram showed better predictive performance with AUCs of 0.877(95 % CI: 0.837-0.918) in the training set and 0.866(95 % CI: 0.774-0.957) in the external validation set. The calibration curve and DCA demonstrated goodness-of-fit and improved benefits in clinical practice of the nomogram. CONCLUSIONS: Nomograms integrating MRI-based radiomics and clinical-radiological characteristics could effectively predict Ki-67 PI in primary PCNSL.
Assuntos
Neoplasias do Sistema Nervoso Central , Antígeno Ki-67 , Linfoma , Radiômica , Humanos , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/metabolismo , Antígeno Ki-67/metabolismo , Linfoma/diagnóstico por imagem , Linfoma/metabolismo , Imageamento por Ressonância Magnética/métodos , Nomogramas , Valor Preditivo dos Testes , Estudos RetrospectivosRESUMO
ABSTRACT: Central nervous system (CNS) involvement remains a clinical hurdle in treating childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The disease mechanisms of CNS leukemia are primarily investigated using 2-dimensional cell culture and mouse models. Given the variations in cellular identity and architecture between the human and murine CNS, it becomes imperative to seek complementary models to study CNS leukemia. Here, we present a first-of-its-kind 3-dimensional coculture model combining human brain organoids and BCP-ALL cells. We noticed significantly higher engraftment of BCP-ALL cell lines and patient-derived xenograft (PDX) cells in cerebral organoids than non-ALL cells. To validate translatability between organoid coculture and in vivo murine models, we confirmed that targeting CNS leukemia-relevant pathways such as CD79a/Igα or C-X-C motif chemokine receptor 4-stromal cell-derived factor 1 reduced the invasion of BCP-ALL cells into organoids. RNA sequencing and functional validations of organoid-invading leukemia cells compared with the noninvaded fraction revealed significant upregulation of activator protein 1 (AP-1) transcription factor-complex members in organoid-invading cells. Moreover, we detected a significant enrichment of AP-1 pathway genes in PDX ALL cells recovered from the CNS compared with spleen blasts of mice that had received transplantation with TCF3::PBX1+ PDX cells, substantiating the role of AP-1 signaling in CNS disease. Accordingly, we found significantly higher levels of the AP-1 gene, jun proto-oncogene, in patients initially diagnosed as CNS-positive BCP-ALL compared with CNS-negative cases as well as CNS-relapse vs non-CNS-relapse cases in a cohort of 100 patients with BCP-ALL. Our results suggest CNS organoids as a novel model to investigate CNS involvement and identify the AP-1 pathway as a critical driver of CNS disease in BCP-ALL.
Assuntos
Técnicas de Cocultura , Organoides , Transdução de Sinais , Fator de Transcrição AP-1 , Humanos , Organoides/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/patologia , Proto-Oncogene Mas , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linhagem Celular Tumoral , Modelos Animais de DoençasRESUMO
Central nervous system tumor with BCOR internal tandem duplication (CNS tumor with BCOR-ITD) constitutes a molecularly distinct entity, characterized by internal tandem duplication within exon 15 of the BCOR transcriptional co-repressor gene (BCOR-ITD). The current study aimed to elucidate the clinical, pathological, and molecular attributes of CNS tumors with BCOR-ITD and explore their putative cellular origin. This study cohort comprised four pediatric cases, aged 23 months to 13 years at initial presentation. Magnetic resonance imaging revealed large, well-circumscribed intra-CNS masses localized heterogeneously throughout the CNS. Microscopically, tumors were composed of spindle to ovoid cells, exhibiting perivascular pseudorosettes and palisading necrosis, but lacking microvascular proliferation. Immunohistochemical staining showed diffuse tumor cell expression of BCOR, CD56, CD99, vimentin, and the stem cell markers PAX6, SOX2, CD133 and Nestin, alongside focal positivity for Olig-2, S100, SOX10, Syn and NeuN. Molecularly, all cases harbored BCOR-ITDs ranging from 87 to 119 base pairs in length, including one case with two distinct ITDs. Notably, the ITDs were interrupted by unique 1-3â¯bp insertions in all cases. In summary, CNS tumors with BCOR-ITD exhibit characteristic clinical, pathological, and molecular features detectable through BCOR immunohistochemistry and confirmatory molecular analyses. Their expression of stem cell markers raises the possibility of an origin from neuroepithelial stem cells rather than representing true embryonal neoplasms.
Assuntos
Neoplasias do Sistema Nervoso Central , Proteínas Proto-Oncogênicas , Proteínas Repressoras , Humanos , Proteínas Repressoras/genética , Proteínas Proto-Oncogênicas/genética , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/metabolismo , Criança , Adolescente , Masculino , Feminino , Lactente , Pré-Escolar , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Sequências de Repetição em Tandem , Duplicação GênicaRESUMO
The present study explores the complex roles of High Mobility Group Box 1 (HMGB1) in the context of cancer development, emphasizing glioblastoma (GBM) and other central nervous system (CNS) cancers. HMGB1, primarily known for its involvement in inflammation and angiogenesis, emerges as a multifaceted player in the tumorigenesis of GBM. The overexpression of HMGB1 correlates with glioma malignancy, influencing key pathways like RAGE/MEK/ERK and RAGE/Rac1. Additionally, HMGB1 secretion is linked to the maintenance of glioma stem cells (GSCs) and contributes to the tumor microenvironment's (TME) vascular leakiness. Henceforth, our review discusses the bidirectional impact of HMGB1, acting as both a promoter of tumor progression and a mediator of anti-tumor immune responses. Notably, HMGB1 exhibits tumor-suppressive roles by inducing apoptosis, limiting cellular proliferation, and enhancing the sensitivity of GBM to therapeutic interventions. This dualistic nature of HMGB1 calls for a nuanced understanding of its implications in GBM pathogenesis, offering potential avenues for more effective and personalized treatment strategies. The findings underscore the need to explore HMGB1 as a prognostic marker, therapeutic target, and a promising tool for stimulating anti-tumor immunity in GBM.
Assuntos
Neoplasias do Sistema Nervoso Central , Glioblastoma , Proteína HMGB1 , Microambiente Tumoral , Humanos , Proteína HMGB1/metabolismo , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/imunologia , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Animais , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Proliferação de CélulasRESUMO
Glioblastomas (GBM) are incurable central nervous system (CNS) cancers characterized by substantial myeloid cell infiltration. Whether myeloid cell-directed therapeutic targets identified in peripheral non-CNS cancers are applicable to GBM requires further study. Here, we identify that the critical immunosuppressive target in peripheral cancers, triggering receptor expressed on myeloid cells-2 (TREM2), is immunoprotective in GBM. Genetic or pharmacological TREM2 deficiency promotes GBM progression in vivo. Single-cell and spatial sequencing reveals downregulated TREM2 in GBM-infiltrated myeloid cells. TREM2 negatively correlates with immunosuppressive myeloid and T cell exhaustion signatures in GBM. We further demonstrate that during GBM progression, CNS-enriched sphingolipids bind TREM2 on myeloid cells and elicit antitumor responses. Clinically, high TREM2 expression in myeloid cells correlates with better survival in GBM. Adeno-associated virus-mediated TREM2 overexpression impedes GBM progression and synergizes with anti-PD-1 therapy. Our results reveal distinct functions of TREM2 in CNS cancers and support organ-specific myeloid cell remodeling in cancer immunotherapy.
Assuntos
Glioblastoma , Glicoproteínas de Membrana , Receptores Imunológicos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Humanos , Animais , Camundongos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Células Mieloides/metabolismo , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismoRESUMO
Central nervous system (CNS) tumors are the leading cause of pediatric cancer death, and these patients have an increased risk for developing secondary neoplasms. Due to the low prevalence of pediatric CNS tumors, major advances in targeted therapies have been lagging compared to other adult tumors. We collect single nuclei RNA-seq data from 84,700 nuclei of 35 pediatric CNS tumors and three non-tumoral pediatric brain tissues and characterize tumor heterogeneity and transcriptomic alterations. We distinguish cell subpopulations associated with specific tumor types including radial glial cells in ependymomas and oligodendrocyte precursor cells in astrocytomas. In tumors, we observe pathways important in neural stem cell-like populations, a cell type previously associated with therapy resistance. Lastly, we identify transcriptomic alterations among pediatric CNS tumor types compared to non-tumor tissues, while accounting for cell type effects on gene expression. Our results suggest potential tumor type and cell type-specific targets for pediatric CNS tumor treatment. Here we address current gaps in understanding single nuclei gene expression profiles of previously under-investigated tumor types and enhance current knowledge of gene expression profiles of single cells of various pediatric CNS tumors.
Assuntos
Neoplasias do Sistema Nervoso Central , Ependimoma , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Humanos , Criança , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/metabolismo , Ependimoma/genética , Ependimoma/patologia , Ependimoma/metabolismo , Pré-Escolar , Astrocitoma/genética , Astrocitoma/patologia , Astrocitoma/metabolismo , Perfilação da Expressão Gênica/métodos , Feminino , RNA-Seq , Masculino , Adolescente , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Núcleo Celular/metabolismo , Núcleo Celular/genéticaRESUMO
Annexins, a group of Ca2+-dependent phospholipid-binding proteins, exert diverse roles in neuronal development, normal central nervous system (CNS) functioning, neurological disorders, and CNS tumors. This paper reviews the roles of individual annexins (A1-A13) in these contexts. Annexins possess unique structural and functional features, such as Ca2+-dependent binding to phospholipids, participating in membrane organization, and modulating cell signaling. They are implicated in various CNS processes, including endocytosis, exocytosis, and stabilization of plasma membranes. Annexins exhibit dynamic roles in neuronal development, influencing differentiation, proliferation, and synaptic formation in CNS tissues. Notably, annexins such as ANXA1 and ANXA2 play roles in apoptosis and blood-brain barrier (BBB) integrity. Neurological disorders, including Alzheimer's disease, multiple sclerosis, and depression, involve annexin dysregulation, influencing neuroinflammation, blood-brain barrier integrity, and stress responses. Moreover, annexins contribute to the pathogenesis of CNS tumors, either promoting or suppressing tumor growth, angiogenesis, and invasion. Annexin expression patterns vary across different CNS tumor types, providing potential prognostic markers and therapeutic targets. This review underscores the multifaceted roles of annexins in the CNS, highlighting their importance in normal functioning, disease progression, and potential therapeutic interventions.
Assuntos
Anexinas , Sistema Nervoso Central , Humanos , Anexinas/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Barreira Hematoencefálica/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologiaRESUMO
Primary central nervous system lymphoma (PCNSL) is a rare extranodal non-Hodgkin lymphoma, and there is limited research on its tumor microenvironment (TME). Nevertheless, more and more studies have evidence that TME has essential effects on tumor cell proliferation, immune escape, and drug resistance. Thus, it is critical to elucidate the role of TME in PCNSL. The understanding of the PCNSL TME is gradually unfolding, including factors that distinguish it from systemic diffuse large B-cell lymphoma (DLBCL). The TME in PCNSL exhibits both transcriptional and spatial intratumor heterogeneity. Cellular interactions between tumor cells and stroma cells reveal immune evasion signaling. The comparative analysis between PCNSL and DLBCL suggests that PCNSL is more likely to be an immunologically deficient tumor. In PCNSL, T cell exhaustion and downregulation of macrophage immune function are accompanied by suppressive microenvironmental factors such as M2 polarized macrophages, endothelin B receptor, HLA depletion, PD-L1, and TIM-3. MMP-9, Integrin-ß1, and ICAM-1/LFA-1 play crucial roles in transendothelial migration towards the CNS, while CXCL13/CXCR5, CD44, MAG, and IL-8 are essential for brain parenchymal invasion. Further, macrophages, YKL-40, CD31, CD105, PD-1/PD-L1 axis, osteopontin, galectin-3, aggregative perivascular tumor cells, and HLA deletion may contribute to poor outcomes in patients with PCNSL. This article reviews the effect of various components of TME on the progression and prognosis of PCNSL patients to identify novel therapeutic targets.
Assuntos
Neoplasias do Sistema Nervoso Central , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/fisiologia , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/imunologia , Prognóstico , Linfoma não Hodgkin/patologiaRESUMO
Although intratumoral heterogeneity has been established in pediatric central nervous system tumors, epigenomic alterations at the cell type level have largely remained unresolved. To identify cell type-specific alterations to cytosine modifications in pediatric central nervous system tumors, we utilize a multi-omic approach that integrated bulk DNA cytosine modification data (methylation and hydroxymethylation) with both bulk and single-cell RNA-sequencing data. We demonstrate a large reduction in the scope of significantly differentially modified cytosines in tumors when accounting for tumor cell type composition. In the progenitor-like cell types of tumors, we identify a preponderance differential Cytosine-phosphate-Guanine site hydroxymethylation rather than methylation. Genes with differential hydroxymethylation, like histone deacetylase 4 and insulin-like growth factor 1 receptor, are associated with cell type-specific changes in gene expression in tumors. Our results highlight the importance of epigenomic alterations in the progenitor-like cell types and its role in cell type-specific transcriptional regulation in pediatric central nervous system tumors.
Assuntos
Neoplasias do Sistema Nervoso Central , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Criança , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Epigenômica/métodos , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Análise de Célula Única , Transcrição Gênica , Citosina/metabolismoRESUMO
Quercetin, a naturally occurring polyphenolic compound found in abundance in vegetables and fruits, has emerged as a compelling subject of study in cancer treatment. This comprehensive review delves into the significance and originality of quercetin's multifaceted mechanisms of action, with a particular focus on its application in various brain tumors such as glioblastoma, glioma, neuroblastoma, astrocytoma, and medulloblastoma. This review scrutinizes the distinctive facets of quercetin's anti-cancer properties, highlighting its capacity to modulate intricate signaling pathways, trigger apoptosis, impede cell migration, and enhance radiosensitivity in brain tumor cells. Significantly, it synthesizes recent research findings, providing insights into potential structure-activity relationships that hold promise for developing novel quercetin derivatives with heightened effectiveness. By unraveling the unique attributes of quercetin's anti-brain tumor effects and exploring its untapped potential in combination therapies, this review contributes to a deeper comprehension of quercetin's role as a prospective candidate for advancing innovative treatments for brain cancer.
Assuntos
Quercetina , Quercetina/química , Quercetina/farmacologia , Quercetina/uso terapêutico , Humanos , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Apoptose/efeitos dos fármacos , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Atypical teratoid rhabdoid tumors (ATRT) is a rare but aggressive malignancy in the central nervous system, predominantly occurring in early childhood. Despite aggressive treatment, the prognosis of ATRT patients remains poor. RRM2, a subunit of ribonucleotide reductase, has been reported as a biomarker for aggressiveness and poor prognostic conditions in several cancers. However, little is known about the role of RRM2 in ATRT. Uncovering the role of RRM2 in ATRT will further promote the development of feasible strategies and effective drugs to treat ATRT. METHODS: Expression of RRM2 was evaluated by molecular profiling analysis and was confirmed by IHC in both ATRT patients and PDX tissues. Follow-up in vitro studies used shRNA knockdown RRM2 in three different ATRT cells to elucidate the oncogenic role of RRM2. The efficacy of COH29, an RRM2 inhibitor, was assessed in vitro and in vivo. Western blot and RNA-sequencing were used to determine the mechanisms of RRM2 transcriptional activation in ATRT. RESULTS: RRM2 was found to be significantly overexpressed in multiple independent ATRT clinical cohorts through comprehensive bioinformatics and clinical data analysis in this study. The expression level of RRM2 was strongly correlated with poor survival rates in patients. In addition, we employed shRNAs to silence RRM2, which led to significantly decrease in ATRT colony formation, cell proliferation, and migration. In vitro experiments showed that treatment with COH29 resulted in similar but more pronounced inhibitory effect. Therefore, ATRT orthotopic mouse model was utilized to validate this finding, and COH29 treatment showed significant tumor growth suppression and prolong overall survival. Moreover, we provide evidence that COH29 treatment led to genomic instability, suppressed homologous recombinant DNA damage repair, and subsequently induced ATRT cell death through apoptosis in ATRT cells. CONCLUSIONS: Collectively, our study uncovers the oncogenic functions of RRM2 in ATRT cell lines, and highlights the therapeutic potential of targeting RRM2 in ATRT. The promising effect of COH29 on ATRT suggests its potential suitability for clinical trials as a novel therapeutic approach for ATRT.
Assuntos
Neoplasias do Sistema Nervoso Central , Tumor Rabdoide , Animais , Pré-Escolar , Humanos , Camundongos , Apoptose , Neoplasias do Sistema Nervoso Central/metabolismo , Reparo do DNA , Inibidores Enzimáticos/uso terapêutico , Tumor Rabdoide/tratamento farmacológico , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismoRESUMO
Primary vitreoretinal lymphoma (PVRL) represents a subtype of intraocular lymphomas, which are a subgroup of malignant lymphomas of the eye. PVRL is considered a special form of primary diffuse large cell lymphoma (DLBCL) of the CNS (central nervous system) (PCNSL) and arises primary or secondary to PCNSL. According to the cell of origin (COO) classification of DLBCL, PVRL largely belongs to the activated Bcell (ABC) type of DLBCL. Based on a recently established genetic-biological classification of DLBCL, PCNSL and thus also PVRL belong to a group of DLBCL of the MYD88/CD79B-mutated (MCD) or cluster 5 subtype, which often shows extranodal manifestations and MYD88 and CD79A mutations as well as CDKN2A deletions.PVRL diagnostics is often complicated as it represents a classic masquerade syndrome. Due to the usually limited material with often large numbers of reactive lymphocytes and/or degenerative changes in the cells, the results of diagnostic tests are difficult to interpret. Classic diagnostic tests include cytology on vitreous aspirates, immunocytochemistry, and clonality analysis.New insights into the spectrum of genetic alterations of vitreoretinal lymphomas (VRL) confirm the close relationship to PCNSL and could significantly improve pathological diagnosis. Next-generation sequencing panel-based diagnostics allow VRL diagnosis confirmation with little DNA in almost 100% of patients in cases with insufficient cytological evidence or lack of clonality detection. PVRL, as well as secondary vitreoretinal lymphomas after PCNSL or extracerebral DLBCL, have high mutation frequencies in characteristically mutated genes in PCNSL or MCD/cluster 5 type DLBCL. Supporting diagnostics, mutation detection can also be performed on cell-free DNA from the vitreous supernatant.
Assuntos
Neoplasias do Sistema Nervoso Central , Neoplasias Oculares , Linfoma Difuso de Grandes Células B , Neoplasias da Retina , Humanos , Neoplasias da Retina/diagnóstico , Fator 88 de Diferenciação Mieloide/genética , Patologia Molecular , Corpo Vítreo/metabolismo , Neoplasias Oculares/diagnóstico , Linfoma Difuso de Grandes Células B/diagnóstico , Neoplasias do Sistema Nervoso Central/metabolismoRESUMO
PURPOSE: The aim of this study was to investigate the association between methionine (MET) metabolism and endocrine function of the pituitary gland in patients with suprasellar region tumor. MATERIALS AND METHODS: Twenty patients with intracranial germinoma were included in this study. Initial staging and all surveillance MET PET/CT scans and comparable serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and thyroid stimulating hormone (TSH) were analyzed. The patients were divided into two groups according to tumor location, with tumors in the suprasellar region (condition) or not (control). MET uptake of the pituitary gland (i.e., SUVR [standardized uptake value ratio]) and levels of FSH, LH, TSH were compared in the condition and control groups and in the before and after treatment phases of each group. RESULTS: The SUVR in the control group was like that found in normal pituitary glands in previous studies, whereas the SUVR of the untreated condition group was high and that of treated condition group was low with significance compared to the control group. Serum levels of pituitary hormones in before and after treatment condition groups were significantly lower than those in the control group. The FSH and LH levels of curatively treated patients in the control group were positively correlated with SUVR with respective ß values of 3.71 and 0.98 (p < .001). The TSH level of the treated condition group was negatively correlated with SUVR (ß = -1.02, p < .001). CONCLUSION: This study is the first known investigation to examine the association between MET metabolism and endocrine function of the pituitary gland, and it confirmed that MET metabolism reflects endocrine function. A future study validating the result of correlation analysis is warranted.
Assuntos
Neoplasias do Sistema Nervoso Central , Germinoma , Neoplasias de Cabeça e Pescoço , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Hormônio Luteinizante , Hipófise/diagnóstico por imagem , Hipófise/metabolismo , Hormônio Foliculoestimulante , Tireotropina/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias do Sistema Nervoso Central/metabolismo , Germinoma/metabolismo , Metionina/metabolismoRESUMO
Tumors of the Central Nervous System (CNS) represent the leading cause of cancer-related deaths in children. Current treatment options are not curative for most malignant histologies, and intense preclinical and clinical research is needed to develop more effective therapeutic interventions against these tumors, most of which meet the FDA definition for orphan diseases. Increased attention is being paid to the repositioning of already-approved drugs for new anticancer indications as a fast-tracking strategy for identifying new and more effective therapies. Two pediatric CNS tumors, posterior fossa ependymoma (EPN-PF) type A and diffuse midline glioma (DMG) H3K27-altered, share loss of H3K27 trimethylation as a common epigenetic hallmark and display early onset and poor prognosis. These features suggest a potentially common druggable vulnerability. Successful treatment of these CNS tumors raises several challenges due to the location of tumors, chemoresistance, drug blood-brain barrier penetration, and the likelihood of adverse side effects. Recently, increasing evidence demonstrates intense interactions between tumor cell subpopulations and supportive tumor microenvironments (TMEs) including nerve, metabolic, and inflammatory TMEs. These findings suggest the use of drugs, and/or multi-drug combinations, that attack both tumor cells and the TME simultaneously. In this work, we present an overview of the existing evidence concerning the most preclinically validated noncancer drugs with antineoplastic activity. These drugs belong to four pharmacotherapeutic classes: antiparasitic, neuroactive, metabolic, and anti-inflammatory. Preclinical evidence and undergoing clinical trials in patients with brain tumors, with special emphasis on pediatric EPN-PF and DMG, are summarized and critically discussed.