Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 915
Filtrar
2.
Methods Mol Biol ; 2311: 73-108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033079

RESUMO

Neural stem cells (NSCs) are a valuable tool for the study of neural development and function as well as an important source of cell transplantation strategies for neural disease. NSCs can be used to study how neurons acquire distinct phenotypes and how the interactions between neurons and glial cells in the developing nervous system shape the structure and function of the CNS. NSCs can also be used for cell replacement therapies following CNS injury targeting astrocytes, oligodendrocytes, and neurons. With the availability of patient-derived induced pluripotent stem cells (iPSCs), neurons prepared from NSCs can be used to elucidate the molecular basis of neurological disorders leading to potential treatments. Although NSCs can be derived from different species and many sources, including embryonic stem cells (ESCs), iPSCs, adult CNS, and direct reprogramming of nonneural cells, isolating primary NSCs directly from fetal tissue is still the most common technique for preparation and study of neurons. Regardless of the source of tissue, similar techniques are used to maintain NSCs in culture and to differentiate NSCs toward mature neural lineages. This chapter will describe specific methods for isolating and characterizing multipotent NSCs and neural precursor cells (NPCs) from embryonic rat CNS tissue (mostly spinal cord) and from human ESCs and iPSCs as well as NPCs prepared by reprogramming. NPCs can be separated into neuronal and glial restricted progenitors (NRP and GRP, respectively) and used to reliably produce neurons or glial cells both in vitro and following transplantation into the adult CNS. This chapter will describe in detail the methods required for the isolation, propagation, storage, and differentiation of NSCs and NPCs isolated from rat and mouse spinal cords for subsequent in vitro or in vivo studies as well as new methods associated with ESCs, iPSCs, and reprogramming.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Neurais/transplante , Neurogênese , Neurônios/transplante , Medula Espinal/embriologia , Animais , Técnicas de Cultura de Células , Linhagem da Célula , Proliferação de Células , Separação Celular , Sobrevivência Celular , Células Cultivadas , Reprogramação Celular , Técnicas de Reprogramação Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Camundongos , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Fenótipo , Gravidez , Ratos
3.
Sci Rep ; 11(1): 651, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436685

RESUMO

We xeno-transplanted human neural precursor cells derived from induced pluripotent stem cells into the cerebellum and brainstem of mice and rats during prenatal development or the first postnatal week. The transplants survived and started to differentiate up to 1 month after birth when they were rejected by both species. Extended survival and differentiation of the same cells were obtained only when they were transplanted in NOD-SCID mice. Transplants of human neural precursor cells mixed with the same cells after partial in vitro differentiation or with a cellular extract obtained from adult rat cerebellum increased survival of the xeno-graft beyond one month. These findings are consistent with the hypothesis that the slower pace of differentiation of human neural precursors compared to that of rodents restricts induction of immune-tolerance to human antigens expressed before completion of maturation of the immune system. With further maturation the transplanted neural precursors expressed more mature antigens before the graft were rejected. Supplementation of the immature cells suspensions with more mature antigens may help to induce immune-tolerance for those antigens expressed only later by the engrafted cells.


Assuntos
Diferenciação Celular , Cerebelo/imunologia , Sobrevivência de Enxerto , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Neurônios/transplante , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Cerebelo/crescimento & desenvolvimento , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neurônios/citologia , Ratos , Ratos Wistar , Especificidade da Espécie , Transplante Heterólogo
4.
FASEB J ; 35(2): e21317, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33421207

RESUMO

Lipocalin-2 (LCN2) has been implicated in promoting apoptosis and neuroinflammation in neurological disorders; however, its role in neural transplantation remains unknown. In this study, we cultured and differentiated Lund human mesencephalic (LUHMES) cells into human dopaminergic-like neurons and found that LCN2 mRNA was progressively induced in mouse brain after the intrastriatal transplantation of human dopaminergic-like neurons. The induction of LCN2 protein was detected in a subset of astrocytes and neutrophils infiltrating the core of the engrafted sites, but not in neurons and microglia. LCN2-immunoreactive astrocytes within the engrafted sites expressed lower levels of A1 and A2 astrocytic markers. Recruitment of microglia, neutrophils, and monocytes after transplantation was attenuated in LCN2 deficiency mice. The expression of M2 microglial markers was significantly elevated and survival of engrafted neurons was markedly improved after transplantation in LCN2 deficiency mice. Brain type organic cation transporter (BOCT), the cell surface receptor for LCN2, was induced in dopaminergic-like neurons after differentiation, and treatment with recombinant LCN2 protein directly induced apoptosis in dopaminergic-like neurons in a dose-dependent manner. Our results, therefore, suggested that LCN2 is a neurotoxic factor for the engrafted neurons and a modulator of neuroinflammation. LCN2 inhibition may be useful in reducing rejection after neural transplantation.


Assuntos
Rejeição de Enxerto/metabolismo , Lipocalina-2/metabolismo , Lipocalina-2/fisiologia , Neurônios/metabolismo , Neurônios/transplante , Animais , Apoptose/genética , Apoptose/fisiologia , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Citometria de Fluxo , Rejeição de Enxerto/genética , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Lipocalina-2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
5.
Semin Cell Dev Biol ; 111: 32-39, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32499191

RESUMO

Brain organoids are three-dimensional neural aggregates derived from pluripotent stem cells through self-organization and recapitulate architectural and cellular aspects of certain brain regions. Brain organoids are currently a highly exciting area of research that includes the study of human brain development, function, and dysfunction in unprecedented ways. In this Review, we discuss recent discoveries related to the generation of brain organoids that resemble diverse brain regions. We provide an overview of the strategies to complement these primarily neuroectodermal models with cell types of non-neuronal origin, such as vasculature and immune cells. Recent transplantation approaches aiming to achieve higher cellular complexity and long-term survival of these models will then be discussed. We conclude by highlighting unresolved key questions and future directions in this exciting area of human brain organogenesis.


Assuntos
Encéfalo/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Encéfalo/fisiologia , Diferenciação Celular , Transplante de Células/métodos , Transplante de Células/tendências , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Humanos , Linfócitos/citologia , Linfócitos/fisiologia , Modelos Biológicos , Neovascularização Fisiológica , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Neurogênese/fisiologia , Neuroglia/citologia , Neuroglia/fisiologia , Neurônios/fisiologia , Neurônios/transplante , Organoides/fisiologia , Células-Tronco Pluripotentes/fisiologia
6.
Cells ; 9(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003295

RESUMO

Stem cell science is among the fastest moving fields in biology, with many highly promising directions for translatability. To centralize and contextualize some of the latest developments, this Special Issue presents state-of-the-art research of adult stem cells, induced pluripotent stem cells (iPSCs), and embryonic stem cells as well as cancer stem cells. The studies we include describe efficient differentiation protocols of generation of chondrocytes, adipocytes, and neurons, maturation of iPSC-derived cardiomyocytes and neurons, dynamic characterization of iPSC-derived 3D cerebral organoids, CRISPR/Cas9 genome editing, and non-viral minicircle vector-based gene modification of stem cells. Different applications of stem cells in disease modeling are described as well. This volume also highlights the most recent developments and applications of stem cells in basic science research and disease treatments.


Assuntos
Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Pluripotentes Induzidas/transplante , Edição de Genes/métodos , Humanos , Neurônios/patologia , Neurônios/transplante , Organoides/transplante , Pesquisa com Células-Tronco
7.
Int J Mol Sci ; 21(19)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008128

RESUMO

Among the numerous candidates for cell therapy of the central nervous system (CNS), olfactory progenitors (OPs) represent an interesting alternative because they are free of ethical concerns, are easy to collect, and allow autologous transplantation. In the present study, we focused on the optimization of neuron production and maturation. It is known that plated OPs respond to various trophic factors, and we also showed that the use of Nerve Growth Factor (NGF) allowed switching from a 60/40 neuron/glia ratio to an 80/20 one. Nevertheless, in order to focus on the integration of OPs in mature neural circuits, we cocultured OPs in primary cultures obtained from the cortex and hippocampus of newborn mice. When dissociated OPs were plated, they differentiated into both glial and neuronal phenotypes, but we obtained a 1.5-fold higher viability in cortex/OP cocultures than in hippocampus/OP ones. The fate of OPs in cocultures was characterized with different markers such as BrdU, Map-2, and Synapsin, indicating a healthy integration. These results suggest that the integration of transplanted OPs might by affected by trophic factors and the environmental conditions/cell phenotypes of the host tissue. Thus, a model of coculture could provide useful information on key cell events for the use of progenitors in cell therapy.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Córtex Olfatório/metabolismo , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/genética , Linhagem da Célula/genética , Sistema Nervoso Central/metabolismo , Técnicas de Cocultura , Humanos , Camundongos , Fator de Crescimento Neural/genética , Neuroglia/citologia , Neuroglia/metabolismo , Neuroglia/transplante , Neurônios/transplante , Córtex Olfatório/citologia , Córtex Olfatório/transplante , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Oligodendroglia/transplante , Células-Tronco/metabolismo
8.
Arch Pharm Res ; 43(9): 877-889, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32761309

RESUMO

Stem cells are characterized by self-renewal and by their ability to differentiate into cells of various organs. With massive progress in 2D and 3D cell culture techniques, in vitro generation of various types of such organoids from patient-derived stem cells is now possible. As in vitro differentiation protocols are usually made to resemble human developmental processes, organogenesis of patient-derived stem cells can provide key information regarding a range of developmental diseases. Human stem cell-based in vitro modeling as opposed to using animal models can particularly benefit the evaluation of neurological diseases because of significant differences in structure and developmental processes between the human and the animal brain. This review focuses on stem cell-based in vitro modeling of neurodevelopmental disorders, more specifically, the fundamentals and technical advancements in monolayer neuron and brain organoid cultures. Furthermore, we discuss the drawbacks of the conventional culture method and explore the advanced, cutting edge 3D organoid models for several neurodevelopmental diseases, including genetic diseases such as Down syndrome, Rett syndrome, and Miller-Dieker syndrome, as well as brain malformations like macrocephaly and microcephaly. Finally, we discuss the limitations of the current organoid techniques and some potential solutions that pave the way for accurate modeling of neurological disorders in a dish.


Assuntos
Encéfalo/citologia , Técnicas de Cultura de Células/métodos , Malformações do Desenvolvimento Cortical do Grupo I/patologia , Transtornos do Neurodesenvolvimento/patologia , Neurônios/fisiologia , Animais , Encéfalo/patologia , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Malformações do Desenvolvimento Cortical do Grupo I/genética , Camundongos , Transtornos do Neurodesenvolvimento/genética , Neurogênese/genética , Neurônios/patologia , Neurônios/transplante , Organoides/patologia , Organoides/fisiologia , Quimeras de Transplante
9.
Mol Neurobiol ; 57(6): 2766-2798, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32356172

RESUMO

Human pluripotent stem cells (hPSCs) are a powerful tool for modelling human development. In recent years, hPSCs have become central in cell-based therapies for neurodegenerative diseases given their potential to replace affected neurons. However, directing hPSCs into specific neuronal types is complex and requires an accurate protocol that mimics endogenous neuronal development. Here we describe step-by-step a fast feeder-free neuronal differentiation protocol to direct hPSCs to mature forebrain neurons in 37 days in vitro (DIV). The protocol is based upon a combination of specific morphogens, trophic and growth factors, ions, neurotransmitters and extracellular matrix elements. A human-induced PSC line (Ctr-Q33) and a human embryonic stem cell line (GEN-Q18) were used to reinforce the potential of the protocol. Neuronal activity was analysed by single-cell calcium imaging. At 8 DIV, we obtained a homogeneous population of hPSC-derived neuroectodermal progenitors which self-arranged in bi-dimensional neural tube-like structures. At 16 DIV, we generated hPSC-derived neural progenitor cells (NPCs) with mostly a subpallial identity along with a subpopulation of pallial NPCs. Terminal in vitro neuronal differentiation was confirmed by the expression of microtubule associated protein 2b (Map 2b) by almost 100% of hPSC-derived neurons and the expression of specific-striatal neuronal markers including GABA, CTIP2 and DARPP-32. HPSC-derived neurons showed mature and functional phenotypes as they expressed synaptic markers, voltage-gated ion channels and neurotransmitter receptors. Neurons displayed diverse spontaneous activity patterns that were classified into three major groups, namely "high", "intermediate" and "low" firing neurons. Finally, transplantation experiments showed that the NPCs survived and differentiated within mouse striatum for at least 3 months. NPCs integrated host environmental cues and differentiated into striatal medium-sized spiny neurons (MSNs), which successfully integrated into the endogenous circuitry without teratoma formation. Altogether, these findings demonstrate the potential of this robust human neuronal differentiation protocol, which will bring new opportunities for the study of human neurodevelopment and neurodegeneration, and will open new avenues in cell-based therapies, pharmacological studies and alternative in vitro toxicology.


Assuntos
Técnicas de Cultura de Células/métodos , Corpo Estriado/cirurgia , Neurogênese/fisiologia , Neurônios/transplante , Células-Tronco Pluripotentes/citologia , Animais , Linhagem Celular , Corpo Estriado/citologia , Humanos , Camundongos
10.
Proc Natl Acad Sci U S A ; 117(16): 9094-9100, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32253308

RESUMO

Stem cell transplantation can improve behavioral recovery after stroke in animal models but whether stem cell-derived neurons become functionally integrated into stroke-injured brain circuitry is poorly understood. Here we show that intracortically grafted human induced pluripotent stem (iPS) cell-derived cortical neurons send widespread axonal projections to both hemispheres of rats with ischemic lesions in the cerebral cortex. Using rabies virus-based transsynaptic tracing, we find that at 6 mo after transplantation, host neurons in the contralateral somatosensory cortex receive monosynaptic inputs from grafted neurons. Immunoelectron microscopy demonstrates myelination of the graft-derived axons in the corpus callosum and that their terminals form excitatory, glutamatergic synapses on host cortical neurons. We show that the stroke-induced asymmetry in a sensorimotor (cylinder) test is reversed by transplantation. Light-induced inhibition of halorhodopsin-expressing, grafted neurons does not recreate the impairment, indicating that its reversal is not due to neuronal activity in the graft. However, we find bilateral decrease of motor performance in the cylinder test after light-induced inhibition of either grafted or endogenous halorhodopsin-expressing cortical neurons, located in the same area, and after inhibition of endogenous halorhodopsin-expressing cortical neurons by exposure of their axons to light on the contralateral side. Our data indicate that activity in the grafted neurons, probably mediated through transcallosal connections to the contralateral hemisphere, is involved in maintaining normal motor function. This is an example of functional integration of efferent projections from grafted neurons into the stroke-affected brain's neural circuitry, which raises the possibility that such repair might be achievable also in humans affected by stroke.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Infarto da Artéria Cerebral Média/terapia , Atividade Motora/fisiologia , Neurônios/transplante , Córtex Somatossensorial/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Técnicas de Observação do Comportamento , Comportamento Animal/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Modelos Animais de Doenças , Humanos , Infarto da Artéria Cerebral Média/etiologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Neurônios/fisiologia , Optogenética , Técnicas de Patch-Clamp , Ratos , Recuperação de Função Fisiológica , Córtex Somatossensorial/citologia , Córtex Somatossensorial/patologia
11.
Biochem Biophys Res Commun ; 527(2): 343-349, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32033753

RESUMO

Transplantation of neural stem cells (NSCs) or NSC-derived neurons into the brain is a promising therapeutic approach to restore neuronal function. Rapid progress in the NSCs research field, particularly due to the exploitation of induced pluripotent stem cells (iPSCs), offers great potential and an unlimited source of stem cell-derived neural grafts. Studying the functional integration of these grafts into host brain tissues and their effects on each other have been boosted by the implementation of optogenetic technologies. Optogenetics provides high spatiotemporal functional manipulations of grafted or host neurons in parallel. This review aims to highlight the impact of optogenetics in neural stem cell transplantations.


Assuntos
Células-Tronco Neurais/transplante , Neurônios/transplante , Optogenética/métodos , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Medula Espinal/citologia , Medula Espinal/fisiologia , Transplante de Células-Tronco/métodos
12.
Sci Rep ; 9(1): 18756, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822721

RESUMO

Hirschsprung disease (HSCR) is characterized by absence of the enteric nervous system (ENS) in the distal bowel. Despite removal of the aganglionic segment, gastrointestinal (GI) problems persist. Cell therapy offers potential treatment but use of genetic models is limited by their poor survival. We have developed a novel model of aganglionosis in which enteric neural crest-derived cells (ENCDCs) express diphtheria toxin (DT) receptor. Local DT injection into the colon wall results in focal, specific, and sustained ENS ablation without altering GI transit or colonic contractility, allowing improved survival over other aganglionosis models. Focal ENS ablation leads to increased smooth muscle and mucosal thickness, and localized inflammation. Transplantation of ENCDCs into this region leads to engraftment, migration, and differentiation of enteric neurons and glial cells, with restoration of normal architecture of the colonic epithelium and muscle, reduction in inflammation, and improved survival.


Assuntos
Sistema Nervoso Entérico/citologia , Doença de Hirschsprung/terapia , Neurônios/transplante , Transplante de Células-Tronco/métodos , Animais , Colo/citologia , Colo/patologia , Toxina Diftérica/metabolismo , Toxina Diftérica/toxicidade , Modelos Animais de Doenças , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Doença de Hirschsprung/genética , Doença de Hirschsprung/patologia , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Transgênicos , Crista Neural/citologia
13.
Neuroscience ; 422: 134-145, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682951

RESUMO

Schwann cells (SCs) combined with acellular nerve allografts (ANAs) effectively promote the regeneration and repair of peripheral nerves, but the exact mechanism has not been fully elucidated. However, the disadvantages of SCs include their limited source and slow rate of expansion in vitro. Previous studies have found that adipose-derived stem cells have the ability to differentiate into Schwann-like cells. Therefore, we speculated that Schwann-like cells combined with ANAs could profoundly facilitate nerve regeneration and repair. The aim of the present study was to investigate the cellular and molecular mechanisms of regeneration and repair. In this study, tissue-engineered nerves were first constructed by adipose-derived Schwann-like cells and ANAs to bridge missing sciatic nerves. Then, the rats were randomly divided into five groups (n = 12 per group): a Control group; a Model group; an ADSC group; an SC-L group; and a DMEM group. Twelve weeks postsurgery, behavioral function tests and molecular biological techniques were used to evaluate the function of regenerated nerves and the relevant molecular mechanisms after sciatic nerve injury (SNI). The results showed that adipose-derived Schwann-like cells combined with ANAs markedly promoted sciatic nerve regeneration and repair. These findings also demonstrated that the expression of neurotrophic factors (NFs) was increased, and the expression of Janus activated kinase2 (JAK2)/P-JAK2, signal transducer and activator of transcription-3 (STAT3)/P-STAT3 was decreased in the spinal cord after SNI. Therefore, these results suggested that highly expressed NFs in the spinal cord could promote nerve regeneration and repair by inhibiting activation of the JAK2/STAT3 signaling pathway.


Assuntos
Aloenxertos/transplante , Janus Quinase 2/fisiologia , Regeneração Nervosa/fisiologia , Fator de Transcrição STAT3/fisiologia , Nervo Isquiático/fisiopatologia , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Ciliar/biossíntese , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Fator de Crescimento Neural/biossíntese , Neurônios/transplante , Ratos , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/lesões , Nervo Isquiático/cirurgia , Transdução de Sinais/fisiologia , Medula Espinal/metabolismo
14.
Stem Cell Reports ; 13(5): 862-876, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31631018

RESUMO

Recent studies have demonstrated that human astrocytes and fibroblasts can be directly converted into functional neurons by small molecules. However, fibroblasts, as a potentially better cell resource for transplantation, are not as easy to reprogram as astrocytes regarding their fate to neurons, and chemically induced neurons (iNs) with low efficiency from fibroblasts resulted in limited application for the treatment of neurological disorders, including depression. Here, we report that human fibroblasts can be efficiently and directly reprogrammed into glutamatergic neuron-like cells by serially exposing cells to a combination of small molecules. These iNs displayed neuronal transcriptional networks, and also exhibited mature firing patterns and formed functional synapses. Importantly, iNs could integrate into local circuits after transplantation into postnatal mouse brain. Our study provides a rapid and efficient transgene-free approach for chemically generating neuron-like cells from human fibroblasts. Furthermore, our approach offers strategies for disease modeling and drug discovery in central nervous system disorders.


Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular , Fibroblastos/citologia , Neurogênese , Neurônios/citologia , Animais , Linhagem Celular , Reprogramação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Camundongos SCID , Neurogênese/efeitos dos fármacos , Neurônios/transplante , Bibliotecas de Moléculas Pequenas/farmacologia
15.
Nat Commun ; 10(1): 4357, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554807

RESUMO

Cell therapy products (CTP) derived from pluripotent stem cells (iPSCs) may constitute a renewable, specifically differentiated source of cells to potentially cure patients with neurodegenerative disorders. However, the immunogenicity of CTP remains a major issue for therapeutic approaches based on transplantation of non-autologous stem cell-derived neural grafts. Despite its considerable side-effects, long-term immunosuppression, appears indispensable to mitigate neuro-inflammation and prevent rejection of allogeneic CTP. Matching iPSC donors' and patients' HLA haplotypes has been proposed as a way to access CTP with enhanced immunological compatibility, ultimately reducing the need for immunosuppression. In the present work, we challenge this paradigm by grafting autologous, MHC-matched and mis-matched neuronal grafts in a primate model of Huntington's disease. Unlike previous reports in unlesioned hosts, we show that in the absence of immunosuppression MHC matching alone is insufficient to grant long-term survival of neuronal grafts in the lesioned brain.


Assuntos
Rejeição de Enxerto/imunologia , Doença de Huntington/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Complexo Principal de Histocompatibilidade/imunologia , Neurônios/transplante , Animais , Diferenciação Celular/imunologia , Citotoxicidade Imunológica/imunologia , Modelos Animais de Doenças , Teste de Histocompatibilidade , Humanos , Doença de Huntington/imunologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Neurônios/citologia , Neurônios/imunologia , Primatas , Ratos Nus , Transplante Autólogo
16.
Nanomedicine ; 21: 102048, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271878

RESUMO

Neurodegenerative diseases and traumatic brain injuries can destroy neurons, resulting in sensory and motor function loss. Transplantation of differentiated neurons from stem cells could help restore such lost functions. Plasmonic gold nanorods (AuNR) were integrated in growth surfaces to stimulate and modulate neural cells in order to tune cell physiology. An AuNR nanocomposite system was fabricated, characterized, and then utilized to study the differentiation of embryonic rat neural stem cells (NSCs). Results demonstrated that this plasmonic surface 1) accelerated differentiation, yielding almost twice as many differentiated neural cells as a traditional NSC culture surface coated with poly-D-lysine and laminin for the same time period; and 2) promoted differentiation of NSCs into neurons and astrocytes in a 2:1 ratio, as evidenced by the expression of relevant marker proteins. These results indicate that the design and properties of this AuNR plasmonic surface would be advantageous for tissue engineering to address neural degeneration.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Nanotubos/química , Doenças Neurodegenerativas/terapia , Neurônios/transplante , Animais , Astrócitos/transplante , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/terapia , Células Cultivadas , Células-Tronco Embrionárias/efeitos dos fármacos , Ouro/química , Ouro/farmacologia , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/transplante , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Ratos
17.
J Vis Exp ; (149)2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31355806

RESUMO

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality worldwide. Disease pathology due to TBI progresses from the primary mechanical insult to secondary injury processes, including apoptosis and inflammation. Animal modeling has been valuable in the search to unravel injury mechanisms and evaluate potential neuroprotective therapies. This protocol describes the controlled cortical impact (CCI) model of focal, open-head TBI. Specifically, parameters for producing a mild unilateral cortical injury are described. Behavioral consequences of CCI are analyzed using the adhesive tape removal test of bilateral sensorimotor integration. Regarding experimental therapy for TBI pathology, this protocol also illustrates a process for transplanting cultured cells into the brain. Neural cell cultures derived from human induced pluripotent stem cells (hiPSCs) were chosen for their potential to show superior functional restoration in human TBI patients. Chronic survival of hiPSCs in the host mouse brain tissue is detected using a modified DAB immunohistochemical process.


Assuntos
Lesões Encefálicas/terapia , Córtex Cerebral/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/transplante , Animais , Comportamento Animal , Lesões Encefálicas/patologia , Lesões Encefálicas Traumáticas/patologia , Células Cultivadas , Craniotomia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Monitorização Intraoperatória
18.
Tissue Cell ; 56: 52-59, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30736904

RESUMO

BACKGROUND: The induction of retinal pigmented epithelium cells (RPE) is one of the most important objectives in research focused on treating retinal degenerative diseases. The present study aims to differentiate human adipose stem cells (hADSCs) into RPE cells for replacement therapies in cases of retinal degenerative diseases. METHODS: Lipoaspirate-derived human adipose stem cells (LA-hADSCs) were obtained from abdominal samples and examined by immunocytochemistry for the expression of mesenchymal adipose stem cell markers. RPE cells were also obtained from human samples and cultured to be used as control after being examined for the expression of their designated markers. hADSCs differentiated into RPE cells after 80 days using chemical inducers in one steps. The differentiated cells were then compared to control cells in marker expression. The differentiated cells were also examined under a scanning electron microscope for the presence of apical microvilli and cell connection. RESULTS: Cultured hADSCs at the fourth passage was shown to express the surface markers CD90 (98 ± 2%), CD11b (96 ± 3%), and CD105 (95 ± 4%). The RPE cells obtained from human samples expressed the marker RPE65 quite well. 80 days after differentiation, the previously hADSCs expressed both RPE65 (100%) and CRALBP (96 ± 1%) and were thus significantly similar to the RPE cells obtained from human samples. Morphologically, differentiated cells appeared to have epithelial and cytoplasmic pigment granules. Observations using a scanning electron microscope recorded clear connections among the differentiated RPE cells and revealed apical microvilli. CONCLUSION: Human adipose stem cells can differentiate into retinal pigmented epithelium cells, which can be used in cell replacement therapy for degenerative diseases including age-related macular degeneration (AMD) as well as retinitis pigmentosa (RP).


Assuntos
Diferenciação Celular/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Degeneração Retiniana/terapia , Epitélio Pigmentado da Retina/transplante , Forma Celular , Células Cultivadas , Meios de Cultura/química , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/transplante , Retina/efeitos dos fármacos , Retina/patologia , Retina/transplante , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/citologia , Bibliotecas de Moléculas Pequenas/administração & dosagem
19.
Adv Mater ; 31(1): e1804041, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30565732

RESUMO

Advances in biomaterial synthesis and fabrication, stem cell biology, bioimaging, microsurgery procedures, and microscale technologies have made minimally invasive therapeutics a viable tool in regenerative medicine. Therapeutics, herein defined as cells, biomaterials, biomolecules, and their combinations, can be delivered in a minimally invasive way to regenerate different tissues in the body, such as bone, cartilage, pancreas, cardiac, skeletal muscle, liver, skin, and neural tissues. Sophisticated methods of tracking, sensing, and stimulation of therapeutics in vivo using nano-biomaterials and soft bioelectronic devices provide great opportunities to further develop minimally invasive and regenerative therapeutics (MIRET). In general, minimally invasive delivery methods offer high yield with low risk of complications and reduced costs compared to conventional delivery methods. Here, minimally invasive approaches for delivering regenerative therapeutics into the body are reviewed. The use of MIRET to treat different tissues and organs is described. Although some clinical trials have been performed using MIRET, it is hoped that such therapeutics find wider applications to treat patients. Finally, some future perspective and challenges for this emerging field are highlighted.


Assuntos
Medicina Regenerativa , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Humanos , Nanopartículas/química , Neurônios/citologia , Neurônios/transplante , Robótica , Medula Espinal/citologia , Medula Espinal/transplante , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Engenharia Tecidual
20.
Elife ; 72018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30251953

RESUMO

Human GABAergic interneurons (GIN) are implicated in normal brain function and in numerous mental disorders. However, the generation of functional human GIN subtypes from human pluripotent stem cells (hPSCs) has not been established. By expressing LHX6, a transcriptional factor that is critical for GIN development, we induced hPSCs to form GINs, including somatostatin (SST, 29%) and parvalbumin (PV, 21%) neurons. Our RNAseq results also confirmed the alteration of GIN identity with the overexpression of LHX6. Five months after transplantation into the mouse brain, the human GABA precursors generated increased population of SST and PV neurons by overexpressing LHX6. Importantly, the grafted human GINs exhibited functional electrophysiological properties and even fast-spiking-like action potentials. Thus, expression of the single transcription factor LHX6 under our GIN differentiation condition is sufficient to robustly induce human PV and SST subtypes.


Assuntos
Proteínas com Homeodomínio LIM/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Fatores de Transcrição/metabolismo , Potenciais de Ação , Animais , Animais Recém-Nascidos , Padronização Corporal , Diferenciação Celular , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Interneurônios/citologia , Interneurônios/metabolismo , Camundongos SCID , Neurônios/citologia , Neurônios/transplante , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Prosencéfalo/citologia , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA