Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Neurosci ; 44(29)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38744530

RESUMO

Sleep disorders affect millions of people around the world and have a high comorbidity with psychiatric disorders. While current hypnotics mostly increase non-rapid eye movement sleep (NREMS), drugs acting selectively on enhancing rapid eye movement sleep (REMS) are lacking. This polysomnographic study in male rats showed that the first-in-class selective melatonin MT1 receptor partial agonist UCM871 increases the duration of REMS without affecting that of NREMS. The REMS-promoting effects of UCM871 occurred by inhibiting, in a dose-response manner, the firing activity of the locus ceruleus (LC) norepinephrine (NE) neurons, which express MT1 receptors. The increase of REMS duration and the inhibition of LC-NE neuronal activity by UCM871 were abolished by MT1 pharmacological antagonism and by an adeno-associated viral (AAV) vector, which selectively knocked down MT1 receptors in the LC-NE neurons. In conclusion, MT1 receptor agonism inhibits LC-NE neurons and triggers REMS, thus representing a novel mechanism and target for REMS disorders and/or psychiatric disorders associated with REMS impairments.


Assuntos
Locus Cerúleo , Ratos Sprague-Dawley , Receptor MT1 de Melatonina , Sono REM , Animais , Masculino , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Locus Cerúleo/fisiologia , Ratos , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/metabolismo , Sono REM/fisiologia , Sono REM/efeitos dos fármacos , Norepinefrina/metabolismo , Neurônios Adrenérgicos/efeitos dos fármacos , Neurônios Adrenérgicos/metabolismo , Neurônios Adrenérgicos/fisiologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia
2.
J Neuroinflammation ; 19(1): 123, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624514

RESUMO

BACKGROUND: The noradrenergic neurons of locus coeruleus (LC) project to the spinal dorsal horn (SDH), and release norepinephrine (NE) to inhibit pain transmission. However, its effect on pathological pain and the cellular mechanism in the SDH remains unclear. This study aimed to explore the analgesic effects and the anti-neuroinflammation mechanism of LC-spinal cord noradrenergic pathway (LC:SC) in neuropathic pain (NP) mice with sciatic chronic constriction injury. METHODS: The Designer Receptors Exclusively Activated by Designer Drugs (DREADD) was used to selectively activate LC:SC. Noradrenergic neuron-specific retro-adeno-associated virus was injected to the spinal cord. Pain threshold, LC and wide dynamic range (WDR) neuron firing, neuroinflammation (microglia and astrocyte activation, cytokine expression), and α2AR expression in SDH were evaluated. RESULTS: Activation of LC:SC with DREADD increased the mechanical and thermal nociceptive thresholds and reduced the WDR neuron firing. LC:SC activation (daily, 7 days) downregulated TNF-α and IL-1ß expression, upregulated IL-4 and IL-10 expression in SDH, and inhibited microglia and astrocytes activation in NP mice. Immunofluorescence double staining confirmed that LC:SC activation decreased the expression of cytokines in microglia of the SDH. In addition, the effects of LC:SC activation could be reversed by intrathecal injection of yohimbine. Immunofluorescence of SDH showed that NE receptor α2B-AR was highly expressed in microglia in CCI mice. CONCLUSION: These findings indicate that selective activation of LC:SC alleviates NP in mice by increasing the release of NE and reducing neuroinflammation of astrocytes and microglia in SDH.


Assuntos
Neurônios Adrenérgicos , Neuralgia , Neurônios Adrenérgicos/metabolismo , Animais , Astrócitos/metabolismo , Citocinas/metabolismo , Locus Cerúleo/metabolismo , Camundongos , Microglia/metabolismo , Neuralgia/metabolismo , Doenças Neuroinflamatórias , Norepinefrina/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
3.
J Chem Neuroanat ; 122: 102102, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483611

RESUMO

Caudal hindbrain A2 noradrenergic neurons provide critical metabolic-sensory input to the brain glucostatic circuitry. In males, insulin-induced hypoglycemia (IIH)-associated patterns of A2 cell dopamine-beta-hydroxylase (DßH) protein expression reflect diminution of the oxidizable fuel L-lactate, yet DßH exhibits sex-dimorphic responses to IIH. Here, retrograde tracing and combinatory single-cell laser-microdissection/multiplex qPCR techniques were used to examine whether lactate imposes sex-specific control of hypoglycemia-associated metabolic-sensory function and noradrenergic neurotransmission in A2 neurons that innervate the ventromedial hypothalamic nucleus (VMN), a key glucose-regulatory structure. VMN-projecting A2 neurons from each sex were characterized by presence or absence of nuclear glucokinase regulatory protein (nGKRP) immunoreactivity (-ir). IIH caused lactate-reversible up- or down-regulation of DßH mRNA in male and female nGKRP-ir-positive A2 neurons, respectively, and stimulated glucokinase (GCK) and sulfonylurea receptor-1 (SUR-1) gene expression in these cells in each sex. Hypoglycemia did not alter DßH, GCK, and SUR-1 transcript profiles in nGKRP-ir-negative male or female A2 neurons innervating the VMN. Estrogen receptor (ER) gene profiles in nGKRP-ir-positive neurons showed sex-specific [ER-alpha; G-protein-coupled estrogen-receptor-1 (GPER)] or sex-monomorphic (ER-beta) transcriptional responses to IIH. Fewer ER gene profiles were affected by IIH in nGKRP-ir-negative A2 neurons from male or female rats. Results show that during IIH, VMN-projecting A2 neurons may deliver altered, sex-dependent (nGKRP-positive) or unaffected (nGKRP-negative) noradrenergic input to the VMN. In each sex, metabolic-sensory gene profiles were reactive to hypoglycemia in nGKRP-ir-positive, not -negative A2 cells. Further studies are needed to elucidate the role of GKRP in transduction of metabolic imbalance into noradrenergic signaling, and to determine if input by one or more ER variants establishes sex differences in DßH transcriptional sensitivity to IIH.


Assuntos
Neurônios Adrenérgicos , Hipoglicemia , Neurônios Adrenérgicos/metabolismo , Animais , Biomarcadores/metabolismo , Catecolaminas/metabolismo , Feminino , Expressão Gênica , Hipoglicemia/genética , Hipoglicemia/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Masculino , Ratos , Rombencéfalo/metabolismo , Núcleo Hipotalâmico Ventromedial
4.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34948196

RESUMO

Although guanethidine (GUA) was used in the past as a drug to suppress hyperactivity of the sympathetic nerve fibers, there are no available data concerning the possible action of this substance on the sensory component of the peripheral nervous system supplying the urinary bladder. Thus, the present study was aimed at disclosing the influence of intravesically instilled GUA on the distribution, relative frequency, and chemical coding of dorsal root ganglion neurons associated with the porcine urinary bladder. The investigated sensory neurons were visualized with a retrograde tracing method using Fast Blue (FB), while their chemical profile was disclosed with single-labeling immunohistochemistry using antibodies against substance P (SP), calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase activating polypeptide (PACAP), galanin (GAL), neuronal nitric oxide synthase (nNOS), somatostatin (SOM), and calbindin (CB). After GUA treatment, a slight decrease in the number of FB+ neurons containing SP was observed when compared with untreated animals (34.6 ± 6.5% vs. 45.6 ± 1.3%), while the number of retrogradely traced cells immunolabeled for GAL, nNOS, and CB distinctly increased (12.3 ± 1.0% vs. 7.4 ± 0.6%, 11.9 ± 0.6% vs. 5.4 ± 0.5% and 8.6 ± 0.5% vs. 2.7 ± 0.4%, respectively). However, administration of GUA did not change the number of FB+ neurons containing CGRP, PACAP, or SOM. The present study provides evidence that GUA significantly modifies the sensory innervation of the porcine urinary bladder wall and thus may be considered a potential tool for studying the plasticity of this subdivision of the bladder innervation.


Assuntos
Gânglios Espinais/metabolismo , Guanetidina/farmacologia , Bexiga Urinária/inervação , Antagonistas Adrenérgicos/farmacologia , Neurônios Adrenérgicos/efeitos dos fármacos , Neurônios Adrenérgicos/metabolismo , Animais , Calbindinas/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Feminino , Galanina/metabolismo , Gânglios Espinais/efeitos dos fármacos , Guanetidina/metabolismo , Neurotoxinas/farmacologia , Óxido Nítrico Sintase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Células Receptoras Sensoriais/metabolismo , Somatostatina/metabolismo , Substância P/metabolismo , Suínos , Bexiga Urinária/efeitos dos fármacos
5.
J Anat ; 239(3): 720-731, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33971693

RESUMO

The present study investigated the influence of castration performed at neonatal age on neuronal elements in the intramural ganglia of the urinary bladder trigone (UBT) in male pigs using double-labeling immunohistochemistry. The ganglia were examined in intact (IP) 7-day-old (castration day) pigs, and at 3 and 6 months after surgery. In IP and control (3- and 6-month-old noncastrated pigs) groups, virtually, all neurons were adrenergic (68%) or cholinergic (32%) in nature. Many of them (32%, 51%, and 81%, respectively; 56%, 75%, and 85% adrenergic; and 32%, 52%, and 65% cholinergic, respectively) stained for the androgen receptor (AR), and only a small number of nerve cells were caspase-3 (CASP-3)-positive. In 3- and 6-month-old castrated pigs, an excessive loss (87.6% and 87.5%, respectively) of neurons and intraganglionic nerve fibers was observed. The majority of the surviving adrenergic (61% and 72%, respectively) and many cholinergic (41% and 31%, respectively) neurons expressed CASP-3 and were also AR-positive (61% and 66%, and 40% and 36%, respectively). This study revealed for the first time the excessive loss of intramural UBT neurons following castration, which could have resulted from apoptosis induced by androgen deprivation.


Assuntos
Neurônios Adrenérgicos/metabolismo , Neurônios Colinérgicos/metabolismo , Bexiga Urinária/inervação , Neurônios Adrenérgicos/citologia , Animais , Castração , Neurônios Colinérgicos/citologia , Imuno-Histoquímica , Masculino , Suínos
6.
Life Sci Alliance ; 4(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33658318

RESUMO

The migrational propensity of neuroblastoma is affected by cell identity, but the mechanisms behind the divergence remain unknown. Using RNAi and time-lapse imaging, we show that ADRN-type NB cells exhibit RAC1- and kalirin-dependent nucleokinetic (NUC) migration that relies on several integral components of neuronal migration. Inhibition of NUC migration by RAC1 and kalirin-GEF1 inhibitors occurs without hampering cell proliferation and ADRN identity. Using three clinically relevant expression dichotomies, we reveal that most of up-regulated mRNAs in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells are associated with low-risk characteristics. The computational analysis shows that, in a context of overall gene set poverty, the upregulomes in RAC1- and kalirin-GEF1-suppressed ADRN-type cells are a batch of AU-rich element-containing mRNAs, which suggests a link between NUC migration and mRNA stability. Gene set enrichment analysis-based search for vulnerabilities reveals prospective weak points in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells, including activities of H3K27- and DNA methyltransferases. Altogether, these data support the introduction of NUC inhibitors into cancer treatment research.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neuroblastoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Neurônios Adrenérgicos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Células Cultivadas , Pré-Escolar , Bases de Dados Genéticas , Feminino , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Masculino , Neuroblastoma/patologia , Estudos Prospectivos , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia
7.
Toxins (Basel) ; 12(12)2020 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291335

RESUMO

Vincristine is a vinca alkaloid anti-mitotic drug with a broad spectrum of effects on solid and hematologic cancers. The major dose-limiting factor of this anti-cancer regimen is painful peripheral neuropathy. However, no gold-standard analgesic option has been used clinically. In this study, we investigated the effects and mechanism of bee venom acupuncture (BVA) to alleviate peripheral neuropathic pain induced by repeated intraperitoneal infusions of vincristine (1 mg/kg/day, days 1-5 and 8-12) in rats. Subcutaneous injection with bee venom (BV, 1.0 mg/kg) at the ST36 acupoint ameliorated cold and mechanical hypersensitivity (i.e., aberrant withdrawal responses in acetone drop and von Frey hair tests, respectively). In vivo extracellular recording demonstrated that BVA inhibited cutaneous cold (acetone) and mechanical (brush, press, and pinch) stimuli-elicited abnormal hyperexcitation of the spinal wide dynamic range (WDR) neurons in vincristine-treated rats. In addition, the microinjection of lidocaine into the ipsilateral locus coeruleus or the antagonism of the spinal α2-adrenergic receptors clearly reversed the effects of BVA on cold and mechanical hypersensitivity, indicating a vital role of the descending noradrenergic modulation in analgesia. These findings suggest that BVA could be a potential therapeutic option for vincristine-induced peripheral neuropathy.


Assuntos
Pontos de Acupuntura , Neurônios Adrenérgicos/efeitos dos fármacos , Venenos de Abelha/administração & dosagem , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Vincristina/toxicidade , Terapia por Acupuntura/métodos , Neurônios Adrenérgicos/metabolismo , Animais , Antineoplásicos Fitogênicos/toxicidade , Masculino , Microinjeções/métodos , Doenças do Sistema Nervoso Periférico/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Brain Res Bull ; 164: 372-379, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32890662

RESUMO

The involvement of brainstem noradrenergic system in thermoregulation during exercise was evaluated by assessing the neuronal activation of A1, A2, locus coeruleus (LC) during exercise. Male Wistar rats weighing 280-330 g were used in the present study. Ninety minutes after exercise bout until fatigue, animals were anaesthesiated and brain removed and processed immunohistochemically for Fos protein and tyrosine hydroxylase in A1, A2 and LC and for Fos in POA subregions. Core and tail temperature were recorded during all running period by telemetry system. Heat storage rate (HSR, cal.min-1), maximum tail vasoconstriction (°C) and vasodilatation threshold (°C) were calculated and correlated with Fos expression in all nuclei studied. Fos expression in LC correlated inversely with maximum tail skin vasoconstriction (r = -0.787, p < 0.03) and HSR (r = -0.834, p < 0.02) and positively to time to fatigue (r = 0.862, p < 0.01). A1 nucleus showed an inverse correlation with tail skin vasodilatation threshold (r = -0.861, p < 0.01). Fos expression in LC correlated inversely with Fos expression in the median (MnPO, r = -0.909, p < 0.01) and medial preoptic nucleus (MPOM, r = -0.942, p < 0.05). Our results bring further evidences that noradrenergic neurons from LC and A1 nuclei are involved in cutaneous heat loss mechanisms during exercise. LC nucleus probably modulates the sympathetic tonus of tail artery and integrates the central network LC / POA that could represent an important circuitry of temperature regulation during exercise. Also, noradrenergic neurons from A1 nucleus could be involved in cutaneous heat loss during exercise by modulating of vasodilatation threshold.


Assuntos
Neurônios Adrenérgicos/metabolismo , Regulação da Temperatura Corporal/fisiologia , Tronco Encefálico/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Masculino , Norepinefrina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo
9.
J Chem Neuroanat ; 109: 101845, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32599255

RESUMO

Hindbrain estrogen receptors (ER) impose sex-dimorphic control of counter-regulatory hormone and hypothalamic glucoregulatory transmitter and glycogen metabolic responses to hypoglycemia. A2 noradrenergic neurons are estradiol- and metabolic-sensitive. Estradiol controls dopamine-beta-hydroxylase (DBH) protein habituation to recurrent insulin-induced hypoglycemia (RIIH) in females. Current research investigated the premise that sex-dimorphic patterns of A2 ER variant acclimation to RIIH correlate with differential A2 DBH and 5'-AMP-activated protein kinase (AMPK) adaptation to RIIH. A2 neurons were laser-catapult-microdissected from male and female rats after one or four insulin injections for Western blot analysis. A2 pAMPK and DBH levels were increased in males, but suppressed in females after single insulin dosing. ER-alpha (ERα) and -beta (ERß) protein profiles were unaffected or decreased by acute hypoglycemia in each sex, whereas G protein-linked ER-1 (GPER) reactivity varied by sex. Antecedent hypoglycemia diminished basal A2 ERα/GPER and elevated ERß content in each sex, yet reduced pAMPK and DBH levels in female rats only. Reintroduced hypoglycemia suppressed A2 ERß levels in each sex, but altered DBH (↓), ERα (↓), and GPER (↑) levels in males only. Data document sex differences in A2 DBH adaptation to RIIH, e.g. a shift from positive-to-negative response in males versus loss of negative reactivity in females, as well as attenuated AMPK activation in both sexes. Between hypoglycemic episodes, A2 neurons in each sex likely exhibit diminished sensitivity to ERα/GPER signaling, but heightened receptivity to ERß input. RIIH-induced changes in ERα and GPER expression in male but not female may contribute to DBH suppression (males) versus no change (females) relative to adapted baseline expression.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neurônios Adrenérgicos/metabolismo , Dopamina beta-Hidroxilase/metabolismo , Hipoglicemia/metabolismo , Insulina/farmacologia , Receptores de Estrogênio/metabolismo , Neurônios Adrenérgicos/efeitos dos fármacos , Animais , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
10.
Neuropeptides ; 82: 102055, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32451071

RESUMO

The brain glycogen reserve is a source of oxidizable substrate fuel. Lactoprivic-sensitive hindbrain A2 noradrenergic neurons provide crucial metabolic-sensory input to downstream hypothalamic glucose-regulatory structures. Current research examined whether hindbrain glycogen fuel supply impacts A2 energy stability and governance of ventromedial hypothalamic nucleus (VMN) metabolic transmitter signaling. Male rats were injected into the caudal fourth ventricle (CV4) with the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) prior to continuous intra-CV4 infusion of L-lactate or vehicle. Lactate reversed DAB suppression of A2 neuron AMPK protein and up-regulated phosphoAMPK profiles. A2 dopamine-ß-hydroxylase expression was refractory to DAB, but elevated by DAB/lactate. Lactate normalized A2 estrogen receptor-alpha and GPER proteins and up-regulated estrogen receptor-beta levels in DAB-treated rats. VMN norepinephrine content was decreased by DAB, but partially restored by lactate. DAB caused lactate-reversible or -irreversible augmentation of VMN glycogen phosphorylase-brain (GPbb) and -muscle type (GPmm) variant profiles, and correspondingly up- or down-regulated VMN protein markers of glucose-stimulatory nitrergic and glucose-inhibitory γ-aminobutyric acid transmission. DAB did not alter plasma glucose, but suppressed or elevated circulating glucagon and corticosterone in that order. Results show that diminished hindbrain glycogen breakdown is communicated to the VMN, in part by NE signaling, to up-regulate VMN glycogen breakdown and trigger neurochemical signaling of energy imbalance in that site. DAB effects on GPmm, VMN glycogen content, and counter-regulatory hormone secretion were unabated by lactate infusion, suggesting that aside from substrate fuel provision rate, additional indicators of glycogen metabolism such as turnover rate may be monitored in the hindbrain.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neurônios Adrenérgicos/metabolismo , Glicogênio/metabolismo , Norepinefrina/metabolismo , Rombencéfalo/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Animais , Masculino , Ratos Sprague-Dawley , Transdução de Sinais
11.
J Cardiovasc Pharmacol ; 76(1): 112-121, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265369

RESUMO

Previous studies have demonstrated that nicotine can induce relaxation of the middle cerebral artery (MCA). However, whether this relaxation is associated with the activity of sensory calcitonin gene-related peptide (CGRP) nerves and whether this is modulated by hydrogen protons (H), facilitating the release of CGRP from sensory CGRPergic nerve terminals in the MCA, remains unclear. In this study, we examined the role of H in the modulation of neurogenic vasomotor responses in the rat-isolated endothelium-denuded MCA. Wire myography was used to measure vasoreactivity and indicated that nicotine-induced relaxation was sensitive to tetrodotoxin and lidocaine and drastically reduced levels of guanethidine (an adrenergic neuronal blocker), N-nitro-L-arginine (L-NNA), CGRP8-37, vasoactive intestinal polypeptide (VIP)6-28, capsaicin, capsazepine (a transient receptor potential vanilloid-1 inhibitor), and tetraethylammonium. However, this nicotine-induced relaxation was not sensitive to propranolol. Lowering the pH of the buffer solution with HCl caused pH-dependent vasorelaxation and deceased intracellular pH in the MCA rings, which was sensitive to L-NNA, CGRP8-37, VIP6-28, capsazepine, 4-aminopyridine (a voltage-gated potassium channel antagonist), and paxilline (a large conductance Ca-activated K channel antagonist). However, HCl-induced relaxation was not inhibited by glibenclamide (an ATP-sensitive K channel blocker). These results suggested that electrical and chemical activation of cerebral perivascular adrenergic nerves led to the release of H, which then facilitated the release of NO, VIP, and CGRP, resulting in vasorelaxation. Lowering the pH of the buffer solution caused potassium channels of vascular smooth muscle cells and perivascular nerves to open. In conclusion, our results demonstrated that H may act as a modulator on MCA perivascular nerves and/or smooth muscles.


Assuntos
Neurônios Adrenérgicos/metabolismo , Axônios/metabolismo , Hidrogênio/metabolismo , Artéria Cerebral Média/inervação , Músculo Liso Vascular/inervação , Vasodilatação , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Concentração de Íons de Hidrogênio , Masculino , Artéria Cerebral Média/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Nicotina/farmacologia , Óxido Nítrico/metabolismo , Ratos Endogâmicos WKY , Peptídeo Intestinal Vasoativo/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
13.
Am J Physiol Heart Circ Physiol ; 318(3): H558-H565, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31975627

RESUMO

Cardiac sympathetic nerves undergo cholinergic transdifferentiation following reperfused myocardial infarction (MI), whereby the sympathetic nerves release both norepinephrine (NE) and acetylcholine (ACh). The functional electrophysiological consequences of post-MI transdifferentiation have never been explored. We performed MI or sham surgery in wild-type (WT) mice and mice in which choline acetyltransferase was deleted from adult noradrenergic neurons [knockout (KO)]. Electrophysiological activity was assessed with optical mapping of action potentials (AP) and intracellular Ca2+ transients (CaT) in innervated Langendorff-perfused hearts. KO MI hearts had similar NE content but reduced ACh content compared with WT MI hearts (0.360 ± 0.074 vs. 0.493 ± 0.087 pmol/mg; KO, n = 6; WT, n = 4; P < 0.05). KO MI hearts also had higher basal ex vivo heart rates versus WT MI hearts (328.5 ± 35.3 vs. 247.4 ± 62.4 beats/min; KO, n = 8; WT, n = 6; P < 0.05). AP duration at 80% repolarization was significantly shorter in the remote and border zones of KO MI versus WT MI hearts, whereas AP durations (APDs) were similar in infarct regions. This APD heterogeneity resulted in increased APD dispersion in the KO MI versus WT MI hearts (11.9 ± 2.7 vs. 8.2 ± 2.3 ms; KO, n = 8; WT, n = 6; P < 0.05), which was eliminated with atropine. CaT duration at 80% and CaT alternans magnitude were similar between groups both with and without sympathetic nerve stimulation. These results indicate that cholinergic transdifferentiation following MI prolongs APD in the remote and border zone and reduces APD heterogeneity.NEW & NOTEWORTHY Cardiac sympathetic neurons undergo cholinergic transdifferentiation following myocardial infarction; however, the electrophysiological effects of corelease of norepinephrine and acetylcholine (ACh) have never been assessed. Using a mouse model in which choline acetyltransferase was deleted from adult noradrenergic neurons and optical mapping of innervated hearts, we found that corelease of ACh reduces dispersion of action potential duration, which may be antiarrhythmic.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Transdiferenciação Celular/fisiologia , Neurônios Colinérgicos/metabolismo , Infarto do Miocárdio/fisiopatologia , Sistema Nervoso Simpático/metabolismo , Neurônios Adrenérgicos/metabolismo , Animais , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Coração/inervação , Camundongos , Camundongos Knockout , Infarto do Miocárdio/metabolismo
14.
Cardiovasc Toxicol ; 20(3): 328-338, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811615

RESUMO

Doxorubicin is a potent anticancer drug with cardiotoxicity hampering its use. Neuropeptide Y (NPY) is the most abundant neuropeptide in the heart and a co-transmitter of the sympathetic nervous system that plays a role in cardiac diseases. The aim of this work was to study the impact of NPY on doxorubicin-induced cardiotoxicity. Transgenic mice overexpressing NPY in noradrenergic neurons (NPY-OEDßH) and wild-type mice were treated with a single dose of doxorubicin. Doxorubicin caused cardiotoxicity in both genotypes as demonstrated by decreased weight gain, tendency to reduced ejection fraction, and changes in the expression of several genes relevant to cardiac pathology. Doxorubicin resulted in a tendency to lower ejection fraction in NPY-OEDßH mice more than in wild-type mice. In addition, gain in the whole body lean mass gain was decreased only in NPY-OEDßH mice, suggesting a more severe impact of doxorubicin in this genotype. The effects of doxorubicin on genes expressed in the heart were similar between NPY-OEDßH and wild-type mice. The results demonstrate that doxorubicin at a relatively low dose caused significant cardiotoxicity. There were differences between NPY-OEDßH and wild-type mice in their responses to doxorubicin that suggest NPY to increase susceptibility to cardiotoxicity. This may point to the therapeutic implications as suggested for NPY system in other cardiovascular diseases.


Assuntos
Neurônios Adrenérgicos/metabolismo , Doxorrubicina , Cardiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Neuropeptídeo Y/metabolismo , Animais , Composição Corporal , Sinalização do Cálcio , Cardiotoxicidade , Modelos Animais de Doenças , Cardiopatias/induzido quimicamente , Cardiopatias/genética , Cardiopatias/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Neuropeptídeo Y/genética , Volume Sistólico , Regulação para Cima , Função Ventricular Esquerda , Remodelação Ventricular , Aumento de Peso
15.
J Clin Invest ; 130(1): 422-437, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31793911

RESUMO

Aberrant Tau inclusions in the locus coeruleus (LC) are the earliest detectable Alzheimer's disease-like (AD-like) neuropathology in the human brain. However, why LC neurons are selectively vulnerable to developing early Tau pathology and degenerating later in disease and whether the LC might seed the stereotypical spread of Tau pathology to the rest of the brain remain unclear. Here, we show that 3,4-dihydroxyphenylglycolaldehyde, which is produced exclusively in noradrenergic neurons by monoamine oxidase A metabolism of norepinephrine, activated asparagine endopeptidase that cleaved Tau at residue N368 into aggregation- and propagation-prone forms, thus leading to LC degeneration and the spread of Tau pathology. Activation of asparagine endopeptidase-cleaved Tau aggregation in vitro and in intact cells was triggered by 3,4-dihydroxyphenylglycolaldehyde, resulting in LC neurotoxicity and propagation of pathology to the forebrain. Thus, our findings reveal that norepinephrine metabolism and Tau cleavage represent the specific molecular mechanism underlying the selective vulnerability of LC neurons in AD.


Assuntos
Neurônios Adrenérgicos/metabolismo , Aldeídos/metabolismo , Doença de Alzheimer/metabolismo , Locus Cerúleo/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteínas tau/metabolismo , Neurônios Adrenérgicos/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Catecóis , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Locus Cerúleo/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Norepinefrina/genética , Norepinefrina/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Proteínas tau/genética
16.
Brain Res ; 1720: 146311, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31265816

RESUMO

The ventromedial hypothalamic nucleus (VMN) is a vital component of the neural circuitry that regulates glucostasis. Norepinephrine (NE) controls VMN gluco-inhibitory γ-aminobutyric acid (GABA) and gluco-stimulatory nitric oxide (NO) transmission. Sex-specific insulin-induced hypoglycemic (IIH) patterns of VMN GABA signaling are estrogen receptor-alpha (ERα)- and -beta (ERß)-dependent. Current research utilized combinatory immunocytochemistry, laser-microdissection, and Western blot techniques in a pharmacological approach to address the hypothesis that ERα and/or -ß mediate sex-dimorphic VMN GABAergic and/or nitrergic nerve cell receptivity to NE and estradiol during IIH. The impact of these ER on expression of the pyruvate recycling pathway marker proteins glutaminase (GLS) and malic enzyme-1 (ME-1) was also examined. Both VMN neuron populations express ERα, ERß, and G protein-coupled estrogen receptor-1 (GPER), along with alpha1, alpha2, and beta1 adrenergic receptor (AR) proteins. NO neurons exhibited ERα/ß-dependent (beta1 AR, GPER) and -independent (alpha1 AR) sex differences in receptor protein responses to hypoglycemia. Similarly, sex-dimorphic effects of IIH on alpha1 AR, alpha2 AR, and ERα profiles in GABA neurons involve ERα/ß. These ERs also underlie divergent adjustments in gluco-regulatory nerve cell GLS and ME-1 protein expression in hypoglycemic males and females. Sex-specific nitrergic and GABAergic nerve cell sensitivity to NE and E, respectively, during IIH may contribute to sex-contingent patterns of neurotransmitter signaling.


Assuntos
Hipoglicemia/metabolismo , Receptores de Estrogênio/metabolismo , Núcleo Hipotalâmico Ventromedial/fisiologia , Neurônios Adrenérgicos/metabolismo , Animais , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estrogênios/farmacologia , Feminino , Glicogênio/metabolismo , Hipoglicemia/fisiopatologia , Hipoglicemiantes/farmacologia , Masculino , Norepinefrina/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos/metabolismo , Receptores de Estrogênio/fisiologia , Caracteres Sexuais , Núcleo Hipotalâmico Ventromedial/metabolismo
17.
Med Hypotheses ; 128: 86-90, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31203917

RESUMO

Pain can be overestimated, underestimated or reported accurately at recall. The way pain is remembered seems to depend on certain factors, including the type of pain or, in other words, its cause, the context, and the meaning it has for the person suffering from it. For instance, episodes of chronic pain, as well as pain related to surgery, are often overestimated at recall. Interestingly, research shows that pain induced by parturition or marathon running is often underestimated at recall despite the fact that both are not only physically grueling but also emotionally intense experiences. However, both processes can likewise be considered positive events, as opposed to most that involve pain. On the neurophysiological level, one of the similarities between giving birth and running a marathon is the particular involvement of the oxytocin system. Oxytocin is involved both in parturition and intense exercise, for various reasons. During labor, oxytocin mediates uterine contractions, while in the case of extensive running it might be involved in the maintenance of fluid balance. It also has well-documented analgesic properties and plays an important role in memory formation and recall. It has been suggested that oxytocin modulates the output of the central nucleus of the amygdala (CeA) during the fear recall. Moreover, it has been demonstrated that oxytocin can impair fear learning and influence the memory of both positive and negative emotionally salient stimuli. We propose that the reason for pain to be remembered in a more favorable light is the central action of oxytocin in the central nucleus of the amygdala, first and foremost during the encoding phase.


Assuntos
Trabalho de Parto , Memória/fisiologia , Ocitocina/metabolismo , Dor/psicologia , Parto , Corrida , Neurônios Adrenérgicos/metabolismo , Emoções , Exercício Físico , Feminino , Glucocorticoides/metabolismo , Humanos , Aprendizagem , Gravidez
18.
Nat Commun ; 10(1): 1530, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30948783

RESUMO

Transition between differentiation states in development occurs swift but the mechanisms leading to epigenetic and transcriptional reprogramming are poorly understood. The pediatric cancer neuroblastoma includes adrenergic (ADRN) and mesenchymal (MES) tumor cell types, which differ in phenotype, super-enhancers (SEs) and core regulatory circuitries. These cell types can spontaneously interconvert, but the mechanism remains largely unknown. Here, we unravel how a NOTCH3 intracellular domain reprogrammed the ADRN transcriptional landscape towards a MES state. A transcriptional feed-forward circuitry of NOTCH-family transcription factors amplifies the NOTCH signaling levels, explaining the swift transition between two semi-stable cellular states. This transition induces genome-wide remodeling of the H3K27ac landscape and a switch from ADRN SEs to MES SEs. Once established, the NOTCH feed-forward loop maintains the induced MES state. In vivo reprogramming of ADRN cells shows that MES and ADRN cells are equally oncogenic. Our results elucidate a swift transdifferentiation between two semi-stable epigenetic cellular states.


Assuntos
Neurônios Adrenérgicos/patologia , Reprogramação Celular/genética , Células-Tronco Mesenquimais/patologia , Neuroblastoma/patologia , Receptor Notch3/fisiologia , Neurônios Adrenérgicos/metabolismo , Linhagem Celular Tumoral , Epigênese Genética , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Neuroblastoma/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo
19.
Hypertension ; 73(4): 910-918, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30798661

RESUMO

Lewy body diseases involve neurogenic orthostatic hypotension (nOH), cardiac noradrenergic deficiency, and deposition of the protein AS (alpha-synuclein) in sympathetic ganglion tissue. Mechanisms linking these abnormalities are poorly understood. One link may be AS deposition within sympathetic neurons. We validated methodology to quantify AS colocalization with TH (tyrosine hydroxylase), a marker of sympathetic noradrenergic innervation, and assessed associations of AS/TH colocalization with myocardial norepinephrine content and cardiac sympathetic neuroimaging data in nOH. Postmortem sympathetic ganglionic AS/TH colocalization indices and myocardial norepinephrine contents were measured in 4 Lewy body and 3 rare non-Lewy body nOH patients. Sixteen Lewy body and 11 non-Lewy body nOH patients underwent in vivo skin biopsies and thoracic 18F-dopamine positron emission tomographic scanning, with cutaneous colocalization indices expressed versus cardiac 18F-dopamine-derived radioactivity. Ganglionic AS/TH colocalization indices were higher and myocardial norepinephrine lower in Lewy body than non-Lewy body nOH ( P=0.0020, P=0.014). The Lewy body nOH group had higher AS/TH colocalization indices in skin biopsies and lower myocardial 18F-dopamine-derived radioactivity than did the non-Lewy body nOH group ( P<0.0001 each). All Lewy body nOH patients had colocalization indices >1.5 in skin biopsies and 18F-dopamine-derived radioactivity <6000 nCi-kg/cc-mCi, a combination not seen in non-Lewy body nOH patients ( P<0.0001). In Lewy body nOH, AS deposition in sympathetic noradrenergic nerves is related to postmortem neurochemical and in vivo neuroimaging evidence of myocardial noradrenergic deficiency. These associations raise the possibility that intraneuronal AS deposition plays a pathophysiological role in the myocardial sympathetic neurodegeneration attending Lewy body nOH.


Assuntos
Neurônios Adrenérgicos/metabolismo , Hipotensão Ortostática/metabolismo , Corpos de Lewy/metabolismo , Miocárdio/metabolismo , alfa-Sinucleína/metabolismo , Neurônios Adrenérgicos/patologia , Idoso , Idoso de 80 Anos ou mais , Biópsia , Feminino , Humanos , Hipotensão Ortostática/diagnóstico , Hipotensão Ortostática/fisiopatologia , Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Tomografia por Emissão de Pósitrons , Pele/metabolismo , Pele/patologia
20.
Neurobiol Dis ; 127: 114-130, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30763678

RESUMO

Parkinson's disease (PD) is the second most frequent neurodegenerative disorder in the old population. Among its monogenic variants, a frequent cause is a mutation in the Parkin gene (Prkn). Deficient function of Parkin triggers ubiquitous mitochondrial dysfunction and inflammation in the brain, but it remains unclear how selective neural circuits become vulnerable and finally undergo atrophy. We attempted to go beyond previous work, mostly done in peripheral tumor cells, which identified protein targets of Parkin activity, an ubiquitin E3 ligase. Thus, we now used aged Parkin-knockout (KO) mouse brain for a global quantification of ubiquitylated peptides by mass spectrometry (MS). This approach confirmed the most abundant substrate to be VDAC3, a mitochondrial outer membrane porin that modulates calcium flux, while uncovering also >3-fold dysregulations for neuron-specific factors. Ubiquitylation decreases were prominent for Hippocalcin (HPCA), Calmodulin (CALM1/CALML3), Pyruvate Kinase (PKM2), sodium/potassium-transporting ATPases (ATP1A1/2/3/4), the Rab27A-GTPase activating protein alpha (TBC1D10A) and an ubiquitin ligase adapter (DDB1), while strong increases occurred for calcium transporter ATP2C1 and G-protein subunits G(i)/G(o)/G(Tr). Quantitative immunoblots validated elevated abundance for the electrogenic pump ATP1A2, for HPCA as neuron-specific calcium sensor, which stimulates guanylate cyclases and modifies axonal slow afterhyperpolarization (sAHP), and for the calcium-sensing G-protein GNA11. We assessed if compensatory molecular regulations become insufficient over time, leading to functional deficits. Patch clamp experiments in acute Parkin-KO brain slices indeed revealed alterations of the electrophysiological properties in aged noradrenergic locus coeruleus (LC) neurons. LC neurons of aged Parkin-KO brain showed an acceleration of the spontaneous pacemaker frequency, a reduction in sAHP and shortening of action potential duration, without modulation of KCNQ potassium currents. These findings indicate altered calcium-dependent excitability in a PARK2 model of PD, mediated by diminished turnover of potential Parkin targets such as ATP1A2 and HPCA. The data also identified further novel Parkin substrate candidates like SIRT2, OTUD7B and CUL5. Our elucidation of neuron-specific mechanisms of PD pathogenesis helps to explain the known exceptional susceptibility of noradrenergic and dopaminergic projections to alterations of calcium homeostasis and its mitochondrial buffering.


Assuntos
Neurônios Adrenérgicos/metabolismo , Encéfalo/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Hipocalcina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Espectrometria de Massas , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Técnicas de Patch-Clamp , Ubiquitina-Proteína Ligases/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA