Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Physiol Res ; 73(2): 305-314, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38710054

RESUMO

Netrin-1 (NTN-1) plays a vital role in the progress of nervous system development and inflammatory diseases. However, the role and underlying mechanism of NTN-1 in inflammatory pain (IP) are unclear. BV2 microglia were treated with LPS to mimic the cell status under IP. Adeno-associated virus carrying the NTN-1 gene (AAV-NTN-1) was used to overexpress NTN-1. Complete Freund's Adjuvant (CFA)-induced mouse was recruited as an in vivo model. MTT and commercial kits were utilized to evaluate cell viability and cell death of BV2 cells. The mRNA expressions and secretions of cytokines were measured using the ELISA method. Also, the pyroptosis and activation of BV2 cells were investigated based on western blotting. To verify the role of Rac1/NF-kappaB signaling, isochamaejasmin (ISO) and AAV-Rac1 were presented. The results showed that NTN-1 expression was decreased in LPS-treated BV2 microglia and spinal cord tissues of CFA-injected mice. Overexpressing NTN-1 dramatically reversed cell viability and decreased cell death rate of BV2 microglia under lipopolysaccharide (LPS) stimulation, while the level of pyroptosis was inhibited. Besides, AAV-NTN-1 rescued the activation of microglia and inflammatory injury induced by LPS, decreasing IBA-1 expression, as well as iNOS, IL-1beta and IL-6 secretions. Meanwhile AAV-NTN-1 promoted the anti-inflammation response, including increases in Arg-1, IL-4 and IL-10 levels. In addition, the LPS-induced activation of Rac1/NF-kappaB signaling was depressed by NTN-1 overexpression. The same results were verified in a CFA-induced mouse model. In conclusion, NTN-1 alleviated IP by suppressing pyroptosis and promoting M2 type activation of microglia via inhibiting Rac1/NF-?B signaling, suggesting the protective role of NTN-1 in IP. Keywords: Netrin-1, Inflammatory pain, Pyroptosis, Microglia M2 activation, Rac1/NF-kappaB.


Assuntos
Inflamação , Microglia , NF-kappa B , Netrina-1 , Neuropeptídeos , Piroptose , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Animais , Piroptose/fisiologia , Piroptose/efeitos dos fármacos , Microglia/metabolismo , Camundongos , Netrina-1/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , NF-kappa B/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Dor/metabolismo , Linhagem Celular , Lipopolissacarídeos
2.
Ann Anat ; 254: 152247, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458575

RESUMO

Neural guidance proteins participate in motor neuron migration, axonal projection, and muscle fiber innervation during development. One of the guidance proteins that participates in axonal pathfinding is Netrin-1. Despite the well-known role of Netrin-1 in embryogenesis of central nervous tissue, it is still unclear how the expression of this guidance protein contributes to primary innervation of the periphery, as well as reinnervation. This is especially true in the larynx where Netrin-1 is upregulated within the intrinsic laryngeal muscles after nerve injury and where blocking of Netrin-1 alters the pattern of reinnervation of the intrinsic laryngeal muscles. Despite this consistent finding, it is unknown how Netrin-1 expression contributes to guidance of the axons towards the larynx. Improved knowledge of Netrin-1's role in nerve regeneration and reinnervation post-injury in comparison to its role in primary innervation during embryological development, may provide insights in the search for therapeutics to treat nerve injury. This paper reviews the known functions of Netrin-1 during the formation of the central nervous system and during cranial nerve primary innervation. It also describes the role of Netrin-1 in the formation of the larynx and during recurrent laryngeal reinnervation following nerve injury in the adult.


Assuntos
Laringe , Regeneração Nervosa , Netrina-1 , Netrina-1/metabolismo , Animais , Humanos , Regeneração Nervosa/fisiologia , Laringe/fisiologia , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Orientação de Axônios/fisiologia
3.
J Diabetes Res ; 2023: 4193309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033740

RESUMO

The kidneys have a high level of Netrin-1 expression, which protects against some acute and chronic kidney disorders. However, it is yet unknown how Netrin-1 affects renal proximal tubule cells in diabetic nephropathy (DN) under pathological circumstances. Research has shown that autophagy protects the kidneys in animal models of renal disease. In this study, we looked at the probable autophagy regulation mechanism of Netrin-1 and its function in the pathogenesis of DN. We proved that in HK-2 cell, high blood sugar levels caused Netrin-1 to be downregulated, which then triggered the Akt/mTOR signaling pathway and enhanced cell death and actin cytoskeleton disruption. By adding Netrin-1 or an autophagy activator in vitro, these pathogenic alterations were reverted. Our results indicate that Netrin-1 stimulates autophagy by blocking the Akt/mTOR signaling pathway, which underlies high-glucose-induced malfunction of the renal proximal tubules. After HK-2 cells were incubated with Netrin-1 recombination protein and rapamycin under HG conditions for 24 h, the apoptosis was significantly reduced, as shown by the higher levels of Bcl-2, as well as lower levels of Bax and cleaved caspase-3 (P = 0.012, Cohen's d = 0.489, Glass's delta = 0.23, Hedges' g = 0.641). This study reveals that targeting Netrin-1-related signaling has therapeutic potential for DN and advances our knowledge of the processes operating in renal proximal tubules in DN.


Assuntos
Nefropatias Diabéticas , Proteínas Proto-Oncogênicas c-akt , Apoptose , Autofagia , Nefropatias Diabéticas/metabolismo , Glucose/efeitos adversos , Túbulos Renais Proximais/metabolismo , Netrina-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Humanos
4.
ACS Nano ; 17(20): 19887-19902, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37793046

RESUMO

Neurotrophic factors are essential not only for guiding the organization of the developing nervous system but also for supporting the survival and growth of neurons after traumatic injury. In the central nervous system (CNS), inhibitory factors and the formation of a glial scar after injury hinder the functional recovery of neurons, requiring exogenous therapies to promote regeneration. Netrin-1, a neurotrophic factor, can initiate axon guidance, outgrowth, and branching, as well as synaptogenesis, through activation of deleted in colorectal cancer (DCC) receptors. We report here the development of a nanofiber-shaped supramolecular mimetic of netrin-1 with monomers that incorporate a cyclic peptide sequence as the bioactive component. The mimetic structure was found to activate the DCC receptor in primary cortical neurons using low molar ratios of the bioactive comonomer. The supramolecular nanofibers enhanced neurite outgrowth and upregulated maturation as well as pre- and postsynaptic markers over time, resulting in differences in electrical activity similar to neurons treated with the recombinant netrin-1 protein. The results suggest the possibility of using the supramolecular structure as a therapeutic to promote regenerative bioactivity in CNS injuries.


Assuntos
Nanofibras , Netrina-1/metabolismo , Neurônios/metabolismo , Neurogênese , Sistema Nervoso Central/metabolismo , Axônios , Células Cultivadas
5.
Tissue Cell ; 85: 102219, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716176

RESUMO

BACKGROUND: Netrin-1 has a neuroprotective effect by regulating angiogenesis, autophagy, apoptosis, and neuroinflammation. This study investigated the effects of netrin-1 delivery to mouse Schwann cells and vascular endothelial cells using exosomes modified with rabies virus glycoprotein (RVG) peptides. MATERIALS AND METHODS: RVG-Lamp2b and/or Netrin-1 were overexpressed in human umbilical cord mesenchymal stem cells to obtain exosomes modified with RVG-Lamp2b and/or loaded with Netrin-1. Then, exosomes were labeled with carboxyfluorescein diacetate succinimidyl ester and co-cultured with mouse Schwann cells and endothelial cells. Netrin-1 expression in Schwann cells and endothelial cells was measured using quantitative polymerase chain reaction and immunoblotting. Moreover, methyl thiazolyl tetrazolium assays and Transwell assays were used to detect proliferation, migration, and invasion of Schwann cells and endothelial cells. RESULTS: Exosomes with RVG-Lamp2b entered Schwann cells more readily compared with the exosomes without RVG-Lamp2b. Meanwhile, this was not the case in endothelial cells. Netrin-1-loaded exosomes significantly promoted Netrin-1 expression, cell proliferation, migration, invasion, and epithelial-mesenchymal transition in Schwann cells and endothelial cells. These effects were further enhanced by Netrin-1-loaded exosomes modified with RVG-Lamp2b in Schwann cells, but not in endothelial cells. CONCLUSION: HucMSC-derived exosomes loaded with RVG-Lamp2b and Netrin-1 promote proliferation, migration, and invasion of Schwann cells.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Camundongos , Animais , Humanos , Células Endoteliais , Exossomos/metabolismo , Netrina-1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical
6.
Stem Cells ; 41(11): 1022-1036, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37591511

RESUMO

Retinal ganglion cells (RGCs) connect the retina with the higher centers in the brain for visual perception. Their degeneration leads to irreversible vision loss in patients with glaucoma. The mechanism underlying human RGCs (hRGCs) axon growth and guidance remains poorly understood because hRGCs are born during development and connections with the central targets are established before birth. Here, using RGCs directly generated from human embryonic stem cells, we demonstrate that hRGCs express a battery of guidance receptors. These receptors allow hRGCs to read the spatially arrayed chemotropic cues in the developing rat retina for the centripetal orientation of axons toward the optic disc, suggesting that the mechanism of intraretinal guidance is conserved in hRGCs. The centripetal orientation of hRGCs axons is not only in response to chemorepulsion but also involves chemoattraction, mediated by Netrin-1/DCC interaction. The spatially arrayed chemotropic cues differentially influence hRGCs physiological responses, suggesting that neural activity of hRGCs and axon growth may be coupled during inter-retinal guidance. In addition, we demonstrate that Netrin-1/DCC interaction, besides promoting axon growth, facilitates hRGCs axon regeneration by recruiting the mTOR signaling pathway. The diverse influence of Netrin-1/DCC interaction ranging from axon growth to regeneration may involve recruitment of multiple intracellular signaling pathways as revealed by transcriptome analysis of hRGCs. From the perspective of ex vivo stem cell approach to glaucomatous degeneration, our findings posit that ex vivo generated hRGCs can read the intraretinal cues for guidance toward the optic disc, the first step required for connecting with the central target to restore vision.


Assuntos
Axônios , Células Ganglionares da Retina , Humanos , Animais , Ratos , Células Ganglionares da Retina/metabolismo , Axônios/fisiologia , Netrina-1/metabolismo , Sinais (Psicologia) , Fatores de Crescimento Neural/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Regeneração Nervosa , Retina/metabolismo
7.
Cell Rep ; 42(8): 112947, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37572323

RESUMO

The molecular code that controls synapse formation and maintenance in vivo has remained quite sparse. Here, we identify that the secreted protein Adamtsl3 functions as critical hippocampal synapse organizer acting through the transmembrane receptor DCC (deleted in colorectal cancer). Traditionally, DCC function has been associated with glutamatergic synaptogenesis and plasticity in response to Netrin-1 signaling. We demonstrate that early post-natal deletion of Adamtsl3 in neurons impairs DCC protein expression, causing reduced density of both glutamatergic and GABAergic synapses. Adult deletion of Adamtsl3 in either GABAergic or glutamatergic neurons does not interfere with DCC-Netrin-1 function at glutamatergic synapses but controls DCC signaling at GABAergic synapses. The Adamtsl3-DCC signaling unit is further essential for activity-dependent adaptations at GABAergic synapses, involving DCC phosphorylation and Src kinase activation. These findings might be particularly relevant for schizophrenia because genetic variants in Adamtsl3 and DCC have been independently linked with schizophrenia in patients.


Assuntos
Neurônios , Sinapses , Humanos , Receptor DCC/metabolismo , Netrina-1/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Sinapses/metabolismo , Animais
8.
J Dev Orig Health Dis ; 14(4): 501-507, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37431265

RESUMO

Fetal restriction (FR) alters insulin sensitivity, but it is unknown how the metabolic profile associated with restriction affects development of the dopamine (DA) system and DA-related behaviors. The Netrin-1/DCC guidance cue system participates in maturation of the mesocorticolimbic DA circuitry. Therefore, our objective was to identify if FR modifies Netrin-1/DCC receptor protein expression in the prefrontal cortex (PFC) at birth and mRNA in adulthood in rodent males. We used cultured HEK293 cells to assess if levels of miR-218, microRNA regulator of DCC, are sensitive to insulin. To assess this, pregnant dams were subjected to a 50% FR diet from gestational day 10 until birth. Medial PFC (mPFC) DCC/Netrin-1 protein expression was measured at P0 at baseline and Dcc/Netrin-1 mRNA levels were quantified in adults 15 min after a saline/insulin injection. miR-218 levels in HEK-293 cells were measured in response to insulin exposure. At P0, Netrin-1 levels are downregulated in FR animals in comparison to controls. In adult rodents, insulin administration results in an increase in Dcc mRNA levels in control but not FR rats. In HEK293 cells, there is a positive correlation between insulin concentration and miR-218 levels. Since miR-218 is a Dcc gene expression regulator and our in vitro results show that insulin regulates miR-218 levels, we suggest that FR-induced changes in insulin sensitivity could be affecting Dcc expression via miR-218, impacting DA system maturation and organization. As fetal adversity is linked to nonadaptive behaviors later in life, this may contribute to early identification of vulnerability to chronic diseases associated with fetal adversity.


Assuntos
Resistência à Insulina , MicroRNAs , Humanos , Masculino , Gravidez , Feminino , Ratos , Animais , Netrina-1/genética , Netrina-1/metabolismo , Células HEK293 , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Insulina/metabolismo , Roedores/genética , Roedores/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sinais (Psicologia) , Córtex Pré-Frontal/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Receptor DCC/metabolismo
9.
Nat Commun ; 14(1): 4035, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419977

RESUMO

Initiating drug use during adolescence increases the risk of developing addiction or other psychopathologies later in life, with long-term outcomes varying according to sex and exact timing of use. The cellular and molecular underpinnings explaining this differential sensitivity to detrimental drug effects remain unexplained. The Netrin-1/DCC guidance cue system segregates cortical and limbic dopamine pathways in adolescence. Here we show that amphetamine, by dysregulating Netrin-1/DCC signaling, triggers ectopic growth of mesolimbic dopamine axons to the prefrontal cortex, only in early-adolescent male mice, underlying a male-specific vulnerability to enduring cognitive deficits. In adolescent females, compensatory changes in Netrin-1 protect against the deleterious consequences of amphetamine on dopamine connectivity and cognitive outcomes. Netrin-1/DCC signaling functions as a molecular switch which can be differentially regulated by the same drug experience as function of an individual's sex and adolescent age, and lead to divergent long-term outcomes associated with vulnerable or resilient phenotypes.


Assuntos
Anfetamina , Dopamina , Feminino , Camundongos , Masculino , Animais , Anfetamina/farmacologia , Dopamina/metabolismo , Netrina-1/metabolismo , Receptor DCC/genética , Receptor DCC/metabolismo , Axônios/metabolismo
10.
J Biol Chem ; 299(5): 104687, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37044214

RESUMO

Axon pathfinding is an essential step in neuronal network formation. Shootin1a is a clutch-linker molecule that is mechanically involved in axon outgrowth and guidance. It was previously shown that concentration gradients of axon guidance molecule netrin-1 in the extracellular environment elicit asymmetrically localized Pak1 kinase-mediated phosphorylation of shootin1a within axonal growth cones, which is higher on the netrin-1 source side. This asymmetric phosphorylation promotes shootin1a-mediated local actin-adhesion coupling within growth cones, thereby generating directional forces for turning the growth cone toward the netrin-1 source. However, how the spatial differences in netrin-1 concentration are transduced into the asymmetrically localized signaling within growth cones remains unclear. Moreover, the protein phosphatases that dephosphorylate shootin1a remain unidentified. Here, we report that protein phosphatase-1 (PP1) dephosphorylates shootin1a in growth cones. We found that PP1 overexpression abolished the netrin-1-induced asymmetric localization of phosphorylated shootin1a as well as axon turning. In addition, we show PP1 inhibition reversed the asymmetrically localized shootin1a phosphorylation within growth cones under netrin-1 gradient, thereby changing the netrin-1-induced growth cone turning from attraction to repulsion. These data indicate that PP1-mediated shootin1a dephosphorylation plays a key role in organizing asymmetrically localized phosphorylated shootin1a within growth cones, which regulates netrin-1-induced axon guidance.


Assuntos
Orientação de Axônios , Proteínas do Tecido Nervoso , Netrina-1 , Proteína Fosfatase 1 , Animais , Camundongos , Axônios/metabolismo , Células Cultivadas , Cones de Crescimento/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Netrina-1/metabolismo , Proteína Fosfatase 1/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
EMBO Mol Med ; 15(4): e16732, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36876343

RESUMO

Targeted radionuclide therapy is a revolutionary tool for the treatment of highly spread metastatic cancers. Most current approaches rely on the use of vectors to deliver radionuclides to tumor cells, targeting membrane-bound cancer-specific moieties. Here, we report the embryonic navigation cue netrin-1 as an unanticipated target for vectorized radiotherapy. While netrin-1, known to be re-expressed in tumoral cells to promote cancer progression, is usually characterized as a diffusible ligand, we demonstrate here that netrin-1 is actually poorly diffusible and bound to the extracellular matrix. A therapeutic anti-netrin-1 monoclonal antibody (NP137) has been preclinically developed and was tested in various clinical trials showing an excellent safety profile. In order to provide a companion test detecting netrin-1 in solid tumors and allowing the selection of therapy-eligible patients, we used the clinical-grade NP137 agent and developed an indium-111-NODAGA-NP137 single photon emission computed tomography (SPECT) contrast agent. NP137-111 In provided specific detection of netrin-1-positive tumors with an excellent signal-to-noise ratio using SPECT/CT imaging in different mouse models. The high specificity and strong affinity of NP137 paved the way for the generation of lutetium-177-DOTA-NP137, a novel vectorized radiotherapy, which specifically accumulated in netrin-1-positive tumors. We demonstrate here, using tumor cell-engrafted mouse models and a genetically engineered mouse model, that a single systemic injection of NP137-177 Lu provides important antitumor effects and prolonged mouse survival. Together, these data support the view that NP137-111 In and NP137-177 Lu may represent original and unexplored imaging and therapeutic tools against advanced solid cancers.


Assuntos
Neoplasias , Radioimunoterapia , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Radioimunoterapia/métodos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Netrina-1/metabolismo
12.
Stem Cell Reports ; 18(4): 899-914, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36963389

RESUMO

Cell replacement therapy is expected as a new and more radical treatment against brain damage. We previously reported that transplanted human cerebral organoids extend their axons along the corticospinal tract in rodent brains. The axons reached the spinal cord but were still sparse. Therefore, this study optimized the host brain environment by the adeno-associated virus (AAV)-mediated expression of axon guidance proteins in mouse brain. Among netrin-1, SEMA3, and L1CAM, only L1CAM significantly promoted the axonal extension of mouse embryonic brain tissue-derived grafts. L1CAM was also expressed by donor neurons, and this promotion was exerted in a haptotactic manner by their homophilic binding. Primary cortical neurons cocultured on L1CAM-expressing HEK-293 cells supported this mechanism. These results suggest that optimizing the host environment by the AAV-mediated expression of axon guidance molecules enhances the effect of cell replacement therapy.


Assuntos
Molécula L1 de Adesão de Célula Nervosa , Animais , Camundongos , Humanos , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Molécula L1 de Adesão de Célula Nervosa/farmacologia , Células HEK293 , Axônios/metabolismo , Tratos Piramidais , Encéfalo/metabolismo , Netrina-1/metabolismo , Netrina-1/farmacologia
13.
FASEB J ; 37(3): e22805, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786711

RESUMO

Cerebral ischemia-reperfusion (I/R) injury as the consequence of revascularization after ischemic stroke is associated with mitochondrial dysfunction, oxidative stress, and neuron loss. In this study, we used a deprivation/reoxygenation (OGD/R) model to determine whether interactions between Netrin-1, AKT, and the mitochondrial AAA protease AFG3L2 could influence mitochondrial function in neurons after I/R. We found that Netrin-1 protects primary cortical neurons from OGD/R-induced cell death and regulates mitochondrial reactive oxygen species (ROS) and Ca2+ levels. The accumulation of mitochondrial calcium uniporter (MCU) subunits was monitored in cells by immunoblot analysis. Although the regulatory subunits MICU1 and MICU2 were relatively unaffected, the accumulation of the essential MCU regulator (EMRE) subunit was impaired. In OGD/R-induced cells, the 7 kDa form of EMRE was significantly reduced. Netrin-1 inhibited the accumulation of EMRE and mitochondrial Ca2+ levels by upregulating AFG3L2 and AKT activation. Loss of AFG3L2 or inhibition of AKT increased levels of 7 kDa EMRE. Moreover, overexpression of AKT increased the expression of AFG3L2 in Netrin-1-knockdown neurons after OGD/R. Our results demonstrate that Netrin-1 enhanced AFG3L2 protein expression via activation of AKT. We also observed that overexpression of Netrin-1 significantly reduced infarction size in an I/R-induced brain injury model in rats but not when AKT was inhibited. Our data suggest that AFG3L2 is a protein substrate of AKT and indicate that Netrin-1 attenuates cerebral I/R injury by limiting mitochondrial ROS and Ca2+ levels through activating AKT phosphorylation and AFG3L2.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Ratos , Isquemia Encefálica/metabolismo , Glucose/metabolismo , Mitocôndrias/metabolismo , Netrina-1/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Cálcio/metabolismo
14.
Cancer Immunol Res ; 11(5): 600-613, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36812256

RESUMO

Myeloid-derived suppressive cells (MDSC) inhibit antitumor immunity and confer a survival advantage for tumor evasion. Tumor cells also support MDSC expansion and recruitment by secreting multiple growth factors and cytokines, but the mechanisms by which tumors affect MDSC function are not completely understood. Here, we found that the neuronal guidance protein netrin-1 was selectively secreted by MC38 murine colon cancer cells, which could enhance the immunosuppressive activity of MDSCs. MDSCs predominantly expressed one type of netrin-1 receptor, adenosine receptor 2B (A2BR). Netrin-1 interacted with A2BR on MDSCs to activate the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway, which ultimately increased CREB phosphorylation in MDSCs. Furthermore, netrin-1 knockdown in tumor cells inhibited the immunosuppressive activity of MDSCs and restored antitumor immunity in MC38 tumor xenograft mice. Intriguingly, high netrin-1 in the plasma correlated with MDSCs in patients with colorectal cancer. In conclusion, netrin-1 significantly enhanced the immunosuppressive function of MDSCs through A2BR on MDSCs, thus promoting the development of tumors. These findings highlight that netrin-1 may regulate the abnormal immune response in colorectal cancer and may become a potential target for immunotherapy.


Assuntos
Neoplasias do Colo , Células Supressoras Mieloides , Humanos , Camundongos , Animais , Células Supressoras Mieloides/metabolismo , Netrina-1/metabolismo , Linhagem Celular Tumoral , Imunossupressores , Neoplasias do Colo/metabolismo
15.
Cell Death Differ ; 30(2): 397-406, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456775

RESUMO

Hallmark pathological features of brain trauma are axonal degeneration and demyelination because myelin-producing oligodendrocytes (OLs) are particularly vulnerable to injury-induced death signals. To reveal mechanisms responsible for this OL loss, we examined a novel class of "death receptors" called dependence receptors (DepRs). DepRs initiate pro-death signals in the absence of their respective ligand(s), yet little is known about their role after injury. Here, we investigated whether the deleted in colorectal cancer (DCC) DepR contributes to OL loss after brain injury. We found that administration of its netrin-1 ligand is sufficient to block OL cell death. We also show that upon acute injury, DCC is upregulated while netrin-1 is downregulated in perilesional tissues. Moreover, after genetically silencing pro-death activity using DCCD1290N mutant mice, we observed greater OL survival, greater myelin integrity, and improved motor function. Our findings uncover a novel role for the netrin-1/DCC pathway in regulating OL loss in the traumatically injured brain.


Assuntos
Lesões Encefálicas , Receptor DCC , Netrina-1 , Proteínas Supressoras de Tumor , Animais , Camundongos , Morte Celular , Receptor DCC/metabolismo , Ligantes , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Netrina-1/metabolismo , Netrinas , Oligodendroglia/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
16.
Nutrients ; 14(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297056

RESUMO

Netrin (NTN)-1 exhibits pro- and anti-inflammatory roles in different settings, playing important roles in the obesity-associated low-grade chronic inflammation. We aimed to determine the impact of NTN-1 on obesity and obesity-associated type 2 diabetes, as well as its role in visceral adipose tissue (VAT) inflammation. A total of 91 subjects were enrolled in this case-control study. Circulating levels of NTN-1 and its receptor neogenin (NEO)-1 were determined before and after weight loss achieved by caloric restriction and bariatric surgery. mRNA levels of NTN1 and NEO1 were assessed in human VAT, liver, and peripheral blood mononuclear cells. In vitro studies in human visceral adipocytes and human monocytic leukemia cells (THP-1)-derived macrophages were performed to analyze the impact of inflammation-related mediators on the gene expression levels of NTN1 and its receptor NEO1 as well as the effect of NTN-1 on inflammation. Increased (p < 0.001) circulating concentrations of NTN-1 in obesity decreased (p < 0.05) after diet-induced weight loss being also associated with a reduction in glucose (p < 0.01) and insulin levels (p < 0.05). Gene expression levels of NTN1 and NEO1 were upregulated (p < 0.05) in the VAT from patients with obesity with the highest expression in the stromovascular fraction cells compared with mature adipocytes (p < 0.01). NTN1 expression levels were enhanced (p < 0.01) under hypoxia and by inflammatory factors in both adipocytes and macrophages. Adipocyte-conditioned media strongly upregulated (p < 0.001) the mRNA levels of NTN1 in macrophages. The treatment of adipocytes with NTN-1 promoted the upregulation (p < 0.05) of pro-inflammatory and chemotactic molecules as well as its receptor NEO1. Collectively, these findings suggest that NTN-1 regulates VAT chronic inflammation and insulin resistance in obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Insulinas , Netrina-1 , Obesidade , Humanos , Tecido Adiposo/metabolismo , Estudos de Casos e Controles , Meios de Cultivo Condicionados , Glucose/metabolismo , Inflamação/metabolismo , Insulinas/metabolismo , Gordura Intra-Abdominal/metabolismo , Leucócitos Mononucleares/metabolismo , Netrina-1/metabolismo , Obesidade/metabolismo , RNA Mensageiro/genética , Redução de Peso
17.
J Immunol Res ; 2022: 9916228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093435

RESUMO

Objective: This study explored the colorectal cancer exosome lncRNA prostate cancer associated transcript 1- (PCAT1) mediated circulating tumors and the mechanism of cell colorectal cancer liver metastasis. Methods: Exosomes were extracted from the primary colorectal cancer (CRC) cell lines HCT116 and SW480 and cultured with T84 and human umbilical vein endothelial (HUVE) cells. The expression of PCAT1 and miR-329-3p was detected by real-time quantitative polymerase chain reaction (RT-qPCR), the expression of Netrin-1, CD146, and epithelial mesenchymal transition (EMT) related proteins was detected by Western blot, the proliferation activity of T84 cells was detected by cell counting kit 8 (CCK-8), and cell migration was detected by Transwell. The expression of the F-actin signal was detected by immunofluorescence after coculture of exosomes with human umbilical vein endothelial cells (HUVECs). Changes in subcutaneous tumor and liver nodule size after PCAT1 deletion were observed in a mouse model of liver metastasis from rectal cancer. Results: PCAT1 expression was upregulated in primary cell lines and their exosomes. After exosomes were cocultured with colorectal cancer tumor circulating T84 cells, the expression of Netrin-1 and CD146 was upregulated, the expression of miR-329-3p was downregulated, the proliferation and migration ability of T84 cells were enhanced, and EMT occurred. After knocking down PCAT1, the above phenomenon was reversed. Similarly, after exosomes were cocultured with HUVECs, the expression of the F-actin signal increased, and after PCAT1 was knocked down, the F-actin signal also decreased. PCAT1 regulates miR-329-3p/Netrin-1 and affects the biological behavior of T84 and F-actin signal expression in HUVECs. In a mouse model of colorectal cancer liver metastasis, knocking down PCAT1 significantly reduced the nodules formed by liver metastasis in mice. Conclusions: LncRNA PCAT1 derived from colorectal cancer exosomes regulates the activity of the Netrin-1-CD146 complex in circulating tumor cells (CTCs) to promote the occurrence of colorectal cancer EMT and liver metastasis and provides new molecular targets for the treatment of colorectal cancer liver metastasis.


Assuntos
Antígeno CD146/metabolismo , Neoplasias Colorretais , Neoplasias Hepáticas , MicroRNAs , Netrina-1/metabolismo , RNA Longo não Codificante , Actinas/metabolismo , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
18.
Int J Biol Sci ; 18(14): 5415-5437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147476

RESUMO

The CSF1 receptor (CSF1R) encoding mRNA represents a direct target of miR-34a. However, the in vivo relevance of the suppression of CSF1R by miR-34a for intestinal tumor suppression mediated by the p53/miR-34a pathway has remained unknown. Here, Apc Min/+ mice with intestinal-epithelial cell (IEC)-specific deletions of Mir34a showed increased formation of adenomas and decreased survival, whereas deletion of Csf1r decreased adenoma formation and increased survival. In adenomas deletion of Mir34a enhanced proliferation, STAT3 signaling, infiltration with fibroblasts, immune cells and microbes, and tumor stem cell abundance and decreased apoptosis. Deletion of Csf1r had the opposite effects. In addition, homeostasis of intestinal secretory and stem cells, and tumoroid formation were affected in opposite directions by deletion of Mir34a and CSF1R. Concomitant deletion of Csf1r and Mir34a neutralized the effects of the single deletions. mRNAs containing Mir34a seed-matching sites, which encode proteins related to EMT (epithelial-mesenchymal transition), stemness and Wnt signaling, were enriched after Mir34a inactivation in adenomas and derived tumoroids. Netrin-1/Ntn1 and Transgelin/Tagln were characterized as direct targets of Mir34a and Csf1r signaling. Mir34a-inactivation related expression signatures were associated with CMS4/CRISB+D, stage 4 CRCs and poor patient survival. In tumoroids the loss of Mir34a conferred resistance to 5-FU which was mediated by Csf1r. This study provides genetic evidence for a requirement of Mir34a-mediated Csf1r suppression for intestinal stem/secretory cell homeostasis and tumor suppression, and suggests that therapeutic targeting of CSF1R may be effective for the treatment of CRCs with defects in the p53/miR-34a pathway.


Assuntos
Adenoma , MicroRNAs , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Adenoma/genética , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Fluoruracila , Regulação Neoplásica da Expressão Gênica/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Netrina-1/genética , Netrina-1/metabolismo , RNA Mensageiro , Receptores Proteína Tirosina Quinases/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(4): 1049-1055, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-35981361

RESUMO

AbstractObjective: To investigate the effect of the axon guidance factor Netrin-1 on the expression of VEGFA in T cell acute lymphoblastic leukemia(T-ALL) and its related mechanism. METHODS: ELISA assays were applied to detect the levels of Netrin-1 and VEGFA in the bone marrow (BM) samples from children in the T-ALL and control group. The level of Netrin-1 and VEGFA were compared between control children and patients, and the liner correlation between Netrin-1 and VEGFA was analyzed. The T-ALL cells Jurkat and Molt-4 were culture in vitro, and the cells were treated with different concentration of Netrin-1 (0, 25, 50, 100 ng/ml) for 24 h, quantitative RT-PCR (qRT-PCR) and Western blot were used to detect the VEGFA expression in Jurkat, Molt-4 cells. The expression of Netrin-1 receptors in T-ALL cells was detected by qRT-PCR and the interaction between Netrin-1 and receptor in each cells was detected by co-IP. Furthermore, Western blot was used to detect the phosphorylation level of key prateins of AKT signal transduction pathway including Akt and mTOR in T-ALL cells treated with Netrin-1 (100 ng/ml). The expression of VEGFA and phosphorylation of AKT pathway transducers were detected by Western blot, after T-ALL cells treated with Netrin-1 (100 ng/ml) combined with inhibitors specific to Akt or mTOR. RESULTS: The expression level of Netrin-1 and VEGFA in T-ALL patients BM samples were both signi-ficantly higher than that of control group. And the expression level of Netrin-1 was positively correlated with that of VEGFA(r2=0974). With the increase of Netrin-1 concentration, the expression level of VEGFA also increased(P<0.05). Netrin-1 interacted with its receptor, integrin-ß4 at the Netrin-1 concentration of 100 ng/ml. Further, the treatment of Netrin-1 could increase the phosphorylation of Akt and mTOR, which were the key transducers of AKT pathway. After treatment of T-ALL cells with Netrin-1 (100 ng/mL) and Akt inhibitor, the expression of VEGFA and phosphorylation of Akt or mTOR decreased. When the cells were treated with Netrin-1(100 ng/ml) and mTOR inbititor, the phosphorylation level of mTOR and the expression of VEGFA decreased, the phosphorylation level of Akt increased. CONCLUSION: The expression of Netrin-1 and VEGFA in bone marrow of childred with T-ALL were abnormal, and there was a linear relationship between them. Netrin-1 can interact with its receptor, integrin-ß4 and activate AKT transduction pathway to elevate the expression of VEGFA in T-ALL cells.


Assuntos
Netrina-1/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteínas Proto-Oncogênicas c-akt , Criança , Humanos , Integrinas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos T , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio Vascular
20.
Biomed Res Int ; 2022: 3361605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928912

RESUMO

This work was aimed to explore the effect of recombinant netrin-1 protein and peripheral blood mesenchymal stem cells (MSCs) on the angiogenesis ability of atherosclerosis. 28 Sprague Dawley (SD) rats were taken as research models. The arterial occlusion models were created by surgery and then divided into the saline control group (n =7), netrin-1 treatment group (n =7), MSCs treatment group (n =7), and netrin-1 + MSCs combined treatment group (n =7). The peripheral blood MSCs were extracted from the peritoneal cavity of diseased SD rats and cultured alone or in combination with netrin-1. The individually cultured MSCs and netrin-1 were locally injected into the ischemic tissues of SD rats. The Tarlov scoring was performed at the first, second, and third week of treatment, respectively. The expression of vascular endothelial growth factor (VEGF) was also measured by quantitative real-time polymerase chain reaction (qRT-PCR), and the capillary density was measured by immunofluorescence staining. The mean maximum contractility of the gastrocnemius muscle in each group was determined in the third week after treatment. The Tarlov score of the netrin-1 + MSCs group was significantly higher than that of the control group (P < 0.05) at the second week. To the 4th week of treatment, the Tarlov score of the netrin-1 + MSCs group was highly increased compared to the netrin-1 group and the MSCs group (P < 0.05). The expression of VEGF in the treatment groups was greatly increased each week compared to the control group (P < 0.05). Compared with the netrin-1 and the MSCs groups, the VEGF was also notably increased in the netrin-1 + MSCs group (P <0.05). The capillary densities of the treatment groups were observably greater than that of the control group in the second and third weeks (P <0.05), while the capillary density in the netrin-1 + MSCs group was also significantly increased than those in the netrin-1 group and the MSCs group (P < 0.05). The mean maximum contractility of the netrin-1 + MSCs group was remarkably higher than that of the other groups (P < 0.05). The netrin-1 + MSCs group achieved the higher Tarlov score, higher VEGF expression, higher capillary density, and better muscle recovery than netrin-1 and MSCs treatments.


Assuntos
Arteriosclerose Obliterante , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Arteriosclerose Obliterante/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica/fisiologia , Netrina-1/metabolismo , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA