Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Sci Rep ; 14(1): 19373, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169073

RESUMO

Wound healing is a complex process orchestrated by interactions between a variety of cell types, including keratinocytes, fibroblasts, endothelial cells, inflammatory cells, and bioactive factors such as extracellular matrix (ECM) components, growth factors, and cytokines. Chronic wounds exhibit delayed proliferative phase initiation, reduced angiogenesis, impaired ECM synthesis, and persistent inflammatory response. Chronic wounds are one of the main challenges to the healthcare system worldwide, with a high cost for medical services. Hence, investigation of new approaches to accelerate wound healing is essential. Phytomedicines are considered as potential agents for improving the wound healing by accelerating epithelization, collagen synthesis, and angiogenesis. These natural compounds have various advantages including availability, ease of application, and high effectiveness in wound managment. This study aimed to investigate the biological effects of saffron or Crocus sativus L. (C. sativus) petal extract on cell survival, migration, and angiogenesis using MTT, scratch and in vitro tube formation assays. Moreover, the expression of collagen type I alpha 1 (COL1A1) and vascular endothelial growth factor (VEGF) were evaluated in human dermal fibroblasts (HDF)s and human umbilical vein endothelial cells (HUVEC)s, respectively. The effect of the C. sativus extract on the skin of diabetic mice was also monitored. The results showed that C. sativus petal extract promoted the viability and migration of HDFs and HUVECs. Moreover, C. sativus petal extract enhanced the formation of tube-like structures by HUVECs cultured on the Matrigel basement membrane matrix, indicating its potential to stimulate angiogenesis. Gene expression studies have shown the the C. sativus extract increases wound healing by upregulation of COL1A1 and VEGF, which are crucial factors involved in collagen deposition, epithelialization, and angiogenesis. Histological analysis revealed that C. sativus petal extract enhanced vascularity and increased the number of fibroblasts and collagen synthesis, ultimately accelerating wound closure compared to wounds treated with eucerin and commercial ointment in diabetic mice. Therefore, C. sativus petal extract has potential as a herbal treatment to improve the healing of diabetic wounds.


Assuntos
Crocus , Fibroblastos , Células Endoteliais da Veia Umbilical Humana , Extratos Vegetais , Fator A de Crescimento do Endotélio Vascular , Cicatrização , Cicatrização/efeitos dos fármacos , Crocus/química , Animais , Humanos , Extratos Vegetais/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Camundongos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cadeia alfa 1 do Colágeno Tipo I , Flores/química , Neovascularização Fisiológica/efeitos dos fármacos , Masculino
2.
Sci Rep ; 14(1): 18345, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112598

RESUMO

Pressure ulcers (PU) are caused by persistent long-term pressure, which compromises the integrity of the epidermis, dermis, and subcutaneous adipose tissue layer by layer, making it difficult to heal. Platelet products such as platelet lysate (PL) can promote tissue regeneration by secreting numerous growth factors based on clinical studies on skin wound healing. However, the components of PL are difficult to retain in wounds. Gelatin methacrylate (GelMA) is a photopolymerizable hydrogel that has lately emerged as a promising material for tissue engineering and regenerative medicine. The PL liquid was extracted, flow cytometrically detected for CD41a markers, and evenly dispersed in the GelMA hydrogel to produce a surplus growth factor hydrogel system (PL@GM). The microstructure of the hydrogel system was observed under a scanning electron microscope, and its sustained release efficiency and biological safety were tested in vitro. Cell viability and migration of human dermal fibroblasts, and tube formation assays of human umbilical vein endothelial cells were applied to evaluate the ability of PL to promote wound healing and regeneration in vitro. Real-time polymerase chain reaction (PCR) and western blot analyses were performed to elucidate the skin regeneration mechanism of PL. We verified PL's therapeutic effectiveness and histological analysis on the PU model. PL promoted cell viability, migration, wound healing and angiogenesis in vitro. Real-time PCR and western blot indicated PL suppressed inflammation and promoted collagen I synthesis by activating STAT3. PL@GM hydrogel system demonstrated optimal biocompatibility and favorable effects on essential cells for wound healing. PL@GM also significantly stimulated PU healing, skin regeneration, and the formation of subcutaneous collagen and blood vessels. PL@GM could accelerate PU healing by promoting fibroblasts to migrate and secrete collagen and endothelial cells to vascularize. PL@GM promises to be an effective and convenient treatment modality for PU, like chronic wound treatment.


Assuntos
Angiogênese , Plaquetas , Gelatina , Metacrilatos , Úlcera por Pressão , Pele , Cicatrização , Animais , Humanos , Camundongos , Angiogênese/efeitos dos fármacos , Plaquetas/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Gelatina/química , Gelatina/farmacologia , Células Endoteliais da Veia Umbilical Humana , Hidrogéis/química , Metacrilatos/química , Metacrilatos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Úlcera por Pressão/terapia , Regeneração/efeitos dos fármacos , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Fator de Transcrição STAT3/metabolismo , Cicatrização/efeitos dos fármacos
3.
Chem Biol Drug Des ; 104(2): e14602, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39134897

RESUMO

Catalpol, a natural iridoid glycoside, has potential therapeutic benefits, including anti-inflammatory and neuroprotective effects. Investigating catalpol's role in angiogenesis is critical for understanding its potential therapeutic applications, particularly in diseases where modulating angiogenesis is beneficial. This study investigates catalpol's influence on angiogenesis and its mechanisms, combining network pharmacology and in vitro experiments. The target genes corresponding to the catalpol were analyzed by SwissTargetPrediction. Then angiogenesis-related targets were acquired from databases like GeneCards. Subsequently, the Database for Annotation, Visualization and Integrated Discovery was employed for Gene Ontology and pathway analysis, while Cytoscape visualized protein interactions. The effect of catalpol on viability and angiogenesis of HUVECs was further examined using Cell Counting Kit-8 and angiogenesis assays. RT-qPCR and western blot were applied to check the expression of angiogenesis-related proteins. Totally, 312 target genes of catalpol and 823 angiogenesis-related targets were obtained with 56 common targets leading to PPI network analysis, highlighting hub genes (AKT1, EGFR, STAT3, MAPK3, and CASP3). These hub genes were mainly enriched in lipid and atherosclerosis pathway and EGFR-related pathway. The in vitro experimental results showed that catalpol achieved a concentration-dependent increase in HUVECs viability. Catalpol also promoted the migration and angiogenesis of HUVECs and up-regulated the expression of EGFR. EGFR knockdown inhibited the effect of catalpol on HUVECs. Catalpol promotes angiogenesis in HUVECs by upregulating EGFR and angiogenesis-related proteins, indicating its potential therapeutic application in vascular-related diseases.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Glucosídeos Iridoides , Farmacologia em Rede , Humanos , Glucosídeos Iridoides/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Transdução de Sinais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Angiogênese
4.
ACS Nano ; 18(33): 22390-22403, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39105734

RESUMO

An imbalanced system of angiogenesis-osteoblasts-osteoclasts is regarded as the main factor in bone remodeling dysfunction diseases or osseointegration loss. Osteoclast precursors are the key cells that accelerate bone-specific angiogenesis and maintain normal osteoblast and osteoclast function. Graphene oxide is an effective scaffold surface modification agent with broad application prospects in bone tissue engineering. However, the effect of graphene oxide on the interaction between osteoclasts and angiogenesis has not yet been elucidated. In this study, a rat calvarial defect model was established and treated with an electrochemically derived nanographene oxide (ENGO) hydrogel. Higher angiogenesis and platelet-derived growth factor (PDGF) B in preosteoclasts were observed in the ENGO group compared with that in the control group. Moreover, in vitro experiments demonstrate the efficacy of ENGO in substantially reducing the expression of the receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast-associated markers and inhibiting bone resorption activity. Additionally, ENGO enhances the secretion of the osteoclast-derived coupling factor PDGF-BB and promotes angiogenesis. Our investigation revealed the crucial role of isocitrate dehydrogenase 1 (IDH1) in the ENGO-mediated regulation of osteoclast differentiation and PDGF-BB secretion. The decreased expression of IDH1 reduces the level of histone lysine demethylase 7A (KDM7A) and subsequently increases the H3K9me2 level in the cathepsin K promoter region. In summary, we found that ENGO promotes angiogenesis by inhibiting the maturity of RANKL-induced osteoclasts and enhancing PDGF-BB secretion. These results indicate that ENGO holds promise for the application in fostering osteoclast-endothelial cell crosstalk, providing an effective strategy for treating bone resorption and osteoclast-related bone loss diseases.


Assuntos
Diferenciação Celular , Grafite , Neovascularização Fisiológica , Osteoclastos , Animais , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Ratos , Grafite/química , Grafite/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Ratos Sprague-Dawley , Camundongos , Masculino , Becaplermina/farmacologia , Células Cultivadas , Isocitrato Desidrogenase/metabolismo , Angiogênese
5.
PeerJ ; 12: e17534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948219

RESUMO

Ischemic stroke (IS) is a disease with a high mortality and disability rate worldwide, and its incidence is increasing per year. Angiogenesis after IS improves blood supply to ischemic areas, accelerating neurological recovery. ß-asarone has been reported to exhibit a significant protective effect against hypoxia injury. The ability of ß-asarone to improve IS injury by inducing angiogenesis has not been distinctly clarified. The experimental rats were induced with middle cerebral artery occlusion (MCAO), and oxygen-glucose deprivation (OGD) model cells were constructed using human microvascular endothelial cell line (HMEC-1) cells. Cerebral infarction and pathological damage were first determined via triphenyl tetrazolium chloride (TTC) and hematoxylin and eosin (H&E) staining. Then, cell viability, apoptosis, and angiogenesis were assessed by utilizing cell counting kit-8 (CCK-8), flow cytometry, spheroid-based angiogenesis, and tube formation assays in OGD HMEC-1 cells. Besides, angiogenesis and other related proteins were identified with western blot. The study confirms that ß-asarone, like nimodipine, can ameliorate cerebral infarction and pathological damage. ß-asarone can also upregulate vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) and induce phosphorylation of p38. Besides, the study proves that ß-asarone can protect against IS injury by increasing the expression of VEGFA. In vitro experiments affirmed that ß-asarone can induce viability and suppress apoptosis in OGD-mediated HMEC-1 cells and promote angiogenesis of OGD HMEC-1 cells by upregulating VEGFA. This establishes the potential for ß-asarone to be a latent drug for IS therapy.


Assuntos
Derivados de Alilbenzenos , Anisóis , Apoptose , Sobrevivência Celular , Células Endoteliais , AVC Isquêmico , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular , Derivados de Alilbenzenos/farmacologia , Anisóis/farmacologia , Anisóis/uso terapêutico , Apoptose/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , AVC Isquêmico/metabolismo , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Sobrevivência Celular/efeitos dos fármacos , Animais , Regulação para Cima/efeitos dos fármacos , Ratos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Masculino , Linhagem Celular , Ratos Sprague-Dawley , Neovascularização Fisiológica/efeitos dos fármacos , Angiogênese
6.
Int J Nanomedicine ; 19: 6519-6546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957181

RESUMO

Background: Salidroside (SAL) is the most effective component of Rhodiola rosea, a traditional Chinese medicine. Cryptotanshinone (CT) is the main fat-soluble extract of Salvia miltiorrhiza, exhibiting considerable potential for application in osteogenesis. Herein, a polycaprolactone/gelatin nanofiber membrane loaded with CT and SAL (PSGC membrane) was successfully fabricated via coaxial electrospinning and characterized. Methods and Results: This membrane capable of sustained and controlled drug release was employed in this study. Co-culturing the membrane with bone marrow mesenchymal stem cells and human umbilical vein endothelial cells revealed excellent biocompatibility and demonstrated osteogenic and angiogenic capabilities. Furthermore, drug release from the PSGC membrane activated the Wnt/ß-catenin signaling pathway and promoted osteogenic differentiation and vascularization. Evaluation of the membrane's vascularization and osteogenic capacities involved transplantation onto a rat's subcutaneous area and assessing rat cranium defects for bone regeneration, respectively. Microcomputed tomography, histological tests, immunohistochemistry, and immunofluorescence staining confirmed the membrane's outstanding angiogenic capacity two weeks post-operation, with a higher incidence of osteogenesis observed in rat cranial defects eight weeks post-surgery. Conclusion: Overall, the SAL- and CT-loaded coaxial electrospun nanofiber membrane synergistically enhances bone repair and regeneration.


Assuntos
Gelatina , Glucosídeos , Células Endoteliais da Veia Umbilical Humana , Células-Tronco Mesenquimais , Nanofibras , Neovascularização Fisiológica , Osteogênese , Fenantrenos , Fenóis , Poliésteres , Ratos Sprague-Dawley , Osteogênese/efeitos dos fármacos , Animais , Nanofibras/química , Gelatina/química , Poliésteres/química , Glucosídeos/química , Glucosídeos/farmacologia , Fenóis/química , Fenóis/farmacologia , Fenantrenos/química , Fenantrenos/farmacologia , Fenantrenos/farmacocinética , Fenantrenos/administração & dosagem , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Ratos , Masculino , Regeneração Óssea/efeitos dos fármacos , Membranas Artificiais , Técnicas de Cocultura , Liberação Controlada de Fármacos , Diferenciação Celular/efeitos dos fármacos
7.
Stem Cell Res Ther ; 15(1): 217, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020406

RESUMO

BACKGROUND: Intrauterine adhesions (IUAs) jeopardise uterine function in women, which is a great challenge in the clinic. Previous studies have shown that endometrial perivascular cells (En-PSCs) can improve the healing of scarred uteri and that hydroxysafflor yellow A (HSYA) promotes angiogenesis. The purpose of this study was to observe whether the combination of En-PSCs with HSYA could improve the blood supply and fertility in the rat uterus after full-thickness injury. METHODS: En-PSCs were sorted by flow cytometry, and the effect of HSYA on the proliferation and angiogenesis of the En-PSCs was detected using CCK-8 and tube formation assays. Based on a previously reported rat IUA model, the rat uteri were sham-operated, spontaneously regenerated, or treated with collagen-loaded PBS, collagen-loaded HSYA, collagen-loaded En-PSCs, or collagen-loaded En-PSCs with HSYA, and then collected at both 30 and 90 days postsurgery. HE staining and Masson staining were used to evaluate uterine structure and collagen fibre deposition, and immunohistochemical staining for α-SMA and vWF was used to evaluate myometrial regeneration and neovascularization in each group. A fertility assay was performed to detect the recovery of pregnancy function in each group. RNA-seq was performed to determine the potential mechanism underlying En-PSCs/HSYA treatment. Immunofluorescence, tube formation assays, and Western blot were used to validate the molecular mechanism involved. RESULTS: The transplantation of Collagen/En-PSCs/HSYA markedly promoted uterine repair in rats with full-thickness injury by reducing fibrosis, increasing endometrial thickness, regenerating myometrium, promoting angiogenesis, and facilitated live births. RNA sequencing results suggested that En-PSCs/HSYA activated the NRG1/ErbB4 signaling pathway. In vitro tube formation experiments revealed that the addition of an ErbB inhibitor diminished the tube formation ability of cocultured En-PSCs and HUVECs. Western blot results further showed that elevated levels of NRG1 and ErbB4 proteins were detected in the Collagen/En-PSCs/HSYA group compared to the Collagen/En-PSCs group. These collective results suggested that the beneficial effects of the transplantation of Collagen/En-PSCs/HSYA might be attributed to the modulation of the NRG1/ErbB4 signaling pathway. CONCLUSIONS: The combination of En-PSCs/HSYA facilitated morphological and functional repair in rats with full-thickness uterine injury and may promote endometrial angiogenesis by regulating the NRG1/ErbB4 signaling pathway.


Assuntos
Chalcona , Endométrio , Quinonas , Útero , Animais , Feminino , Ratos , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Humanos , Útero/efeitos dos fármacos , Útero/metabolismo , Chalcona/análogos & derivados , Chalcona/farmacologia , Quinonas/farmacologia , Quinonas/uso terapêutico , Ratos Sprague-Dawley , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Transplante de Células-Tronco/métodos , Proliferação de Células/efeitos dos fármacos , Regeneração/efeitos dos fármacos
8.
Eur J Pharm Sci ; 200: 106847, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38972611

RESUMO

Exogenous insulin-like growth factor-1 (IGF-1) has been reported to promote wound healing through regulation of vascular endothelial cells (VECs). Despite the existing studies of IGF-1 on VEC and its role in angiogenesis, the mechanisms regarding anti-inflammatory and angiogenetic effects of IGF-1 remain unclear. In this study, we investigated the wound-healing process and the related signaling pathway of IGF-1 using an inflammation model induced by IFN-γ. The results demonstrated that IGF-1 can increase cell proliferation, suppress inflammation in VECs, and promote angiogenesis. In vivo studies further confirmed that IGF-1 can reduce inflammation, enhance vascular regeneration, and improve re-epithelialization and collagen deposition in acute wounds. Importantly, the Ras/PI3K/IKK/NF-κB signaling pathways was identified as the mechanisms through which IGF-1 exerts its anti-inflammatory and pro-angiogenic effects. These findings contribute to the understanding of IGF-1's role in wound healing and may have implications for the development of new wound treatment approaches.


Assuntos
Inflamação , Fator de Crescimento Insulin-Like I , NF-kappa B , Transdução de Sinais , Cicatrização , Fator de Crescimento Insulin-Like I/metabolismo , Animais , Cicatrização/efeitos dos fármacos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inflamação/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas ras/metabolismo , Masculino , Quinase I-kappa B/metabolismo , Proliferação de Células/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Interferon gama/metabolismo , Interferon gama/farmacologia , Angiogênese
9.
Pharmacol Res ; 206: 107290, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960012

RESUMO

The placenta, as a "transit station" between mother and fetus, has functions delivering nutrients, excreting metabolic wastes and secreting hormones. A healthy placenta is essential for fetal growth and development while the melatonergic system seems to play a critical physiological role in this organ since melatonin, its synthetic enzymes and receptors are present in the placenta. In current study, Mtnr1a and Mtnr1b knockout mice were constructed to explore the potential roles of melatonergic system played on the placental function and intrauterine growth retardation (IUGR). The result showed that Mtnr1a knockout had little effect on placental function while Mtnr1b knockout reduced placental efficiency and increased IUGR. Considering the extremely high incidence of IURG in sows, the pregnant sows were treated with melatonin. This treatment reduced the incidence of IUGR. All the evidence suggests that the intact melatonergic system in placenta is required for its function. Mechanistical studies uncovered that Mtnr1b knockout increased placental oxidative stress and apoptosis but reduced the angiogenesis. The RNA sequencing combined with histochemistry study identified the reduced angiogenesis and placental vascular density in Mtnr1b knockout mice. These alterations were mediated by the disrupted STAT3/VEGFR2/PI3K/AKT pathway, i.e., Mtnr1b knockout reduced the phosphorylation of STAT3 which is the promotor of VEGFR2. The downregulated VEGFR2 and its downstream elements of PI3K and AKT expressions, then, jeopardizes the angiogenesis and placental development.


Assuntos
Retardo do Crescimento Fetal , Melatonina , Camundongos Knockout , Neovascularização Fisiológica , Placenta , Receptor MT2 de Melatonina , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Feminino , Gravidez , Placenta/metabolismo , Placenta/irrigação sanguínea , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Melatonina/farmacologia , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/metabolismo , Camundongos , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Apoptose , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Suínos , Angiogênese
10.
Biofabrication ; 16(4)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38986455

RESUMO

Over the past three decades, cell therapy development has fallen short of expectations, with many cellular sources demonstrating a 'Janus effect' and raising safety concerns. Extracellular vesicles (EVs), supported by advanced technologies, present a promising avenue in regenerative medicine, offering benefits such as immune tolerance and avoidance of negative aspects associated with cell transplants. Our previous research showcased enhanced and organized subcutaneous vascularization using three-dimensional bioprinted patches containing HUVEC-derived EVs in immunodeficient animal models. In this context, stress conditions on the cells of origin further boosted the EVs' neoangiogenic potential. Since neovascularization is the first regenerative target requiring restoration, the present study aims to complement our previous work by employing an injectable gelatin methacrylate (GelMA) hydrogel functionalized with HUVEC-derived EVs in a pathological condition of acute myocardial infarction. This bioactive hydrogel resulted in reduced fibrosis, improved contractility, and promoted angiogenesis, showing promise in countering tissue deterioration and addressing vascular deficits. Moreover, the molecular characterization of EVs through miRNome and proteomic analyses further supports their potential as bio-additives for hydrogel functionalization. This cell-free approach mitigates immune rejection and oncogenic risks, offering innovative therapeutic advantages.


Assuntos
Vesículas Extracelulares , Células Endoteliais da Veia Umbilical Humana , Hidrogéis , Infarto do Miocárdio , Neovascularização Fisiológica , Humanos , Animais , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , Hidrogéis/química , Neovascularização Fisiológica/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/transplante , Metacrilatos/química , Gelatina/química , Injeções , Masculino
11.
Phytother Res ; 38(8): 4321-4335, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38990183

RESUMO

The transplantation of bone marrow mesenchymal stem cells (MSCs) in stroke is hindered by the restricted rates of survival and differentiation. Ginsenoside compound K (CK), is reported to have a neuroprotective effect and regulate energy metabolism. We applied CK to investigate if CK could promote the survival of MSCs and differentiation into brain microvascular endothelial-like cells (BMECs), thereby alleviating stroke symptoms. Therefore, transwell and middle cerebral artery occlusion (MCAO) models were used to mimic oxygen and glucose deprivation (OGD) in vitro and in vivo, respectively. Our results demonstrated that CK had a good affinity for GLUT1, which increased the expression of GLUT1 and the production of ATP, facilitated the proliferation and migration of MSCs, and activated the HIF-1α/VEGF signaling pathway to promote MSC differentiation. Moreover, CK cooperated with MSCs to protect BMECs, promote angiogenesis and vascular density, enhance neuronal and astrocytic proliferation, thereby reducing infarct volume and consequently improving neurobehavioral outcomes. These results suggest that the synergistic effects of CK and MSCs could potentially be a promising strategy for stroke.


Assuntos
Ginsenosídeos , Transportador de Glucose Tipo 1 , Subunidade alfa do Fator 1 Induzível por Hipóxia , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Fator A de Crescimento do Endotélio Vascular , Ginsenosídeos/farmacologia , Animais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Masculino , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proliferação de Células/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Angiogênese
12.
Animal ; 18(8): 101224, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39024999

RESUMO

The low-birth-weight of piglets is an important factor affecting pig enterprises. The placenta, as a key organ for material exchange between mother and foetus, directly influences the growth and development of the foetus. Allicin exhibits various biological activities, including anti-inflammatory and antioxidant properties. It may also play a crucial role in enhancing sow reproductive performance and placental angiogenesis. In this study, we used 70 lactating Landrace × Yorkshire binary heterozygous sows to explore the effect of allicin on the reproductive performance of sows and placental development. The sows were randomly assigned into the Allicin group (Allicin), which was fed with a diet containing 0.25% allicin, and the negative control group, which was fed with basal feed. The experimental period lasted for 114 d from the date of mating to the end of farrowing. The results showed that the addition of allicin to the gestation diets increased the number of total born piglets, born alive piglets, and high-birth-weight piglets, reduced peripartum oxidative stress, alleviated dysregulation of glucose-lipid metabolism in sows, and increased the levels of antioxidant markers in the placenta. Differential analysis of metabolites in maternal plasma and placenta samples by non-targeted metabolomics revealed that allicin improved cholesterol metabolism, steroid biosynthesis, and increased plasma progesterone levels in sows. Allicin promoted sulphur metabolism, cysteine and methionine metabolism in placental samples and increased the hydrogen sulphide (H2S) content in the placenta. In addition, Quantitative Real-time PCR, Western blot and immunofluorescence results showed that allicin upregulated the expression of angiogenesis-related genes, VEGF-A, FLK 1 and Ang 1, in the placenta, implying that it promoted placental angiogenesis. These results indicate that supplementing the diet of pregnant sows with allicin reduces oxidative stress, alleviates dysregulation of glucose-lipid metabolism during the periparturient period, and promotes placental angiogenesis and foetal development by increasing plasma progesterone level and placental H2S content.


Assuntos
Angiogênese , Ração Animal , Dissulfetos , Desenvolvimento Fetal , Neovascularização Fisiológica , Placenta , Ácidos Sulfínicos , Animais , Feminino , Gravidez , Angiogênese/efeitos dos fármacos , Ração Animal/análise , Antioxidantes/metabolismo , Suplementos Nutricionais , Dissulfetos/administração & dosagem , Desenvolvimento Fetal/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Placenta/metabolismo , Placenta/efeitos dos fármacos , Placentação/efeitos dos fármacos , Esteroides/metabolismo , Sulfatos , Ácidos Sulfínicos/administração & dosagem , Suínos/crescimento & desenvolvimento
13.
Biomater Adv ; 163: 213968, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059113

RESUMO

Strontium, cobalt, and manganese ions are present in the composition of bone and useful for bone metabolism, even when combined with calcium phosphate in the composition of biomaterials. Herein we explored the possibility to include these ions in the composition of apatitic materials prepared through the cementitious reaction between ion-substituted calcium phosphate dibasic dihydrate, CaHPO4·2H2O (DCPD) and tetracalcium phosphate, Ca4(PO4)2O (TTCP). The results of the chemical, structural, morphological and mechanical characterization indicate that cobalt and manganese exhibit a greater delaying effect than strontium (about 15 at.%) on the cementitious reaction, even though they are present in smaller amounts within the materials (about 0.8 and 4.5 at.%, respectively). Furthermore, the presence of the foreign ions in the apatitic materials leads to a slight reduction of porosity and to enhancement of compressive strength. The results of biological tests show that the presence of strontium and manganese, as well as calcium, in the apatitic materials cultured in direct contact with human mesenchymal stem cells (hMSCs) stimulates their viability and activity. In contrast, the apatitic material containing cobalt exhibits a lower metabolic activity. All the materials have a positive effect on the expression of Vascular Endothelial Growth Factor (VEGF) and Von Willebrand Factor (vWF). Moreover, the apatitic material containing strontium induces the most significant reduction in the differentiation of preosteoclasts into osteoclasts, demonstrating not only osteogenic and angiogenic properties, but also ability to regulate bone resorption.


Assuntos
Regeneração Óssea , Cobalto , Manganês , Células-Tronco Mesenquimais , Osteogênese , Estrôncio , Estrôncio/farmacologia , Estrôncio/química , Cobalto/química , Humanos , Osteogênese/efeitos dos fármacos , Manganês/química , Manganês/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Regeneração Óssea/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Angiogênese
14.
Biomolecules ; 14(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39062483

RESUMO

Angiogenesis is a normal physiological process that also contributes to diabetic retinopathy-related complications and facilitates tumor metastasis by promoting the hematogenic dissemination of malignant cells from solid tumors. Here, we investigated the in vitro, ex vivo, and in vivo anti-angiogenic activity of phloridzin docosahexaenoate (PZ-DHA), a novel ω-3 fatty acid ester of a flavonoid precursor. Human umbilical vein endothelial cells (HUVEC) and human dermal microvascular endothelial cells (HMVEC) treated with a sub-cytotoxic concentration of PZ-DHA to assess in vitro anti-angiogenic activity showed impaired tubule formation on a Matrigel matrix. Ex vivo angiogenesis was measured using rat thoracic aortas, which exhibited reduced vessel sprouting and tubule formation in the presence of PZ-DHA. Female BALB/c mice bearing VEGF165- and basic fibroblast growth factor-containing Matrigel plugs showed a significant reduction in blood vessel development following PZ-DHA treatment. PZ-DHA inhibited HUVEC and HMVEC proliferation, as well as the migration of HUVECs in gap closure and trans-well cell migration assays. PZ-DHA inhibited upstream and downstream components of the Akt pathway and vascular endothelial growth factor (VEGF165)-induced overexpression of small molecular Rho GTPases in HUVECs, suggesting a decrease in actin cytoskeletal-mediated stress fiber formation and migration. Taken together, these findings reveal the potential of combined food biomolecules in PZ-DHA to inhibit angiogenesis.


Assuntos
Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Camundongos Endogâmicos BALB C , Humanos , Animais , Movimento Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Camundongos , Diferenciação Celular/efeitos dos fármacos , Ratos , Ácidos Docosa-Hexaenoicos/farmacologia , Inibidores da Angiogênese/farmacologia , Florizina/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Flavonoides/farmacologia , Angiogênese
15.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999055

RESUMO

Lignans, a class of secondary metabolites found in plants, along with their derivatives, exhibit diverse pharmacological activities, including antioxidant, antimicrobial, anti-inflammatory, and antiangiogenic ones. Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process for cancer growth and development. Several studies have elucidated the synergistic relationship between angiogenesis and inflammation in various inflammatory diseases, highlighting a correlation between inflammation and vascular endothelial growth factor (VEGF)-induced angiogenesis. Thus, the identification of novel molecules capable of modulating VEGF effects presents promising prospects for developing therapies aimed at stabilizing, reversing, or even arresting disease progression. Lignans often suffer from low aqueous solubility and, for their use, encapsulation in a delivery system is needed. In this research, a bioinspired benzoxantene has been encapsulated in solid lipid nanoparticles that have been characterized for their pharmacotechnical properties and their thermotropic behavior. The effects of these encapsulated nanoparticles on angiogenic parameters and inflammation in VEGF-induced angiogenesis were evaluated using human brain microvascular endothelial cells (HBMECs) as a human blood-brain barrier model.


Assuntos
Barreira Hematoencefálica , Inflamação , Nanopartículas , Fator A de Crescimento do Endotélio Vascular , Humanos , Nanopartículas/química , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Lipídeos/química , Neovascularização Fisiológica/efeitos dos fármacos , Angiogênese , Lipossomos
16.
J Ethnopharmacol ; 334: 118531, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971343

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng (Panax ginseng C. A. Mey) is a common traditional Chinese medicine used for anti-inflammation, anti-apoptosis, anti-oxidative stress, and neuroprotection. Ginsenosides Rg1, the main active components isolated from ginseng, may be a feasible therapy for spinal cord injury (SCI). AIMS OF THE STUDY: SCI causes endothelial cell death and blood vessel rupture, ultimately resulting in long-term neurological impairment. As a result, encouraging spinal angiogenesis may be a feasible therapy for SCI. This investigation aimed to validate the capacity of ginsenoside Rg1 in stimulating angiogenesis within the spinal cord. MATERIALS AND METHODS: Rats with SCI were injected intraperitoneally with ginsenoside Rg1. The effectiveness of ginsenoside Rg1 was assessed using the motor function score and the motor-evoked potential (MEP). Immunofluorescence techniques were applied to identify the spinal cord's angiogenesis. Angiogenic factors were examined through Western Blot (WB) and Immunohistochemistry. Oxygen-glucose deprivation (OGD) was employed to establish the hypoxia-ischemia model in vitro, and astrocytes (As) were given ginsenoside Rg1 and co-cultured with spinal cord microvascular endothelial cells (SCMECs). Immunofluorescence, wound healing test, and tube formation assay were used to identify the co-cultured SCMECs' activity. Finally, network pharmacology analysis and siRNA transfection were applied to verify the mechanism of ginsenoside Rg1 promoting angiogenesis. RESULTS: The rats with SCI treated with ginsenoside Rg1 indicated more significant functional recovery, more pronounced angiogenesis, and higher levels of angiogenic factor expression. In vitro, the co-culture system with ginsenoside Rg1 intervention improved SCMECs' capacity for proliferating, migrating, and forming tubes, possibly by promoting the expression of vascular endothelial growth factor (VEGF) in As via the janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. CONCLUSION: Ginsenoside Rg1 can regulate As to promote angiogenesis, which may help to understand the mechanism of promoting SCI recovery.


Assuntos
Astrócitos , Ginsenosídeos , Janus Quinase 2 , Neovascularização Fisiológica , Ratos Sprague-Dawley , Fator de Transcrição STAT3 , Transdução de Sinais , Traumatismos da Medula Espinal , Animais , Ginsenosídeos/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Janus Quinase 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Células Cultivadas , Indutores da Angiogênese/farmacologia , Técnicas de Cocultura , Angiogênese
17.
ACS Biomater Sci Eng ; 10(8): 5080-5093, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39038278

RESUMO

Ensuring good definition of scaffolds used for 3D cell culture is a prominent challenge that hampers the development of tissue engineering platforms. Since dextran repels cell adhesion, using dextran-based materials biofunctionalized through a bottom-up approach allows for precise control over material definition. Here, we report the design of dextran hydrogels displaying a fully interconnected macropore network for the culture of vascular spheroids in vitro. We biofunctionalized the hydrogels with the RGD peptide sequence to promote cell adhesion. We used an affinity peptide pair, the E/K coiled coil, to load the gels with epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). Dual functionalization with adhesive and proliferative cues allows vascular spheroids to colonize naturally cell-repellant dextran. In supplement-depleted medium, we report improved colonization of the macropores compared to that of unmodified dextran. Altogether, we propose a well-defined and highly versatile platform for tissue engineering and tissue vascularization applications.


Assuntos
Dextranos , Hidrogéis , Dextranos/química , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Engenharia Tecidual/métodos , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Adesão Celular/efeitos dos fármacos , Porosidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Alicerces Teciduais/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos/química , Peptídeos/farmacologia
18.
Biomaterials ; 311: 122699, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38981153

RESUMO

The treatment of osteoporotic bone defects poses a challenge due to the degradation of the skeletal vascular system and the disruption of local bone metabolism within the osteoporotic microenvironment. However, it is feasible to modulate the disrupted local bone metabolism imbalance through enhanced vascularization, a theory termed "vascularization-bone metabolic balance". This study developed a 3D-printed polycaprolactone (PCL) scaffold modified with EPLQLKM and SVVYGLR peptides (PCL-SE). The EPLQLKM peptide attracts bone marrow-derived mesenchymal stem cells (BMSCs), while the SVVYGLR peptide enhances endothelial progenitor cells (EPCs) vascular differentiation, thus regulating bone metabolism and fostering bone regeneration through the paracrine effects of EPCs. Further mechanistic research demonstrated that PCL-SE promoted the vascularization of EPCs, activating the Notch signaling pathway in BMSCs, leading to the upregulation of osteogenesis-related genes and the downregulation of osteoclast-related genes, thereby restoring bone metabolic balance. Furthermore, PCL-SE facilitated the differentiation of EPCs into "H"-type vessels and the recruitment of BMSCs to synergistically enhance osteogenesis, resulting in the regeneration of normal microvessels and bone tissues in cases of femoral condylar bone defects in osteoporotic SD rats. This study suggests that PCL-SE supports in-situ vascularization, remodels bone metabolic translational balance, and offers a promising therapeutic regimen for osteoporotic bone defects.


Assuntos
Regeneração Óssea , Homeostase , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Osteogênese , Osteoporose , Impressão Tridimensional , Ratos Sprague-Dawley , Alicerces Teciduais , Animais , Regeneração Óssea/efeitos dos fármacos , Osteoporose/metabolismo , Osteoporose/terapia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Osteogênese/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Poliésteres/química , Diferenciação Celular/efeitos dos fármacos , Feminino , Ratos , Células Progenitoras Endoteliais/metabolismo , Osso e Ossos/metabolismo
19.
Biomed Eng Online ; 23(1): 75, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075456

RESUMO

The effects of the novel synthetic peptide, A7-1, on wound healing and skin grafts were evaluated in a C57BL/6 mouse model. Two 15-mm wide circular skin excisions were made on the backs of mice and to each excision, 100 µM A7-1 or normal saline was applied daily. The treatments were applied and sutured for skin graft analysis. Digital photos were acquired on days 4, 7, 11, and 14 and fluorescein angiography was conducted. Wound sizes were verified using stereoscopic microscopy. Histological analysis was performed via hematoxylin and eosin staining and Masson's trichrome staining. Western blotting was performed using vascular endothelial growth factor. Using a stereoscopic microscope, significantly faster wound healing (17.3%) and skin graft healing (16.5%) were observed in the A7-1 treatment group in comparison to that of the control. The angiogenesis was significantly faster in fluorescein angiography examination in wound healing (11%) and skin grafts (15%). However, the average completion of epithelization (overall time for wound healing), did not show any significant differences. In comparison to the control, the new protein, A7-1, led to significantly faster wound healing in the initial angiogenesis.


Assuntos
Camundongos Endogâmicos C57BL , Peptídeos , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Camundongos , Peptídeos/farmacologia , Peptídeos/química , Pele/efeitos dos fármacos , Masculino , Modelos Animais de Doenças , Transplante de Pele , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Turk J Med Sci ; 54(2): 471-482, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050389

RESUMO

Background/aim: In practice, waiting 2-3 weeks for interpolation flaps pedicle division result in certain morbidities and discomfort for patient. The division time of flap pedicle depends on neovascularization from the recipient bed and includes wound healing stages. We aimed to investigate the effect of recombinant human epidermal growth factor (rhEGF) on the flap viability during early pedicle division. Materials and methods: Thirty-six rats were allocated to two main groups as control and study. A cranial based flap measuring 5 × 5 cm was elevated from the back, including all layers of the skin. While the cranial half of the defect was primarily closed, the flap was inset into the distal half. In the study group, a single dose of 20 µg EGF was injected into the recipient site and wound edges before the flap inset. The control group received no treatment. Each main group was divided into three subgroups based on pedicle division time of 8, 11 and 14 days. After pedicle division, each flap was monitored and photographed for 7 days, and histopathological samples were collected. Viable and necrotic areas were compared, and flaps were examined histopathologically. Results: The necrosis area in the study group on the 11th day was significantly lower than that in the control group. The fibroblastic activity, granulation tissue and neovascularization on the 8th day, the granulation tissue level on the 11th day, and the neovascularization level on the 14th day were significantly higher in the study groups. Conclusion: Following the application of EGF, the necrosis area decreased within the study group. Histopathological assessments revealed a statistically significant increase in parameters related to granulation tissue and fibroblastic activity, notably neovascularization, across all subgroups within the study. It was concluded that the use of EGF positively affected the neovascularization, and flaps could be divided earlier.


Assuntos
Fator de Crescimento Epidérmico , Neovascularização Fisiológica , Proteínas Recombinantes , Retalhos Cirúrgicos , Animais , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/administração & dosagem , Retalhos Cirúrgicos/irrigação sanguínea , Ratos , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/administração & dosagem , Cicatrização/efeitos dos fármacos , Humanos , Masculino , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA