Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 38(1): 154-163, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191928

RESUMO

OBJECTIVE: Pulmonary artery smooth muscle cells (PASMCs) from neprilysin (NEP) null mice exhibit a synthetic phenotype and increased activation of Rho GTPases compared with their wild-type counterparts. Although Rho GTPases are known to promote a contractile SMC phenotype, we hypothesize that their sustained activity decreases SM-protein expression in these cells. APPROACH AND RESULTS: PASMCs isolated from wild-type and NEP-/- mice were used to assess levels of SM-proteins (SM-actin, SM-myosin, SM22, and calponin) by Western blotting, and were lower in NEP-/- PASMCs compared with wild-type. Rac and Rho (ras homology family member) levels and activity were higher in NEP-/- PASMCs, and ShRNA to Rac and Rho restored SM-protein, and attenuated the enhanced migration and proliferation of NEP-/- PASMCs. SM-gene repressors, p-Elk-1, and Klf4 (Kruppel lung factor 4), were higher in NEP-/- PASMCs and decreased by shRNA to Rac and Rho. Costimulation of wild-type PASMCs with PDGF (platelet-derived growth factor) and the NEP substrate, ET-1 (endothelin-1), increased Rac and Rho activity, and decreased SM-protein levels mimicking the NEP knock-out phenotype. Activation of Rac and Rho and downstream effectors was observed in lung tissue from NEP-/- mice and humans with chronic obstructive pulmonary disease. CONCLUSIONS: Sustained Rho activation in NEP-/- PASMCs is associated with a decrease in SM-protein levels and increased migration and proliferation. Inactivation of RhoGDI (Rho guanine dissociation inhibitor) and RhoGAP (Rho GTPase activating protein) by phosphorylation may contribute to prolonged activation of Rho in NEP-/- PASMCs. Rho GTPases may thus have a role in integration of signals between vasopeptides and growth factor receptors and could influence pathways that suppress SM-proteins to promote a synthetic phenotype.


Assuntos
Proteínas Musculares/biossíntese , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Neprilisina/deficiência , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/biossíntese , Animais , Becaplermina/farmacologia , Proteínas de Ligação ao Cálcio/biossíntese , Movimento Celular , Proliferação de Células , Células Cultivadas , Endotelina-1/farmacologia , Ativação Enzimática , Genótipo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/biossíntese , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Neprilisina/genética , Fenótipo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doença Pulmonar Obstrutiva Crônica/patologia , Transdução de Sinais , Miosinas de Músculo Liso/biossíntese , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas rho de Ligação ao GTP/genética , Calponinas
2.
Diabetes ; 66(8): 2201-2212, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28559246

RESUMO

Recent work has renewed interest in therapies targeting the renin-angiotensin system (RAS) to improve ß-cell function in type 2 diabetes. Studies show that generation of angiotensin-(1-7) by ACE2 and its binding to the Mas receptor (MasR) improves glucose homeostasis, partly by enhancing glucose-stimulated insulin secretion (GSIS). Thus, islet ACE2 upregulation is viewed as a desirable therapeutic goal. Here, we show that, although endogenous islet ACE2 expression is sparse, its inhibition abrogates angiotensin-(1-7)-mediated GSIS. However, a more widely expressed islet peptidase, neprilysin, degrades angiotensin-(1-7) into several peptides. In neprilysin-deficient mouse islets, angiotensin-(1-7) and neprilysin-derived degradation products angiotensin-(1-4), angiotensin-(5-7), and angiotensin-(3-4) failed to enhance GSIS. Conversely, angiotensin-(1-2) enhanced GSIS in both neprilysin-deficient and wild-type islets. Rather than mediating this effect via activation of the G-protein-coupled receptor (GPCR) MasR, angiotensin-(1-2) was found to signal via another GPCR, namely GPCR family C group 6 member A (GPRC6A). In conclusion, in islets, intact angiotensin-(1-7) is not the primary mediator of beneficial effects ascribed to the ACE2/angiotensin-(1-7)/MasR axis. Our findings warrant caution for the concurrent use of angiotensin-(1-7) compounds and neprilysin inhibitors as therapies for diabetes.


Assuntos
Angiotensina I/fisiologia , Angiotensinas/metabolismo , Insulina/metabolismo , Neprilisina/deficiência , Fragmentos de Peptídeos/fisiologia , Sistema Renina-Angiotensina/fisiologia , Enzima de Conversão de Angiotensina 2 , Animais , Glucose/fisiologia , Secreção de Insulina , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neprilisina/fisiologia , Peptidil Dipeptidase A/metabolismo , Proteólise , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais
3.
Diabetologia ; 60(4): 701-708, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27933334

RESUMO

AIM/HYPOTHESIS: Neprilysin, a widely expressed peptidase, is upregulated in metabolically altered states such as obesity and type 2 diabetes. Like dipeptidyl peptidase-4 (DPP-4), neprilysin can degrade and inactivate the insulinotropic peptide glucagon-like peptide-1 (GLP-1). Thus, we investigated whether neprilysin deficiency enhances active GLP-1 levels and improves glycaemia in a mouse model of high fat feeding. METHODS: Nep +/+ and Nep -/- mice were fed a 60% fat diet for 16 weeks, after which active GLP-1 and DPP-4 activity levels were measured, as were glucose, insulin and C-peptide levels during an OGTT. Insulin sensitivity was assessed using an insulin tolerance test. RESULTS: High-fat-fed Nep -/- mice exhibited elevated active GLP-1 levels (5.8 ± 1.1 vs 3.5 ± 0.8 pmol/l, p < 0.05) in association with improved glucose tolerance, insulin sensitivity and beta cell function compared with high-fat-fed Nep +/+ mice. In addition, plasma DPP-4 activity was lower in high-fat-fed Nep -/- mice (7.4 ± 1.0 vs 10.7 ± 1.3 nmol ml-1 min-1, p < 0.05). No difference in insulin:C-peptide ratio was observed between Nep -/- and Nep +/+ mice, suggesting that improved glycaemia does not result from changes in insulin clearance. CONCLUSIONS/INTERPRETATION: Under conditions of increased dietary fat, an improved glycaemic status in neprilysin-deficient mice is associated with elevated active GLP-1 levels, reduced plasma DPP-4 activity and improved beta cell function. Thus, neprilysin inhibition may be a novel treatment strategy for type 2 diabetes.


Assuntos
Glicemia/metabolismo , Dipeptidil Peptidase 4/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Neprilisina/deficiência , Neprilisina/metabolismo , Análise de Variância , Animais , Peptídeo C/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/metabolismo , Masculino , Camundongos , Camundongos Mutantes
4.
Int J Obes (Lond) ; 40(12): 1850-1855, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27698343

RESUMO

BACKGROUND/OBJECTIVE: Consumption of green tea has become increasingly popular, particularly because of claimed reduction in body weight. We recently reported that animals with pharmacological inhibition (by candoxatril) or genetic absence of the endopeptidase neprilysin (NEP) develop an obese phenotype. We now investigated the effect of green tea extract (in drinking water) on body weight and body composition and the mediating role of NEP. SUBJECTS/METHODS: To elucidate the role of NEP in mediating the beneficial effects of green tea extract, 'Berlin fat mice' or NEP-deficient mice and their age- and gender-matched wild-type controls received the extract in two different doses (300 or 600 mg kg-1 body weight per day) in the drinking water. RESULTS: In 'Berlin fat mice', 51 days of green tea treatment did not only prevent fat accumulation (control: day 0: 30.5% fat, day 51: 33.1%; NS) but also reduced significant body fat (green tea: day 0: 27.8%, day 51: 20.9%, P<0.01) and body weight below the initial levels. Green tea reduced food intake. This was paralleled by a selective increase in peripheral (in kidney 17%, in intestine 92%), but not central NEP expression and activity, leading to downregulation of orexigens (like galanin and neuropeptide Y (NPY)) known to be physiological substrates of NEP. Consequently, in NEP-knockout mice, green tea extract failed to reduce body fat/weight. CONCLUSIONS: Our data generate experimental proof for the assumed effects of green tea on body weight and the key role for NEP in such process, and thus open a new avenue for the treatment of obesity.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Neprilisina/biossíntese , Extratos Vegetais/farmacologia , Chá , Animais , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Camundongos , Camundongos Knockout , Neprilisina/deficiência , Obesidade/metabolismo , Obesidade/patologia , Obesidade/prevenção & controle , Termogênese/efeitos dos fármacos , Termogênese/fisiologia , Regulação para Cima/efeitos dos fármacos
5.
Am J Hum Genet ; 99(3): 607-623, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27588448

RESUMO

Axonal polyneuropathies are a frequent cause of progressive disability in the elderly. Common etiologies comprise diabetes mellitus, paraproteinaemia, and inflammatory disorders, but often the underlying causes remain elusive. Late-onset axonal Charcot-Marie-Tooth neuropathy (CMT2) is an autosomal-dominantly inherited condition that manifests in the second half of life and is genetically largely unexplained. We assumed age-dependent penetrance of mutations in a so far unknown gene causing late-onset CMT2. We screened 51 index case subjects with late-onset CMT2 for mutations by whole-exome (WES) and Sanger sequencing and subsequently queried WES repositories for further case subjects carrying mutations in the identified candidate gene. We studied nerve pathology and tissue levels and function of the abnormal protein in order to explore consequences of the mutations. Altogether, we observed heterozygous rare loss-of-function and missense mutations in MME encoding the metalloprotease neprilysin in 19 index case subjects diagnosed with axonal polyneuropathies or neurodegenerative conditions involving the peripheral nervous system. MME mutations segregated in an autosomal-dominant fashion with age-related incomplete penetrance and some affected individuals were isolated case subjects. We also found that MME mutations resulted in strongly decreased tissue availability of neprilysin and impaired enzymatic activity. Although neprilysin is known to degrade ß-amyloid, we observed no increased amyloid deposition or increased incidence of dementia in individuals with MME mutations. Detection of MME mutations is expected to increase the diagnostic yield in late-onset polyneuropathies, and it will be tempting to explore whether substances that can elevate neprilysin activity could be a rational option for treatment.


Assuntos
Axônios/patologia , Genes Dominantes/genética , Mutação/genética , Neprilisina/genética , Polineuropatias/genética , Polineuropatias/patologia , Tecido Adiposo/metabolismo , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Alelos , Peptídeos beta-Amiloides/metabolismo , Animais , Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Análise Mutacional de DNA , Bases de Dados Genéticas , Demência/complicações , Demência/genética , Exoma/genética , Heterozigoto , Humanos , Camundongos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Neprilisina/análise , Neprilisina/sangue , Neprilisina/deficiência , Penetrância , Polineuropatias/complicações , Pele/metabolismo , Nervo Sural
6.
J Alzheimers Dis ; 44(4): 1291-302, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25408216

RESUMO

The deposition of amyloid-ß (Aß) is one of the major neuropathological hallmarks of Alzheimer's disease (AD). In the case of sporadic AD, an imbalance in Aß in production and clearance seems to be the reason for an enhanced Aß accumulation. Besides a systematic clearance through the blood-brain barrier, Aß is cleared from the brain by Aß-degrading enzymes. The metalloprotease neprilysin (NEP) is an important Aß-degrading enzyme as shown by numerous in vitro, in vivo and reverse genetics studies. 5XFAD mice represent an early-onset AD mouse model which develops plaque pathology starting with 2 months of age in addition to robust behavioral deficits at later time points. By crossing 5XFAD mice with homozygous NEP-knock-out mice (NEP-/-), we show that hemizygous NEP deficiency aggravates the behavioral and neuropathological phenotype of 5XFAD mice. We found that 5XFAD mice per se showed strongly decreased NEP expression levels compared to wildtype mice, which was aggravated by NEP reduction. 5XFAD/NEP+/- mice demonstrated impairment in spatial working memory and increased astrocytosis in all studied brain areas, in addition to an overall increased level of soluble Aß42 as well as region-specific increases in extracellular Aß deposition. Surprisingly, in young mice, a more abundant cortical Aß plaque pathology was observed in 5XFAD compared to 5XFAD/NEP+/- mice. Additionally, young 5XFAD/NEP+/- as well as hemi- and homozygous NEP knockout mice showed elevated levels of endothelin-converting enzyme 1 (ECE1), suggesting a mutual regulation of ECE1 and NEP at young ages. The present data indicate that NEP mainly degrades soluble Aß peptides, which confirms previous observations. Increased ECE1 levels correlated well with the strongly reduced extracellular plaque load in young 5XFAD/NEP+/- mice and might suggest a reciprocal effect between ECE and NEP activities in Aß degradation.


Assuntos
Doença de Alzheimer , Encéfalo/patologia , Regulação da Expressão Gênica/genética , Transtornos da Memória/etiologia , Transtornos da Memória/genética , Neprilisina/deficiência , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Enzimas Conversoras de Endotelina , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Aprendizagem em Labirinto/fisiologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neprilisina/genética , Presenilina-1/genética , RNA Mensageiro/metabolismo
7.
Pain ; 155(3): 574-580, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24333776

RESUMO

The pathophysiology of the complex regional pain syndrome involves enhanced neurogenic inflammation mediated by neuropeptides. Neutral endopeptidase (neprilysin, NEP) is a key enzyme in neuropeptide catabolism. Our previous work revealed that NEP knock out (ko) mice develop more severe hypersensitivity to thermal and mechanical stimuli after chronic constriction injury (CCI) of the sciatic nerve than wild-type (wt) mice. Because treatment with glucocorticoids is effective in early complex regional pain syndrome, we investigated whether methylprednisolone (MP) reduces pain and sciatic nerve neuropeptide content in NEP ko and wt mice with nerve injury. After CCI, NEP ko mice developed more severe thermal and mechanical hypersensitivity and hind paw edema than wt mice, confirming previous findings. Hypersensitivity was prevented by MP treatment in NEP ko but not in wt mice. MP treatment had no effect on protein levels of calcitonin-gene related peptide, substance P, and bradykinin in sciatic nerves of NEP ko mice. Endothelin-1 (ET-1) levels were higher in naïve and nerve-injured NEP ko than in wt mice, without an effect of MP treatment. Gene expression of the ET-1 receptors ETAR and ETBR was not different between genotypes and was not altered after CCI, but was increased after additional MP treatment. The ETBR agonist IRL-1620 was analgesic in NEP ko mice after CCI, and the ETBR antagonist BQ-788 showed a trend to reduce the analgesic effect of MP. The results provide evidence that MP reduces CCI-induced hyperalgesia in NEP ko mice, and that this may be related to ET-1 via analgesic actions of ETBR.


Assuntos
Hiperalgesia/metabolismo , Hiperalgesia/prevenção & controle , Metilprednisolona/uso terapêutico , Neprilisina/deficiência , Fármacos Neuroprotetores/uso terapêutico , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/metabolismo , Animais , Hiperalgesia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropatia Ciática/patologia
9.
PLoS One ; 7(11): e50187, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185571

RESUMO

Both acquired and inherited genetic factors contribute to excessive alcohol consumption and the corresponding development of addiction. Here we show that the genetic deficiency in neprilysin [NEP] did not change the kinetics of alcohol degradation but led to an increase in alcohol intake in mice in a 2-bottle-free-choice paradigm after one single stress stimulus (intruder). A repetition of such stress led to an irreversible elevated alcohol consumption. This phenomenon could be also observed in wild-type mice receiving an orally active NEP inhibitor. We therefore elucidated the stress behavior in NEP-deficient mice. In an Elevated Plus Maze, NEP knockouts crossed more often the area between the arms, implicating a significant stronger stress response. Furthermore, such animals showed a decreased locomotor activity under intense light in a locomotor activity test, identifying such mice to be more responsive in aversive situations than their wild-type controls. Since the reduction in NEP activity itself does not lead to significant signs of an altered alcohol preference in mice but requires an environmental stimulus, our findings build a bridge between stress components and genetic factors in the development of alcoholism. Therefore, targeting NEP activity might be a very attractive approach for the treatment of alcohol abuse in a society with increasing social and financial stress.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Alcoolismo/genética , Neprilisina/genética , Estresse Fisiológico/genética , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/enzimologia , Animais , Comportamento de Escolha/efeitos dos fármacos , Etanol/sangue , Feminino , Expressão Gênica/efeitos dos fármacos , Indanos/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Neprilisina/antagonistas & inibidores , Neprilisina/deficiência , Propionatos/farmacologia , Inibidores de Proteases/farmacologia
10.
J Mol Neurosci ; 43(3): 424-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20941644

RESUMO

Intranasal administration is emerging as a reliable and non-invasive method to bypass the blood-brain barrier and deliver drugs to the brain. This approach has been primarily used to explore therapeutic avenues for neurological diseases. However, intranasal administration could also be used to create animal models of brain disease. Beta-amyloid peptide (Aß) accumulation is a key feature of Alzheimer's disease (AD), and the most common models of AD are transgenic mice expressing mutant human genes linked to familial AD. An alternative model of amyloidosis utilizes intracerebroventricular infusion of thiorphan or phosphoramidon to block the activity of key Aß degrading enzymes (NEP, NEP2) resulting in accumulation of Aß. Here, we demonstrate that intranasal administration of phosphoramidon produces significantly elevated cerebral Aß levels in wild-type mice. Furthermore, intranasal phosphoramidon administration in double knockout mice lacking NEP and NEP2 also showed increased levels of Aß(40). These data show that intranasal delivery of drugs can be used to model AD and suggest that other phosphoramidon-sensitive peptidases are degrading Aß in NEP/NEP2-deficient mice.


Assuntos
Administração Intranasal , Peptídeos beta-Amiloides/metabolismo , Glicopeptídeos/administração & dosagem , Glicopeptídeos/farmacologia , Neprilisina/deficiência , Inibidores de Proteases/administração & dosagem , Inibidores de Proteases/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Neprilisina/genética
11.
PLoS One ; 5(9)2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20862277

RESUMO

BACKGROUND: According to the World Health Organization (WHO) there is a pandemic of obesity with approximately 300 million people being obese. Typically, human obesity has a polygenetic causation. Neutral endopeptidase (NEP), also known as neprilysin, is considered to be one of the key enzymes in the metabolism of many active peptide hormones. METHODOLOGY/PRINCIPAL FINDINGS: An incidental observation in NEP-deficient mice was a late-onset excessive gain in body weight exclusively from a ubiquitous accumulation of fat tissue. In accord with polygenetic human obesity, mice were characterized by deregulation of lipid metabolism, higher blood glucose levels, with impaired glucose tolerance. The key role of NEP in determining body mass was confirmed by the use of the NEP inhibitor candoxatril in wild-type mice that increased body weight due to increased food intake. This is a peripheral and not a central NEP action on the switch for appetite control, since candoxatril cannot cross the blood-brain barrier. Furthermore, we demonstrated that inhibition of NEP in mice with cachexia delayed rapid body weight loss. Thus, lack in NEP activity, genetically or pharmacologically, leads to a gain in body fat. CONCLUSIONS/SIGNIFICANCE: In the present study, we have identified NEP to be a crucial player in the development of obesity. NEP-deficient mice start to become obese under a normocaloric diet in an age of 6-7 months and thus are an ideal model for the typical human late-onset obesity. Therefore, the described obesity model is an ideal tool for research on development, molecular mechanisms, diagnosis, and therapy of the pandemic obesity.


Assuntos
Neprilisina/deficiência , Neprilisina/genética , Obesidade/enzimologia , Tecido Adiposo/metabolismo , Idade de Início , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Aumento de Peso
12.
PLoS One ; 5(8): e12121, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20711432

RESUMO

Although CD133 has been reported to be a promising colon cancer stem cell marker, the biological functions of CD133+ colon cancer cells remain controversial. In the present study, we investigated the biological differences between CD133+ and CD133- colon cancer cells, with a particular focus on their interactions with cancer-associated fibroblasts, especially CD10+ fibroblasts. We used 19 primary colon cancer tissues, 30 primary cultures of fibroblasts derived from colon cancer tissues and 6 colon cancer cell lines. We isolated CD133+ and CD133- subpopulations from the colon cancer tissues and cultured cells. In vitro analyses revealed that the two populations showed similar biological behaviors in their proliferation and chemosensitivity. In vivo analyses revealed that CD133+ cells showed significantly greater tumor growth than CD133- cells (P=0.007). Moreover, in cocultures with primary fibroblasts derived from colon cancer tissues, CD133+ cells exhibited significantly more invasive behaviors than CD133- cells (P<0.001), especially in cocultures with CD10+ fibroblasts (P<0.0001). Further in vivo analyses revealed that CD10+ fibroblasts enhanced the tumor growth of CD133+ cells significantly more than CD10- fibroblasts (P<0.05). These data demonstrate that the in vitro invasive properties and in vivo tumor growth of CD133+ colon cancer cells are enhanced in the presence of specific cancer-associated fibroblasts, CD10+ fibroblasts, suggesting that the interactions between these specific cell populations have important roles in cancer progression. Therefore, these specific interactions may be promising targets for new colon cancer therapies.


Assuntos
Antígenos CD/metabolismo , Neoplasias do Colo/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Glicoproteínas/deficiência , Glicoproteínas/metabolismo , Neprilisina/metabolismo , Peptídeos/deficiência , Peptídeos/metabolismo , Antígeno AC133 , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais/metabolismo , Comunicação Celular , Linhagem Celular Tumoral , Proliferação de Células , Separação Celular , Técnicas de Cocultura , Neoplasias do Colo/genética , Neoplasias do Colo/cirurgia , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Neprilisina/deficiência , Neprilisina/genética , Estudos Prospectivos , Recidiva
13.
J Cell Physiol ; 220(1): 119-28, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19277984

RESUMO

One of the earliest signs of age-related macular degeneration (AMD) is the formation of drusen which are extracellular deposits beneath the retinal pigmented epithelium (RPE). To investigate the relationship between drusen and AMD, we focused on amyloid beta (Abeta), a major component of drusen and also of senile plaques in the brain of Alzheimer's patients. We previously reported that Abeta was accumulated in drusen-like structure in senescent neprilysin gene-disrupted mice. The purpose of this study was to investigate the influence of Abeta on factor B, the main activator of the complement alternative pathway. The results showed that Abeta did not directly modulate factor B expression in RPE cells, but increased the production of monocyte chemoattractant protein-1 (MCP-1). Abeta also increased the production of IL-1beta and TNF-alpha in macrophages/microglia, and exposure of RPE cells to IL-1beta and TNF-alpha significantly up-regulated factor B. Co-cultures of RPE cells and macrophages/microglia in the presence of Abeta significantly increased the expression of factor B in RPE. These findings indicate that cytokines produced by macrophages/microglia that were recruited by MCP-1 produced in RPE cells stimulated by Abeta up-regulate factor B in RPE cells. Thus, a combined mechanism exists for Abeta-induced for the activation of the complement alternative pathway in the subretinal space; cytokine-induced up-regulation of activator factor B and dysfunction of the inhibitor factor I by direct binding to Abeta as suggested in our earlier study.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Ativação do Complemento , Fator B do Complemento/metabolismo , Citocinas/metabolismo , Células Epiteliais/imunologia , Macrófagos Peritoneais/imunologia , Degeneração Macular/imunologia , Microglia/imunologia , Fragmentos de Peptídeos/metabolismo , Epitélio Pigmentado da Retina/imunologia , Animais , Comunicação Autócrina , Células Cultivadas , Quimiocina CCL2/metabolismo , Técnicas de Cocultura , Fator B do Complemento/genética , Humanos , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neprilisina/deficiência , Neprilisina/genética , Comunicação Parácrina , RNA Mensageiro/metabolismo , Drusas Retinianas/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
14.
PLoS One ; 4(2): e4590, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19240795

RESUMO

BACKGROUND: Neutral endopeptidase, also known as neprilysin and abbreviated NEP, is considered to be one of the key enzymes in initial human amyloid-beta (Abeta) degradation. The aim of our study was to explore the impact of NEP deficiency on the initial development of dementia-like symptoms in mice. METHODOLOGY/PRINCIPAL FINDINGS: We found that while endogenous Abeta concentrations were elevated in the brains of NEP-knockout mice at all investigated age groups, immunohistochemical analysis using monoclonal antibodies did not detect any Abeta deposits even in old NEP knockout mice. Surprisingly, tests of learning and memory revealed that the ability to learn was not reduced in old NEP-deficient mice but instead had significantly improved, and sustained learning and memory in the aged mice was congruent with improved long-term potentiation (LTP) in brain slices of the hippocampus and lateral amygdala. Our data suggests a beneficial effect of pharmacological inhibition of cerebral NEP on learning and memory in mice due to the accumulation of peptides other than Abeta degradable by NEP. By conducting degradation studies and peptide measurements in the brain of both genotypes, we identified two neuropeptide candidates, glucagon-like peptide 1 and galanin, as first potential candidates to be involved in the improved learning in aged NEP-deficient mice. CONCLUSIONS/SIGNIFICANCE: Thus, the existence of peptides targeted by NEP that improve learning and memory in older individuals may represent a promising avenue for the treatment of neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Neprilisina/deficiência , Envelhecimento/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Demência/prevenção & controle , Galanina/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Hipocampo/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Neprilisina/antagonistas & inibidores , Neprilisina/fisiologia , Fragmentos de Peptídeos/farmacologia
15.
Am J Pathol ; 174(3): 782-96, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19234135

RESUMO

Neprilysin is a transmembrane metalloendopeptidase that degrades neuropeptides that are important for both growth and contraction. In addition to promoting carcinogenesis, decreased levels of neprilysin increases inflammation and neuroendocrine cell hyperplasia, which may predispose to vascular remodeling. Early pharmacological studies showed a decrease in chronic hypoxic pulmonary hypertension with neprilysin inhibition. We used a genetic approach to test the alternate hypothesis that neprilysin depletion increases chronic hypoxic pulmonary hypertension. Loss of neprilysin had no effect on baseline airway or alveolar wall architecture, vessel density, cardiac function, hematocrit, or other relevant peptidases. Only lung neuroendocrine cell hyperplasia and a subtle neuropeptide imbalance were found. After chronic hypoxia, neprilysin-null mice exhibited exaggerated pulmonary hypertension and striking increases in muscularization of distal vessels. Subtle thickening of proximal media/adventitia not typically seen in mice was also detected. In contrast, adaptive right ventricular hypertrophy was less than anticipated. Hypoxic wild-type pulmonary vessels displayed close temporal and spatial relationships between decreased neprilysin and increased cell growth. Smooth muscle cells from neprilysin-null pulmonary arteries had increased proliferation compared with controls, which was decreased by neprilysin replacement. These data suggest that neprilysin may be protective against chronic hypoxic pulmonary hypertension in the lung, at least in part by attenuating the growth of smooth muscle cells. Lung-targeted strategies to increase neprilysin levels could have therapeutic benefits in the treatment of this disorder.


Assuntos
Hipertensão Pulmonar/patologia , Hipóxia/genética , Camundongos Knockout , Neprilisina/deficiência , Artéria Pulmonar/patologia , Circulação Pulmonar/fisiologia , Animais , Divisão Celular , Doença Crônica , Primers do DNA , Predisposição Genética para Doença , Genótipo , Hemodinâmica , Hipertensão Pulmonar/genética , Hipóxia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/patologia , Neprilisina/genética
16.
Neurobiol Dis ; 35(2): 177-83, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19084065

RESUMO

The complex regional pain syndrome (CRPS) is characterized by enhanced neurogenic inflammation, mediated by neuropeptides. Neutral endopeptidase (NEP) is a key enzyme in neuropeptide catabolism. We used NEP knock out (ko) mice to investigate whether NEP deficiency leads to increased pain behavior and signs of neurogenic inflammation after soft tissue trauma with and without nerve injury. After chronic constriction injury (CCI) of the right sciatic nerve, NEP ko mice were more sensitive to heat, to mechanical stimuli, and to cold than wild type mice. Tissue injury without nerve injury produced no differences between genotypes. After CCI, NEP ko mice showed increased hind paw edema but lower skin temperatures than wild type mice. Substance P (SP) and endothelin 1 (ET 1) determined by enzyme immuno assay (EIA) were increased in sciatic nerves from NEP ko mice after CCI. Tissue CGRP content did not differ between the genotypes. The results provide evidence that pain behavior and neurogenic inflammation are enhanced in NEP ko mice after nerve injury. These findings resemble human 'cold' CRPS and suggest that ET 1 plays an important role in the pathogenesis of CRPS with nerve injury.


Assuntos
Neprilisina/metabolismo , Inflamação Neurogênica/metabolismo , Dor/metabolismo , Animais , Temperatura Baixa , Edema , Endotelina-1/metabolismo , Ensaio de Imunoadsorção Enzimática , Membro Posterior/patologia , Temperatura Alta , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Neprilisina/deficiência , Neprilisina/genética , Medição da Dor , Estimulação Física , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Pele/metabolismo , Temperatura Cutânea/fisiologia , Substância P/metabolismo
17.
Exp Diabetes Res ; 2009: 431980, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20148083

RESUMO

We demonstrated that inhibition of neutral endopeptidase (NEP), a protease that degrades vaso- and neuroactive peptides, improves vascular and neural function in diabetic animal models. In this study we explored the role of NEP in neuropathy related to either insulin-deficient diabetes or diet-induced obesity using NEP deficient (-/-) mice. Initial studies showed that streptozotocin, in the absence of subsequent hyperglycemia, did not induce nerve conduction slowing or paw thermal hypoalgesia. Glucose disposal was impaired in both C57Bl/6 and NEP -/- mice fed a high fat diet. Thermal hypoalgesia and nerve conduction slowing were present in both streptozotocin-diabetic and high fat fed C57Bl/6 mice but not in NEP -/- mice exposed to either streptozotocin-induced diabetes or a high fat diet. These studies suggest that streptozotocin does not induce neurotoxicity in mice and that NEP plays a role in regulating nerve function in insulin-deficient diabetes and diet-induced obesity.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Neuropatias Diabéticas/enzimologia , Neprilisina/fisiologia , Doenças do Sistema Nervoso/induzido quimicamente , Estreptozocina/toxicidade , Animais , Diabetes Mellitus Experimental/etiologia , Gorduras na Dieta/administração & dosagem , Temperatura Alta , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/fisiologia , Neprilisina/deficiência , Neprilisina/genética , Condução Nervosa , Obesidade/etiologia , Medição da Dor , Células Receptoras Sensoriais/fisiologia
18.
Exp Physiol ; 93(5): 665-75, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18263657

RESUMO

Angiotensin (Ang)-converting enzyme 2 (ACE2) metabolizes Ang II to the vasodilatory peptide Ang(1-7), while neprilysin (NEP) generates Ang(1-7) from Ang I. Experiments used novel Surface Enhanced Laser Desorption Ionization-Time of Flight (SELDI-TOF) mass spectroscopic (MS) assays to study Ang processing. Mass spectroscopy was used to measure proteolytic conversion of Ang peptide substrates to their specific peptide products. We compared ACE/ACE2 activity in plasma, brain and kidney from C57BL/6 and NEP(-/-) mice. Plasma or tissue extracts were incubated with Ang I or Ang II (1296 or 1045, m/z, respectively), and generated peptides were monitored with MS. Angiotensin-converting enzyme 2 activity was detected in kidney and brain, but not in plasma. Brain ACE2 activity was highest in hypothalamus. Angiotensin-converting enzyme 2 activity was inhibited by the specific ACE2 inhibitor, DX600 (10 microm, 99% inhibition), but not by the ACE inhibitor, captopril (10 microm). Both MS and colorimetric assays showed high ACE activity in plasma and kidney with low levels in brain. To extend these findings, ACE measurements were made in ACE overexpressing mice. Angiotensin-converting enzyme four-copy mice showed higher ACE activity in kidney and plasma with low levels in hypothalamus. In hypothalamus from NEP-/- mice, generation of Ang(1-7) from Ang I was decreased, suggesting a role for NEP in Ang metabolism. With Ang II as substrate, there was no difference between NEP-/- and wild-type control mice, indicating that other enzymes may contribute to generation of Ang(1-7). The data suggest a predominant role of hypothalamic ACE2 in the processing of Ang II, in contrast to ACE, which is most active in plasma.


Assuntos
Angiotensina II/metabolismo , Encéfalo/enzimologia , Peptidil Dipeptidase A/metabolismo , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Captopril/farmacologia , Colorimetria , Hipotálamo/efeitos dos fármacos , Hipotálamo/enzimologia , Rim/efeitos dos fármacos , Rim/enzimologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neprilisina/deficiência , Neprilisina/genética , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/fisiologia
19.
Cancer ; 107(11): 2628-36, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17083125

RESUMO

BACKGROUND: Neutral endopeptidase (NEP) is a cell-surface peptidase that can regulate the activation of Akt kinase through catalytic-dependent and independent mechanisms. NEP expression is absent in approximately 50% of prostate cancers. The authors investigated whether NEP loss in vivo would result in Akt phosphorylation and potentially contribute to prostate cancer progression by examining the interaction of NEP, Akt, and phosphatase and tensin homolog (PTEN) in a prostate xenograft model and in clinical specimens from patients with prostate cancer. METHODS: Using a tetracycline-repressible expression system to express NEP in a tumor animal xenograft model, the effects of NEP were tested on tumor growth, Akt phosphorylation, and PTEN expression. The clinical relevance of NEP, phosphorylated Akt, and PTEN protein expression also was investigated in 204 patients who had undergone radical prostatectomy. RESULTS: The results indicated that the induction of NEP expression inhibited established xenograft tumor growth, diminished Akt phosphorylation, and increased PTEN protein levels. In humans, prostate cancers with complete loss of NEP expression were significantly more likely to express phosphorylated Akt (P = .02). Moreover, patients who had prostate cancers with concomitant loss of NEP and expression of phosphorylated Akt had an increased, independent risk of prostate-specific antigen (PSA) recurrence (P = .03). In the study cohort, loss of PTEN protein expression did not correlated significantly with phosphorylated Akt or with patients' clinical outcome. CONCLUSIONS: The findings from this investigation demonstrated that NEP loss leads to Akt activation and contributes to the clinical progression of prostate cancer.


Assuntos
Neprilisina/deficiência , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Progressão da Doença , Ativação Enzimática , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Recidiva Local de Neoplasia/enzimologia , Recidiva Local de Neoplasia/patologia , Transplante de Neoplasias , Neprilisina/biossíntese , Neprilisina/genética , Neprilisina/metabolismo , Fosforilação , Estudos Prospectivos , Antígeno Prostático Específico , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Transplante Heterólogo
20.
J Neurosci Res ; 84(8): 1871-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16998901

RESUMO

Accumulation of the beta-amyloid peptide (Abeta) in the brain is a major pathological hallmark of Alzheimer's disease (AD), leading to synaptic dysfunction, neuronal death, and memory impairment. The levels of neprilysin, a major Abeta-degrading enzyme, are decreased in AD brains and during aging. Because neprilysin cleaves Abeta in vivo, its down-regulation may contribute to the pathophysiology of AD. The aim of this study was to assess the consequences of neprilysin deficiency on accumulation of murine Abeta in brains and associated pathologies in vivo by investigating neprilysin-deficient mice on biochemical, morphological, and behavioral levels. Aged neprilysin-deficient mice expressed physiological amyloid precursor protein (APP) levels and exhibited elevated brain Abeta concentrations and amyloid-like deposits in addition to signs of neuronal degeneration in their brains. Behaviorally, neprilysin-deficient mice acquired a significantly weaker conditioned taste aversion that extinguished faster than the aversion of age-matched controls. Our data establish that, under physiological APP expression levels, neprilysin deficiency is associated with increased Abeta accumulation in the brain and leads to deposition of amyloid-like structures in vivo as well as with signs of AD-like pathology and with behavioral deficits.


Assuntos
Amiloide/metabolismo , Comportamento Animal/fisiologia , Encéfalo/patologia , Neprilisina/deficiência , Fatores Etários , Amiloide/ultraestrutura , Análise de Variância , Animais , Aprendizagem da Esquiva/fisiologia , Encéfalo/ultraestrutura , Condicionamento Operante/fisiologia , Ensaio de Imunoadsorção Enzimática/métodos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão/métodos , Privação de Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA