Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.581
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BMC Med Imaging ; 24(1): 116, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773384

RESUMO

OBJECTIVE: Evaluation of the predictive value of one-stop energy spectrum and perfusion CT parameters for microvessel density (MVD) in colorectal cancer cancer foci. METHODS: Clinical and CT data of 82 patients with colorectal cancer confirmed by preoperative colonoscopy or surgical pathology in our hospital from September 2019 to November 2022 were collected and analyzed retrospectively. Energy spectrum CT images were measured using the Protocols general module of the GSI Viewer software of the GE AW 4.7 post-processing workstation to measure the CT values of the arterial and venous phase lesions and the neighboring normal intestinal wall in a single energy range of 40 kev∼140 kev, and the slopes of the energy spectrum curves (λ) were calculated between 40 kev-90 kev; Iodine concentration (IC), Water concentration (WC), Effective-Z (Eff-Z) and Normalized iodine concentration (NIC) were measured by placing a region of interest (ROI) on the iodine concentration map and water concentration map at the lesion and adjacent to the normal intestinal wall.Perfusion CT images were scanned continuously and dynamically using GSI Perfusion software and analyzed by applying CT Perfusion 4.0 software.Blood volume (BV), blood flow (BF), surface permeability (PS), time to peak (TTP), and mean transit time (MTT) were measured respectively in the lesion and adjacent normal colorectal wall. Based on the pathological findings, the tumors were divided into a low MVD group (MVD < 35/field of view, n = 52 cases) and a high MVD group (MVD ≥ 35/field of view, n = 30 cases) using a median of 35/field of view as the MVD grouping criterion. The collected data were statistically analyzed, the subjects' operating characteristic curve (ROC) was plotted, and the area under curve (AUC), sensitivity, specificity, and Yoden index were calculated for the predicted efficacy of each parameter of the energy spectrum and perfusion CT and the combined parameters. RESULTS: The CT values, IC, NIC, λ, Eff-Z of 40kev∼140kev single energy in the arterial and venous phase of colorectal cancer in the high MVD group were higher than those in the low MVD group, and the differences were all statistically significant (p < 0.05). The AUC of each single-energy CT value in the arterial phase from 40 kev to 120 kev for determining the high or low MVD of colorectal cancer was greater than 0.8, indicating that arterial stage has a good predictive value for high or low MVD in colorectal cancer; AUC for arterial IC, NIC and IC + NIC were all greater than 0.9, indicating that in arterial colorectal cancer, both single and combined parameters of spectral CT are highly effective in predicting the level of MVD. The AUC of 40 kev to 90 kev single-energy CT values in the intravenous phase was greater than 0.9, and its diagnostic efficacy was more representative; The AUC of IC and NIC in venous stage were greater than 0.8, which indicating that the IC and NIC energy spectrum parameters in venous stage colorectal cancer have a very good predictive value for the difference between high and low MVDs, with the greatest diagnostic efficacy in IC.The values of BV and BF in the high MVD group were higher than those in the low MVD group, and the differences were statistically significant (P < 0.05), and the AUC of BF, BV, and BV + BF were 0.991, 0.733, and 0.997, respectively, with the highest diagnostic efficacy for determining the level of MVD in colorectal cancer by BV + BF. CONCLUSION: One-stop CT energy spectrum and perfusion imaging technology can accurately reflect the MVD in living tumor tissues, which in turn reflects the tumor angiogenesis, and to a certain extent helps to determine the malignancy, invasion and metastasis of living colorectal cancer tumor tissues based on CT energy spectrum and perfusion parameters.


Assuntos
Neovascularização Patológica , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Neovascularização Patológica/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Adulto , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/irrigação sanguínea , Neoplasias Retais/patologia , Idoso de 80 Anos ou mais , Densidade Microvascular , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/patologia , Valor Preditivo dos Testes , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/irrigação sanguínea , Angiogênese
2.
BMC Gastroenterol ; 24(1): 176, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773485

RESUMO

BACKGROUND: Angiogenesis is a critical step in colorectal cancer growth, progression and metastasization. CT are routine imaging examinations for preoperative clinical evaluation in colorectal cancer patients. This study aimed to investigate the predictive value of preoperative CT enhancement rate (CER) and CT perfusion parameters on angiogenesis in colorectal cancer, as well as the association of preoperative CER and CT perfusion parameters with serum markers. METHODS: This retrospective analysis included 42 patients with colorectal adenocarcinoma. Median of microvessel density (MVD) as the cut-off value, it divided 42 patients into high-density group (MVD ≥ 35/field, n = 24) and low-density group (MVD < 35/field, n = 18), and 25 patients with benign colorectal lesions were collected as the control group. Statistical analysis of CER, CT perfusion parameters, serum markers were performed in all groups. Receiver operating curves (ROC) were plotted to evaluate the diagnostic efficacy of relevant CT perfusion parameters for tumor angiogenesis; Pearson correlation analysis explored potential association between CER, CT perfusion parameters and serum markers. RESULTS: CER, blood volume (BV), blood flow (BF), permeability surface (PS) and carbohydrate antigen 19 - 9 (CA19-9), carbohydrate antigen 125 (CA125), carcinoembryonic antigen (CEA), trefoil factor 3 (TFF3), vascular endothelial growth factor (VEGF) in colorectal adenocarcinoma were significantly higher than those in the control group, the parameters in high-density group were significantly higher than those in the low-density group (P < 0.05); however, the time to peak (TTP) of patients in colorectal adenocarcinoma were significantly lower than those in the control group, and the high-density group showed a significantly lower level compared to the low-density group (P < 0.05). The combined parameters BF + TTP + PS and BV + BF + TTP + PS demonstrated the highest area under the curve (AUC), both at 0.991. Pearson correlation analysis showed that the serum levels of CA19-9, CA125, CEA, TFF3, and VEGF in patients showed positive correlations with CER, BV, BF, and PS (P < 0.05), while these indicators exhibited negative correlations with TTP (P < 0.05). CONCLUSIONS: Some single and joint preoperative CT perfusion parameters can accurately predict tumor angiogenesis in colorectal adenocarcinoma. Preoperative CER and CT perfusion parameters have certain association with serum markers.


Assuntos
Adenocarcinoma , Antígeno Carcinoembrionário , Neoplasias Colorretais , Neovascularização Patológica , Valor Preditivo dos Testes , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Neoplasias Colorretais/irrigação sanguínea , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/sangue , Adenocarcinoma/patologia , Adenocarcinoma/irrigação sanguínea , Idoso , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/sangue , Tomografia Computadorizada por Raios X/métodos , Antígeno Carcinoembrionário/sangue , Biomarcadores Tumorais/sangue , Adulto , Densidade Microvascular , Antígeno CA-19-9/sangue , Curva ROC , Fator A de Crescimento do Endotélio Vascular/sangue , Volume Sanguíneo , Cuidados Pré-Operatórios/métodos
3.
In Vivo ; 38(3): 1192-1198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688651

RESUMO

BACKGROUND/AIM: Probing brain tumor microvasculature holds significant importance in both basic cancer research and medical practice for tracking tumor development and assessing treatment outcomes. However, few imaging methods commonly used in clinics can noninvasively monitor the brain microvascular network at high precision and without exogenous contrast agents in vivo. The present study aimed to investigate the characteristics of microvasculature during brain tumor development in an orthotopic glioma mouse model. MATERIALS AND METHODS: An orthotopic glioma mouse model was established by surgical orthotopic implantation of U87-MG-luc cells into the mouse brain. Then, optical coherence tomography angiography (OCTA) was utilized to characterize the microvasculature progression within 14 days. RESULTS: The orthotopic glioma mouse model evaluated by bioluminescence imaging and MRI was successfully generated. As the tumor grew, the microvessels within the tumor area slowly decreased, progressing from the center to the periphery for 14 days. CONCLUSION: This study highlights the potential of OCTA as a useful tool to noninvasively visualize the brain microvascular network at high precision and without any exogenous contrast agents in vivo.


Assuntos
Neoplasias Encefálicas , Modelos Animais de Doenças , Glioma , Tomografia de Coerência Óptica , Animais , Tomografia de Coerência Óptica/métodos , Camundongos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/patologia , Linhagem Celular Tumoral , Humanos , Microvasos/diagnóstico por imagem , Microvasos/patologia , Imageamento por Ressonância Magnética/métodos , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/patologia , Angiografia/métodos
4.
J Nucl Med ; 65(4): 617-622, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485275

RESUMO

The use of [18F]FDG PET/CT as a biomarker in diffuse lung diseases is increasingly recognized. We investigated the correlation between [18F]FDG uptake with histologic markers on lung biopsy of patients with fibrotic interstitial lung disease (fILD). Methods: We recruited 18 patients with fILD awaiting lung biopsy for [18F]FDG PET/CT. We derived a target-to-background ratio (TBR) of maximum pulmonary uptake of [18F]FDG (SUVmax) divided by the lung background (SUVmin). Consecutive paraffin-embedded lung biopsy sections were immunostained for alveolar and interstitial macrophages (CD68), microvessel density (MVD) (CD31 and CD105/endoglin), and glucose transporter 1. MVD was expressed as vessel area percentage per high-power field (Va%/hpf). Differences in imaging and angiogenesis markers between histologic usual interstitial pneumonia (UIP) and non-UIP were assessed using a nonparametric Mann-Whitney test. Correlation of imaging with angiogenesis markers was assessed using the nonparametric Spearman rank correlation. Univariate Kaplan-Meier survival analysis assessed the difference in the survival curves for each of the angiogenesis markers (separated by their respective optimal cutoff) using the log-rank test. Statistical analysis was performed using SPSS. Results: In total, 18 patients were followed for an average of 41.36 mo (range, 5.69-132.46 mo; median, 30.07 mo). Only CD105 MVD showed a significantly positive correlation with [18F]FDG TBR (Spearman rank correlation, 0.556; P < 0.05, n = 13). There was no correlation between [18F]FDG uptake and macrophage expression of glucose transporter 1. CD105 and CD31 were higher for UIP than for non-UIP, with CD105 reaching statistical significance (P = 0.011). In all patients, MVD assessed with either CD105 or CD31 quantification on biopsy predicted overall survival. Patients with CD105 MVD of less than 12 Va%/hpf or CD31 MVD of less than 35 Va%/hpf had a significantly better prognosis (no deaths during follow-up in the case of CD105) than did patients with higher scores of CD105 MVD (median survival, 35 mo; P = 0.041, n = 13) or CD31 MVD (median survival, 28 mo; P = 0.014, n = 13). Conclusion: Previous work has used [18F]FDG uptake in PET/CT as a biomarker in fILD. Here, we highlight a correlation between angiogenesis and [18F]FDG TBR. We show that MVD is higher for UIP than for non-UIP and is associated with mortality in patients with fILD. These data set the scene to investigate the potential role of vasculature and angiogenesis in fibrosis.


Assuntos
Doenças Pulmonares Intersticiais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Transportador de Glucose Tipo 1 , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Neovascularização Patológica/diagnóstico por imagem , Fibrose , Biomarcadores , Biópsia , Prognóstico
5.
Curr Med Imaging ; 20(1): e15734056287859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544393

RESUMO

BACKGROUND: Glutamine Synthetase (GS) could induce vascular sprouting through the improvement of endothelial cell migration in inflammatory diseases. MR vessel-size imaging has been proposed as a valuable approach for visualizing the underlying angiogenic processes in the brain. OBJECTIVE: This study aims to investigate the role of GS in the neovascularization of gliomas through the utilization of MR vessel-size imaging and histopathological techniques. METHODS: In this exploratory animal study, we randomly divided the C6 glioma rat models into a control group and an L-methionine sulfoximine (MSO) treatment group. Daily intraperitoneal injections were administered for three consecutive days, starting from day 10 following the implantation of C6 glioma cells in rats. Subsequently, MR vessel size imaging was conducted using a BRUKER 7 T/200 mm MRI scanner, and the MRI results were validated through histopathological examination. RESULTS: A significant decrease in microvessel density was observed in both the tumor periphery and center areas in the MSO treatment group compared to that in the control group. The mean vessel diameter (mVD) and vessel size index (VSI) did not exhibit significant changes compared to the control group. Moreover, the staining intensity of platelet endothelial cell adhesion molecule-1 (CD31) and GS in the tumor periphery was significantly decreased in the MSO treatment group. Additionally, the MSO treatment demonstrated a substantial inhibition of tumor growth. CONCLUSION: GS inhibitors significantly reduced angiogenesis in the periphery area of C6 glioma, exerting an inhibitory effect on tumor progression. Thus, GS inhibitors could be potential therapeutic agents for treating glioma. Additionally, in vivo MR vessel size imaging detects changes in vascularrelated parameters after tumor treatment, making it a promising method for detecting neovascularization in glioma.

.


Assuntos
Glioma , Glutamato-Amônia Ligase , Imageamento por Ressonância Magnética , Neovascularização Patológica , Animais , Glioma/diagnóstico por imagem , Glioma/irrigação sanguínea , Glioma/tratamento farmacológico , Neovascularização Patológica/diagnóstico por imagem , Ratos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Masculino , Linhagem Celular Tumoral
6.
Sci Rep ; 14(1): 4557, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402352

RESUMO

To analyze the correlation between dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) permeability parameters and serum vascular endothelial growth factor (VEGF) levels in a rabbit VX2 liver cancer model with insufficient microwave ablation (MWA), to observe the dynamic changes in residual tumor angiogenesis in the short term after MWA, and to assess the effectiveness of donafenib as adjuvant therapy. Forty rabbits with VX2 liver tumors were randomly divided into three groups: an insufficient MWA group (n = 15), a combined treatment group (n = 15) and a control group (n = 10). The dynamic changes in VEGF expression after MWA and the effectiveness of donafenib as adjuvant therapy were evaluated by DCE-MRI and serum VEGF levels before surgery and 1, 3, 7, and 14 days after surgery. The correlation between the volume translate constant (Ktrans) of DCE-MRI parameters and serum VEGF levels fluctuated after ablation, but the coefficient was always positive (all p < 0.001). Repeated-measures ANOVA revealed significant changes in the serum VEGF concentration (F = 40.905, p < 0.001; partial η2 = 0.689), Ktrans (F = 13.388, p < 0.001; partial η2 = 0.420), and tumor diameter in each group (F = 34.065, p < 0.001; partial η2 = 0.648) at all five time points. Pairwise comparisons showed that the serum VEGF level, Ktrans value and tumor diameter in the insufficient MWA group and combined treatment group were significantly lower at 1 d than in the control group, but these values gradually increased over time (all p < 0.05). Ktrans and tumor diameter were significantly greater in the insufficient MWA group than in the control group at 14 days (all p < 0.05). The serum VEGF concentration, Ktrans, and tumor diameter were significantly lower in the combined treatment group than in the other two groups at 3, 7, and 14 days (all p < 0.05). Ktrans is positively correlated with the serum VEGF concentration. Ktrans and the serum VEGF concentration changed significantly after treatment with insufficient ablation or in combination with donafenib, and Ktrans may change faster. Insufficient MWA promotes the progression of residual tumors. Adjuvant treatment with donafenib is effective.


Assuntos
Neoplasias Hepáticas , Piridinas , Fator A de Crescimento do Endotélio Vascular , Animais , Coelhos , Neoplasia Residual/diagnóstico por imagem , Micro-Ondas , Angiogênese , Imageamento por Ressonância Magnética/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/patologia , Meios de Contraste
7.
Colloids Surf B Biointerfaces ; 230: 113525, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634287

RESUMO

Microvascular imaging is required to understand tumor angiogenesis development; however, an appropriate whole-body imaging method has not yet been established. Here, we successfully developed a supramolecular magnetic resonance (MR) contrast agent for long-term whole-tissue observation in a single individual. Fluorescein- and Gd-chelate-conjugated polyethylene glycols (PEGs) were synthesized, and their structures were optimized. Spectroscopic and pharmacokinetic analyses suggested that the fluorescein-conjugated linear and 8-arm PEGs with a molecular weight of approximately 10 kDa were suitable to form a supramolecular structure to visualize the microvessel structure and blood circulation. Microvascular formation was evaluated in a glioma cell transplantation model, and neovascularization around the glioma tissue at 5 days was observed, with the contrast agent leaking out into the cancer tissue. In contrast, after 12 days, microvessel structures were formed inside the glioma tissue, but the agents did not leak out. These imaging data for the first time proved that the microvessels formed inside cancer tissues at the early stage are very leaky, but that they form continuous microvessels after 12 days.


Assuntos
Meios de Contraste , Glioma , Humanos , Imageamento por Ressonância Magnética , Neovascularização Patológica/diagnóstico por imagem , Glioma/diagnóstico por imagem , Fluoresceína , Polietilenoglicóis , Espectroscopia de Ressonância Magnética
8.
J Clin Ultrasound ; 51(6): 1112-1114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313859

RESUMO

The wash out behavior of focal liver lesions in contrast-enhanced ultrasound plays a central role in tumor classification. Besides hepatocellular carcinomas, other hypervascular tumor entities like renal cell carcinomas may also show a very late wash out, possibly caused by portal-venous tumor vessels. There is need to observe long enough in the late phase in order to classify them correctly.


Assuntos
Carcinoma Hepatocelular , Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Hepáticas , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Meios de Contraste , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Ultrassonografia , Neovascularização Patológica/diagnóstico por imagem , Neoplasias Renais/diagnóstico por imagem
9.
J Cereb Blood Flow Metab ; 43(9): 1557-1570, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37070356

RESUMO

Quantification of vascularization volume can provide valuable information for diagnosis and prognosis in vascular pathologies. It can be adapted to inform the surgical management of gliomas, aggressive brain tumors characterized by exuberant sprouting of new blood vessels (neoangiogenesis). Filtered ultrafast Doppler data can provide two main parameters: vascularization index (VI) and fractional moving blood volume (FMBV) that clinically reflect tumor micro vascularization. Current protocols lack robust, automatic, and repeatable filtering methods. We present a filtrating method called Multi-layered Adaptive Neoangiogenesis Intra-Operative Quantification (MANIOQ). First, an adaptive clutter filtering is implemented, based on singular value decomposition (SVD) and hierarchical clustering. Second a method for noise equalization is applied, based on the subtraction of a weighted noise profile. Finally, an in vivo analysis of the periphery of the B-mode hyper signal area allows to measure the vascular infiltration extent of the brain tumors. Ninety ultrasound acquisitions were processed from 23 patients. Compared to reference methods in the literature, MANIOQ provides a more robust tissue filtering, and noise equalization allows for the first time to keep axial and lateral gain compensation (TGC and LGC). MANIOQ opens the way to an intra-operative clinical analysis of gliomas micro vascularization.


Assuntos
Neoplasias Encefálicas , Ultrassonografia Doppler , Humanos , Velocidade do Fluxo Sanguíneo/fisiologia , Imagens de Fantasmas , Ultrassonografia Doppler/métodos , Ultrassonografia , Neovascularização Patológica/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Processamento de Imagem Assistida por Computador/métodos
10.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108226

RESUMO

Acetylsalicylic acid (ASA) is a well-established drug for heart attack and stroke prophylaxis. Furthermore, numerous studies have reported an anti-carcinogenic effect, but its exact mechanism is still unknown. Here, we applied VEGFR-2-targeted molecular ultrasound to explore a potential inhibitory effect of ASA on tumor angiogenesis in vivo. Daily ASA or placebo therapy was performed in a 4T1 tumor mouse model. During therapy, ultrasound scans were performed using nonspecific microbubbles (CEUS) to determine the relative intratumoral blood volume (rBV) and VEGFR-2-targeted microbubbles to assess angiogenesis. Finally, vessel density and VEGFR-2 expression were assessed histologically. CEUS indicated a decreasing rBV in both groups over time. VEGFR-2 expression increased in both groups up to Day 7. Towards Day 11, the binding of VEGFR-2-specific microbubbles further increased in controls, but significantly (p = 0.0015) decreased under ASA therapy (2.24 ± 0.46 au vs. 0.54 ± 0.55 au). Immunofluorescence showed a tendency towards lower vessel density under ASA and confirmed the result of molecular ultrasound. Molecular US demonstrated an inhibitory effect of ASA on VEGFR-2 expression accompanied by a tendency towards lower vessel density. Thus, this study suggests the inhibition of angiogenesis via VEGFR-2 downregulation as one of the anti-tumor effects of ASA.


Assuntos
Aspirina , Neoplasias , Camundongos , Animais , Aspirina/farmacologia , Aspirina/uso terapêutico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/tratamento farmacológico , Ultrassonografia
11.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108559

RESUMO

Angiogenesis-related cell-surface molecules, including integrins, aminopeptidase N, vascular endothelial growth factor, and gastrin-releasing peptide receptor (GRPR), play a crucial role in tumour formation. Radiolabelled imaging probes targeting angiogenic biomarkers serve as valuable vectors in tumour identification. Nowadays, there is a growing interest in novel radionuclides other than gallium-68 (68Ga) or copper-64 (64Cu) to establish selective radiotracers for the imaging of tumour-associated neo-angiogenesis. Given its ideal decay characteristics (Eß+average: 632 KeV) and a half-life (T1/2 = 3.97 h) that is well matched to the pharmacokinetic profile of small molecules targeting angiogenesis, scandium-44 (44Sc) has gained meaningful attention as a promising radiometal for positron emission tomography (PET) imaging. More recently, intensive research has been centered around the investigation of 44Sc-labelled angiogenesis-directed radiopharmaceuticals. Previous studies dealt with the evaluation of 44Sc-appended avb3 integrin-affine Arg-Gly-Asp (RGD) tripeptides, GRPR-selective aminobenzoyl-bombesin analogue (AMBA), and hypoxia-associated nitroimidazole derivatives in the identification of various cancers using experimental tumour models. Given the tumour-related hypoxia- and angiogenesis-targeting capability of these PET probes, 44Sc seems to be a strong competitor of the currently used positron emitters in radiotracer development. In this review, we summarize the preliminary preclinical achievements with 44Sc-labelled angiogenesis-specific molecular probes.


Assuntos
Radioisótopos , Fator A de Crescimento do Endotélio Vascular , Humanos , Estudos de Viabilidade , Bombesina , Receptores da Bombesina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Gálio , Neovascularização Patológica/diagnóstico por imagem
12.
Eur J Radiol ; 163: 110797, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37018901

RESUMO

Angiogenesis in healthy tissue and within malignant tumors differs on many levels, which may partly be explained by vascular mimicry formation resulting in altered contrast material or different radiopharmaceuticals distributions. Failed remodulation results in changes in the molecular exchange through the capillary wall and those consequences affect the behavior of contrast agents and radiopharmaceuticals. One of the most indicative signs of malignant tissue is the increased permeability and the faster molecular exchange that occurs between the extracellular and intravascular spaces. Dynamic imaging can help to assess the changed microenvironment. The fast-distribution of molecules reflects newly developed conditions in blood-flow redistribution inside a tumor and within the affected organ during the early stages of tumor formation. Tumor development, as well as aggressiveness, can be assessed based on the change to the vascular bed development, the level of molecular exchange within the tissue, and/or indicative distribution within the organ. The study of the vascular network organization and its impact on the distribution of molecules is important to our understanding of the image pattern in several imaging methods, which in turn influences our interpretation of the findings. A hybrid imaging approach (including PET/MRI) allows the quantification of vascularization and/or its pathophysiological impressions in structural and metabolic images. It might optimize the evaluation of the pretreatment imaging, as well as help assess the effect of therapy targeting neovascularization; antiVEGF drugs and embolization-based therapies, for example.


Assuntos
Neoplasias , Compostos Radiofarmacêuticos , Humanos , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/patologia , Neoplasias/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Meios de Contraste , Perfusão , Microambiente Tumoral
13.
Acta Radiol ; 64(6): 2087-2095, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36890701

RESUMO

BACKGROUND: Tumor neo-angiogenesis plays an important role in the development and growth of breast cancers, but its detection by imaging is challenging. A novel microvascular imaging (MVI) technique, Angio-PLUS, promises to overcome the limitations of color Doppler (CD) in detecting low-velocity flow and small diameter vessels. PURPOSE: To determine the utility of the Angio-PLUS technique for detecting blood flow in breast masses and compare it with CD for differentiating benign from malignant masses. MATERIAL AND METHODS: A total of 79 consecutive women with breast masses were prospectively evaluated using CD and Angio-PLUS techniques, and biopsied as per BI-RADS recommendations. Vascular imaging scores were assigned using three factors (number, morphology, and distribution) and vascular patterns were divided into five groups: internal-dot-spot, external-dot-spot, marginal, radial, and mesh patterns. The independent samples t-test, Mann-Whitney U test, Wilcoxon signed rank test, or Fisher's exact test were used to compare the two groups as appropriate. Area under the receiver operating characteristic (ROC) curve (AUC) methods were used to assess diagnostic accuracy. RESULTS: Vascular scores were significantly higher on Angio-PLUS than CD (median=11, [IQR=9-13] vs. 5 [IQR=3-9], P < 0.001). Malignant masses had higher vascular scores than benign masses on Angio-PLUS (P < 0.001). AUC was 80% (95% CI=70.3-89.7; P < 0.001) for Angio-PLUS and 51.9% for CD. Using Angio-PLUS at a cutoff value of ≥9.5, sensitivity was 80% and specificity was 66.7%. Vascular pattern descriptors on AP showed good correlation with histopathological results (PPV mesh 95.5%, radial 96.9%, and NPV of marginal orientation 90.5%). CONCLUSION: Angio-PLUS was more sensitive in detecting vascularity and superior in differentiating benign from malignant masses compared to CD. Vascular pattern descriptors on Angio-PLUS were useful.


Assuntos
Neoplasias da Mama , Ultrassonografia Mamária , Feminino , Humanos , Ultrassonografia Mamária/métodos , Sensibilidade e Especificidade , Mama/diagnóstico por imagem , Mama/patologia , Ultrassonografia , Neoplasias da Mama/patologia , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/patologia , Diagnóstico Diferencial , Ultrassonografia Doppler em Cores
14.
Biol Direct ; 18(1): 10, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922848

RESUMO

In tumor therapy anti-angiogenic approaches have the potential to increase the efficacy of a wide variety of subsequently or co-administered agents, possibly by improving or normalizing the defective tumor vasculature. Successful implementation of the concept of vascular normalization under anti-angiogenic therapy, however, mandates a detailed understanding of key characteristics and a respective scoring metric that defines an improved vasculature and thus a successful attempt. Here, we show that beyond commonly used parameters such as vessel patency and maturation, anti-angiogenic approaches largely benefit if the complex vascular network with its vessel interconnections is both qualitatively and quantitatively assessed. To gain such deeper insight the organization of vascular networks, we introduce a multi-parametric evaluation of high-resolution angiographic images based on light-sheet fluorescence microscopy images of tumors. We first could pinpoint key correlations between vessel length, straightness and diameter to describe the regular, functional and organized structure observed under physiological conditions. We found that vascular networks from experimental tumors diverted from those in healthy organs, demonstrating the dysfunctionality of the tumor vasculature not only on the level of the individual vessel but also in terms of inadequate organization into larger structures. These parameters proofed effective in scoring the degree of disorganization in different tumor entities, and more importantly in grading a potential reversal under treatment with therapeutic agents. The presented vascular network analysis will support vascular normalization assessment and future optimization of anti-angiogenic therapy.


Assuntos
Neoplasias , Neovascularização Patológica , Humanos , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico
15.
Microsc Res Tech ; 86(2): 232-241, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36412215

RESUMO

The occurrence and development of blood vessels play a key role in different stages of tumor growth, while current imaging techniques are difficult to detect early tumor angiogenesis because of their low sensitivity. Therefore, this article introduces high-sensitivity optical imaging technology to achieve early tumor diagnosis by detecting tumor angiogenesis. Liver and pancreatic tumor models in nude mice were respectively established to represent tumors with a rich or poor blood supply. The two optical imaging methods, in vivo confocal fluorescence imaging and photoacoustic imaging, were used to detect tumor angiogenesis at different stages. Finally, the changes in blood vessels were verified by immunostaining. Both autoluminescence imaging and pathological staining confirmed that these two tumor models were successfully established. In vivo confocal fluorescence imaging found that the early tumor blood vessel structure had obvious characteristics: disorder, tortuous deformation, thin diameter, which were significantly different from the normal tissues. Photoacoustic imaging could effectively identify blood vessels inside early tumors, which were small and disordered and might be used as one of the predictors of early tumor development. CD31 immunostaining was used to evaluate the vascular status of tumors at different stages and under different blood supply conditions. The vascular structures observed under the microscope in the two tumor models were consistent with the results observed by optical imaging methods. The optical imaging methods could monitor the characteristics of angiogenesis in the rich or poor blood supply tumors, especially the early diagnosis of tumors.


Assuntos
Neovascularização Patológica , Neoplasias Pancreáticas , Camundongos , Animais , Camundongos Nus , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/patologia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Imagem Óptica/métodos , Diagnóstico Precoce
16.
Eur J Nucl Med Mol Imaging ; 50(1): 115-129, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36074156

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a molecularly heterogeneous tumor entity with no clinically established imaging biomarkers. We hypothesize that tumor morphology and physiology, including vascularity and perfusion, show variations that can be detected by differences in contrast agent (CA) accumulation measured non-invasively. This work seeks to establish imaging biomarkers for tumor stratification and therapy response monitoring in PDAC, based on this hypothesis. METHODS AND MATERIALS: Regional CA accumulation in PDAC was correlated with tumor vascularization, stroma content, and tumor cellularity in murine and human subjects. Changes in CA distribution in response to gemcitabine (GEM) were monitored longitudinally with computed tomography (CT) Hounsfield Units ratio (HUr) of tumor to the aorta or with magnetic resonance imaging (MRI) ΔR1 area under the curve at 60 s tumor-to-muscle ratio (AUC60r). Tissue analyses were performed on co-registered samples, including endothelial cell proliferation and cisplatin tissue deposition as a surrogate of chemotherapy delivery. RESULTS: Tumor cell poor, stroma-rich regions exhibited high CA accumulation both in human (meanHUr 0.64 vs. 0.34, p < 0.001) and mouse PDAC (meanAUC60r 2.0 vs. 1.1, p < 0.001). Compared to the baseline, in vivo CA accumulation decreased specifically in response to GEM treatment in a subset of human (HUr -18%) and mouse (AUC60r -36%) tumors. Ex vivo analyses of mPDAC showed reduced cisplatin delivery (GEM: 0.92 ± 0.5 mg/g, vs. vehicle: 3.1 ± 1.5 mg/g, p = 0.004) and diminished endothelial cell proliferation (GEM: 22.3% vs. vehicle: 30.9%, p = 0.002) upon GEM administration. CONCLUSION: In PDAC, CA accumulation, which is related to tumor vascularization and perfusion, inversely correlates with tumor cellularity. The standard of care GEM treatment results in decreased CA accumulation, which impedes drug delivery. Further investigation is warranted into potentially detrimental effects of GEM in combinatorial therapy regimens.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Cisplatino/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/tratamento farmacológico , Biomarcadores , Tomografia Computadorizada por Raios X , Imageamento por Ressonância Magnética , Tomografia , Linhagem Celular Tumoral , Gencitabina , Neoplasias Pancreáticas
17.
Biomed Res Int ; 2022: 3156093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915805

RESUMO

Background: Breast cancer is the uncontrolled proliferation of breast epithelial cells under the action of various carcinogenic factors. The evaluation of early efficacy of neoadjuvant chemotherapy for breast cancer is helpful to change the treatment plan in time. On this basis, dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) was used to evaluate the effects of neoadjuvant chemotherapy on angiogenesis and cell proliferation in breast cancer. Objective: To evaluate the effect of neoadjuvant chemotherapy on angiogenesis and cell proliferation of breast cancer by dynamic enhanced DCE-MRI. Method: 80 breast cancer patients were divided into the routine chemotherapy group (3 cycles) and neoadjuvant chemotherapy groups (3 cycles) of 40 cases each from January 2018 to June 2021. Based on conventional imaging, DCE-MRI was performed with Intera Achieva 3.0 TMR superconducting MR scanner before and after treatment. The quantitative indexes, MRI parameters, cell proliferation expression, and DCE-MRI angiogenesis were compared between the two groups. Result: The inhibition rate, Vepost, Ktranspre, ADC, Bax, Alexi, and Aurora in the neoadjuvant chemotherapy group were significantly higher than those in the conventional chemotherapy group (P < 0.05), while Kep, Ktrans, and Nek2 were significantly lower than those in the conventional chemotherapy group (P < 0.05). Vepre (cm3), Ktranspre (ml/min/100 cm3), and Ve had no significant difference (P > 0.05). Conclusion: The quantitative parameters, MRI parameters, proliferation, and expression of DCE-MRI in breast cancer patients with different chemotherapy regimens are quite different. They can be applied to the diagnosis of neoadjuvant chemotherapy in breast cancer patients with angiogenesis and cell proliferation.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células , Meios de Contraste/uso terapêutico , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Quinases Relacionadas a NIMA/uso terapêutico , Terapia Neoadjuvante/métodos , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Resultado do Tratamento
18.
Sci Rep ; 12(1): 10062, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710559

RESUMO

A deeper understanding of the tumor microenvironment (TME) and its role in metabolic activity at different stages of vascularized tumors can provide useful insights into cancer progression and better support clinical assessments. In this study, a robust and comprehensive multi-scale computational model for spatiotemporal transport of F-18 fluorodeoxyglucose (FDG) is developed to incorporate important aspects of the TME, spanning subcellular-, cellular-, and tissue-level scales. Our mathematical model includes biophysiological details, such as radiopharmaceutical transport within interstitial space via convection and diffusion mechanisms, radiopharmaceutical exchange between intracellular and extracellular matrices by glucose transporters, cellular uptake of radiopharmaceutical, as well as its intracellular phosphorylation by the enzyme. Further, to examine the effects of tumor size by varying microvascular densities (MVDs) on FDG dynamics, four different capillary networks are generated by angiogenesis modeling. Results demonstrate that as tumor grows, its MVD increases, and hence, the spatiotemporal distribution of total FDG uptake by tumor tissue changes towards a more homogenous distribution. In addition, spatiotemporal distributions in tumor with lower MVD have relatively smaller magnitudes, due to the lower diffusion rate of FDG as well as lower local intravenous FDG release. Since mean standardized uptake value (SUVmean) differs at various stages of microvascular networks with different tumor sizes, it may be meaningful to normalize the measured values by tumor size and the MVD prior to routine clinical reporting. Overall, the present framework has the potential for more accurate investigation of biological phenomena within TME towards personalized medicine.


Assuntos
Fluordesoxiglucose F18 , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neovascularização Patológica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Microambiente Tumoral
19.
Comput Math Methods Med ; 2022: 6524592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572831

RESUMO

The atherosclerotic plaque is characterized by narrowing of blood vessels and reduced blood flow leading to the insufficient blood supply to the brain. The hemodynamic changes caused by arterial stenosis increase the shearing force of the fibrous cap on the surface of the plaque, thereby reducing the stability of the plaque. Unstable plaques are more likely to promote angiogenesis and increase the risk of patients with cerebrovascular diseases. A timely understanding of the formation and stability of the arterial plaque can guide in taking targeted measures for reducing the risk of acute stroke in patients. It has been confirmed that nano-microbubbles can enter these plaques through the gaps in the patient's vascular endothelial cells, thereby enhancing the acquisition of ultrasound information for plaque visualization. Therefore, we aim to investigate the diagnostic value of targeted nano-microbubbles for atherosclerotic plaques. This study constructed vascular endothelial growth factor receptor-2 (VEGFR-2) targeting antibody nano-microbubbles and compared its diagnostic value with that of blank nano-microbubbles for atherosclerotic plaques. Studies have found that VEGFR-2 targeting antibody nano-microbubbles can accurately detect the position of plaques. Its detection rate, sensitivity, and specificity for plaques are higher than those of blank nano-microbubbles. Similarly, the peak intensity and average transit time of VEGFR-2 targeting antibody nano-microbubbles were greater than those of blank nano-microbubbles. Therefore, we believe that the combination of VEGFR-2 antibody and nano-microbubbles can enhance the acquisition of ultrasound information on atherosclerotic plaque neovascularization, thereby improving the early diagnosis of unstable plaque.


Assuntos
Placa Aterosclerótica , Anticorpos , Meios de Contraste , Células Endoteliais/metabolismo , Humanos , Microbolhas , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/metabolismo , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Ultrassonografia , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
20.
Mol Imaging Biol ; 24(5): 721-731, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35604528

RESUMO

AIM: Angiogenesis plays a major role in atherosclerotic plaque development and instability. Our study aims to develop a novel optical and magnetic resonance (MR) dual-modality molecular imaging probe to early detect unstable plaques in vivo by targeting biomarkers of angiogenesis in murine models of atherosclerosis (AS). METHODS: Immunofluorescence and western blot were used to detect the expression of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) in activated Human Umbilical Vein Endothelial Cells (HUVECs). After synthesis and identification of novel short peptide VRBP1-targeted VEGFR2, HUVECs were co-cultured with FITC-VRBP1 to test specific affinity of VRBP1. Then VRBP1-UCNPstargeting VEGFR2 were constructed by conjugating VRBP1 to the surface of NaGdF4:Yb,Er@NaGdF4 nanoparticles. The characterization of the nanoparticles was performed by transmission electron microscopy (TEM), distribution of size, hydrodynamic size, zeta potential, absorption spectra, emission spectra, imaging intensity of different concentrations, binding affinity and cytotoxicity of nanoprobes in vitro. The upconversion luminescence (UCL) and MR imaging were performed to identify unstable atherosclerotic plaque in ApoE-/- mice in vivo and ex vivo. Morphological staining was used to verify AS model and angiogenesis, and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) was used to confirm accumulation of the nanoparticles after imaging. RESULTS: After induced by hypoxia and ox-LDL, the expression of VEGFR2 in activated HUVECs was enhanced. FITC-VRBP1 can specifically bind to the HUVECs. Characterization of the nanoparticles showed that particles size is uniform with a stable structure, specific optical and MR signal, good binding affinity to VEGFR2 and low cytotoxicity. In vivo and ex vivo UCL imaging and quantitative analysis revealed that distinctive optical signal was observed in the regions of left carotid common arteries (LCCAs) of AS group after injection of VRBP1-UCNPs. Higher signal intensity on T1-weighted MR imaging appeared in the LCCA wall of AS group after injection. The results of morphological staining demonstrated angiogenesis in the atherosclerotic plaques, Gd ions in LCCAs, aortic arch and renal arteries bifurcations detected by ICP-AES confirmed accumulation of the nanoparticles in plaque. CONCLUSIONS: We successfully design and synthesize a novel UCNPs using peptide VRBP1 targeting to VEGFR2. In vivo imaging demonstrates that VRBP1-UCNPs can be used to perform optical/MR dual-modality imaging targeting angiogenesis in plaques, which is a promising technique to early detect unstable atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Camundongos , Placa Aterosclerótica/diagnóstico por imagem , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Fluoresceína-5-Isotiocianato , Fator A de Crescimento do Endotélio Vascular , Aterosclerose/metabolismo , Neovascularização Patológica/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Apolipoproteínas E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA