Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.852
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Physiol ; 602(20): 5375-5389, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39316014

RESUMO

It remains unclear whether feedback from group III/IV muscle afferents is of continuous significance for regulating the pulmonary response during prolonged (>5 min), steady-state exercise. To elucidate the influence of these sensory neurons on hyperpnoea, gas exchange efficiency, arterial oxygenation and acid-base balance during prolonged locomotor exercise, 13 healthy participants (4 females; 21 (3) years, V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{max}}}}$ : 46 (8) ml/kg/min) performed consecutive constant-load cycling bouts at ∼50% (20 min), ∼75% (20 min) and ∼100% (5 min) of V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{max}}}}$ with intact (CTRL) and pharmacologically attenuated (lumbar intrathecal fentanyl; FENT) group III/IV muscle afferent feedback from the legs. Pulmonary responses were continuously recorded and arterial blood (radial catheter) periodically collected throughout the exercise. Pulmonary gas exchange efficiency was evaluated using the alveolar-arterial P O 2 ${{P}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ difference ( A - a D O 2 ${\mathrm{A - a}}{{D}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ). There were no differences in any of the variables of interest between conditions before the start of the exercise. Pulmonary ventilation was up to 20% lower across all intensities during FENT compared to CTRL exercise (P < 0.001) and this hypoventilation was accompanied by an up to 10% lower arterial P O 2 ${{P}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ and a 2-4 mmHg higher P C O 2 ${{P}_{{\mathrm{C}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ (both P < 0.001). The exercise-induced widening of A - a D O 2 ${\mathrm{A - a}}{{D}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ was up to 25% larger during FENT compared to CTRL (P < 0.001). Importantly, the differences developed within the first minute of each stage and persisted, or further increased, throughout the remainder of each bout. These findings reflect a critical and time-independent significance of feedback from group III/IV leg muscle afferents for continuously regulating the ventilatory response, gas exchange efficiency, arterial oxygenation and acid-base balance during human locomotion. KEY POINTS: Feedback from group III/IV leg muscle afferents reflexly contributes to hyperpnoea during short duration (i.e. <5 min) locomotor exercise. Whether continuous feedback from these sensory neurons is obligatory to ensure adequate pulmonary responses during steady-state exercise of longer duration remains unknown. Lumbar intrathecal fentanyl was used to attenuate the central projection of group III/IV leg muscle afferents during prolonged locomotor exercise (i.e. 45 min) at intensities ranging from 50% to 100% of V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{max}}}}$ . Without affecting the metabolic rate, afferent blockade compromised pulmonary ventilation and gas exchange efficiency, consistently impairing arterial oxygenation and facilitating respiratory acidosis throughout exercise. These findings reflect the time-independent significance of feedback from group III/IV muscle afferents for regulating exercise hyperpnoea and gas exchange efficiency, and thus for optimizing arterial oxygenation and acid-base balance, during prolonged human locomotion.


Assuntos
Exercício Físico , Músculo Esquelético , Troca Gasosa Pulmonar , Humanos , Feminino , Troca Gasosa Pulmonar/fisiologia , Masculino , Exercício Físico/fisiologia , Adulto Jovem , Músculo Esquelético/fisiologia , Hiperventilação/fisiopatologia , Adulto , Fentanila/farmacologia , Neurônios Aferentes/fisiologia
2.
Eur J Pharmacol ; 982: 176909, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39154826

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic bladder inflammation characterized by the main symptoms of urinary frequency, urgency, and pelvic pain. The hypersensitivity of bladder afferent neurons is considered a significant pathophysiologic mechanism in IC/PBS. Serotonin (5-HT, 5-hydroxytryptamine) receptors are known to be involved in the regulation of the micturition reflex and hyperalgesia, but the effect of 5-HT receptors on cystitis remains unknown. In this study, a rat model of interstitial cystitis induced by intraperitoneal injection of cyclophosphamide (CYP) was used to investigate the role of 5-HT receptors on cystitis. The histology and urodynamics exhibited chronic cystitis and overactive bladder in CYP-treated rats. Notably, among 5-HT1A, 5-HT2A and 5-HT7 receptors, the expression of 5-HT2A receptor was significantly increased in bladder afferent neurons in CYP-treated rats. Intrathecal administration of the 5-HT2A receptor antagonist M100907 could alleviate bladder overactivity and hyperalgesia in CYP-induced cystitis rats. Neuronal calcium imaging of bladder afferent neurons revealed increased calcium influx induced by the 5-HT2A receptor agonist or capsaicin in cystitis rats, which could be inhibited by M100907. Moreover, RNA sequencing indicated that differentially expressed genes were enriched in inflammation-related pathways and cellular calcium homeostasis. These findings suggest that the 5-HT2A receptor is involved in the hypersensitivity of bladder afferent neurons in CYP-induced cystitis, and M100907 could alleviate bladder overactivity and hyperalgesia in CYP-induced cystitis by inhibiting neuronal hypersensitivity in the afferent pathways. The 5-HT2A receptor may be a potential therapeutic target for the treatment of IC/BPS.


Assuntos
Ciclofosfamida , Cistite , Neurônios Aferentes , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina , Bexiga Urinária , Animais , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/inervação , Bexiga Urinária/patologia , Bexiga Urinária/metabolismo , Neurônios Aferentes/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Ratos , Cistite/induzido quimicamente , Cistite/metabolismo , Cistite/patologia , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Cistite Intersticial/induzido quimicamente , Cistite Intersticial/metabolismo , Cistite Intersticial/tratamento farmacológico , Cistite Intersticial/patologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Bexiga Urinária Hiperativa/induzido quimicamente , Bexiga Urinária Hiperativa/metabolismo , Bexiga Urinária Hiperativa/fisiopatologia , Bexiga Urinária Hiperativa/tratamento farmacológico , Modelos Animais de Doenças
3.
Int J Numer Method Biomed Eng ; 40(9): e3849, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39054666

RESUMO

In this work, we couple a lumped-parameter closed-loop model of the cardiovascular system with a physiologically-detailed mathematical description of the baroreflex afferent pathway. The model features a classical Hodgkin-Huxley current-type model for the baroreflex afferent limb (primary neuron) and for the second-order neuron in the central nervous system. The pulsatile arterial wall distension triggers a frequency-modulated sequence of action potentials at the afferent neuron. This signal is then integrated at the brainstem neuron model. The efferent limb, representing the sympathetic and parasympathetic nervous system, is described as a transfer function acting on heart and blood vessel model parameters in order to control arterial pressure. Three in silico experiments are shown here: a step increase in the aortic pressure to evaluate the functionality of the reflex arch, a hemorrhagic episode and an infusion simulation. Through this model, it is possible to study the biophysical dynamics of the ionic currents proposed for the afferent limb components of the baroreflex during the cardiac cycle, and the way in which currents dynamics affect the cardiovascular function. Moreover, this system can be further developed to study in detail each baroreflex loop component, helping to unveil the mechanisms involved in the cardiovascular afferent information processing.


Assuntos
Vias Aferentes , Barorreflexo , Simulação por Computador , Barorreflexo/fisiologia , Humanos , Vias Aferentes/fisiologia , Modelos Cardiovasculares , Potenciais de Ação/fisiologia , Neurônios Aferentes/fisiologia
4.
J Comput Neurosci ; 52(1): 21-37, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345739

RESUMO

The urothelium is the innermost layer of the bladder wall; it plays a pivotal role in bladder sensory transduction by responding to chemical and mechanical stimuli. The urothelium also acts as a physical barrier between urine and the outer layers of the bladder wall. There is intricate sensory communication between the layers of the bladder wall and the neurons that supply the bladder, which eventually translates into the regulation of mechanical activity. In response to natural stimuli, urothelial cells release substances such as ATP, nitric oxide (NO), substance P, acetylcholine (ACh), and adenosine. These act on adjacent urothelial cells, myofibroblasts, and urothelial afferent neurons (UAN), controlling the contractile activity of the bladder. There is rising evidence on the importance of urothelial sensory signalling, yet a comprehensive understanding of the functioning of the urothelium-afferent neurons and the factors that govern it remains elusive to date. Until now, the biophysical studies done on UAN have been unable to provide adequate information on the ion channel composition of the neuron, which is paramount to understanding the electrical functioning of the UAN and, by extension, afferent signalling. To this end, we have attempted to model UAN to decipher the ionic mechanisms underlying the excitability of the UAN. In contrast to previous models, our model was built and validated using morphological and biophysical properties consistent with experimental findings for the UAN. The model included all the channels thus far known to be expressed in UAN, including; voltage-gated sodium and potassium channels, N, L, T, P/Q, R-type calcium channels, large-conductance calcium-dependent potassium (BK) channels, small conductance calcium-dependent (SK) channels, Hyperpolarisation activated cation (HCN) channels, transient receptor potential melastatin (TRPM8), transient receptor potential vanilloid (TRPV1) channel, calcium-activated chloride(CaCC) channels, and internal calcium dynamics. Our UAN model a) was constrained as far as possible by experimental data from the literature for the channels and the spiking activity, b) was validated by reproducing the experimental responses to current-clamp and voltage-clamp protocols c) was used as a base for modelling the non-urothelial afferent neurons (NUAN). Using our models, we also gained insights into the variations in ion channels between UAN and NUAN neurons.


Assuntos
Cálcio , Bexiga Urinária , Urotélio , Modelos Neurológicos , Neurônios Aferentes
5.
J Comp Neurol ; 532(2): e25546, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37837642

RESUMO

The distal colon and rectum (colorectum) are innervated by spinal and vagal afferent pathways. The central circuits into which vagal and spinal afferents relay colorectal nociceptive information remain to be comparatively assessed. To address this, regional colorectal retrograde tracing and colorectal distension (CRD)-evoked neuronal activation were used to compare the circuits within the dorsal vagal complex (DVC) and dorsal horn (thoracolumbar [TL] and lumbosacral [LS] spinal levels) into which vagal and spinal colorectal afferents project. Vagal afferent projections were observed in the nucleus tractus solitarius (NTS), area postrema (AP), and dorsal motor nucleus of the vagus (DMV), labeled from the rostral colorectum. In the NTS, projections were opposed to catecholamine and pontine parabrachial nuclei (PbN)-projecting neurons. Spinal afferent projections were labeled from rostral through to caudal aspects of the colorectum. In the dorsal horn, the number of neurons activated by CRD was linked to pressure intensity, unlike in the DVC. In the NTS, 13% ± 0.6% of CRD-activated neurons projected to the PbN. In the dorsal horn, at the TL spinal level, afferent input was associated with PbN-projecting neurons in lamina I (LI), with 63% ± 3.15% of CRD-activated neurons in LI projecting to the PbN. On the other hand, at the LS spinal level, only 18% ± 0.6% of CRD-activated neurons in LI projected to the PbN. The collective data identify differences in the central neuroanatomy that support the disparate roles of vagal and spinal afferent signaling in the facilitation and modulation of colorectal nociceptive responses.


Assuntos
Neoplasias Colorretais , Nervo Vago , Camundongos , Animais , Vias Aferentes/fisiologia , Neurônios , Corno Dorsal da Medula Espinal , Neoplasias Colorretais/metabolismo , Medula Espinal/metabolismo , Neurônios Aferentes/fisiologia
6.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G133-G146, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050686

RESUMO

Sex differences in visceral nociception have been reported in clinical and preclinical studies, but the potential differences in sensory neural encoding of the colorectum between males and females are not well understood. In this study, we systematically assessed sex differences in colorectal neural encoding by conducting high-throughput optical recordings in intact dorsal root ganglia (DRGs) from control and visceral hypersensitive mice. We found an apparent sex difference in zymosan-induced behavioral visceral hypersensitivity: enhanced visceromotor responses to colorectal distension were observed only in male mice, not in female mice. In addition, a higher number of mechanosensitive colorectal afferents were identified per mouse in the zymosan-treated male group than in the saline-treated male group, whereas the mechanosensitive afferents identified per mouse were comparable between the zymosan- and saline-treated female groups. The increased number of identified afferents in zymosan-treated male mice was predominantly from thoracolumbar (TL) innervation, which agrees with the significant increase in the TL afferent proportion in the zymosan group as compared with the control group in male mice. In contrast, female mice showed no difference in the proportion of colorectal neurons between saline- and zymosan-treated groups. Our results revealed a significant sex difference in colorectal afferent innervation and sensitization in the context of behavioral visceral hypersensitivity, which could drive differential clinical symptoms in male and female patients.NEW & NOTEWORTHY We used high-throughput GCaMP6f recordings to study 2,275 mechanosensitive colorectal afferents in mice. Our results revealed significant sex differences in the zymosan-induced behavioral visceral hypersensitivity, which were present in male but not female mice. Male mice also showed sensitization of colorectal afferents in the thoracolumbar pathway, whereas female mice did not. These findings highlight sex differences in sensory neural anatomy and function of the colorectum, with implications for sex-specific therapies for treating visceral pain.


Assuntos
Neoplasias Colorretais , Dor Visceral , Humanos , Feminino , Masculino , Camundongos , Animais , Reto/inervação , Colo/metabolismo , Zimosan/metabolismo , Caracteres Sexuais , Mecanotransdução Celular/fisiologia , Dor Visceral/metabolismo , Neoplasias Colorretais/metabolismo , Camundongos Endogâmicos C57BL , Neurônios Aferentes/fisiologia
7.
FASEB J ; 38(1): e23380, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38102980

RESUMO

The urinary bladder is supplied by a rich network of sensory and autonomic axons, commonly visualized by immunolabeling for neural markers. This approach demonstrates overall network patterning but is less suited to understanding the structure of individual motor and sensory terminals within these complex plexuses. There is a further limitation visualizing the lightly myelinated (A-delta) class of sensory axons that provides the primary mechanosensory drive for initiation of voiding. Whereas most unmyelinated sensory axons can be revealed by immunolabeling for specific neuropeptides, to date no unique neural marker has been identified to immunohistochemically label myelinated visceral afferents. We aimed to establish a non-surgical method to visualize and map myelinated afferents in the bladder in rats. We found that in rats, the adeno-associated virus (AAV), AAV-PHP.S, which shows a high tropism for the peripheral nervous system, primarily transduced myelinated dorsal root ganglion neurons, enabling us to identify the structure and regional distribution of myelinated (mechanosensory) axon endings within the muscle and lamina propria of the bladder. We further identified the projection of myelinated afferents within the pelvic nerve and lumbosacral spinal cord. A minority of noradrenergic and cholinergic neurons in pelvic ganglia were transduced, enabling visualization and regional mapping of both autonomic and sensory axon endings within the bladder. Our study identified a sparse labeling approach for investigating myelinated sensory and autonomic axon endings within the bladder and provides new insights into the nerve-bladder interface.


Assuntos
Dependovirus , Bexiga Urinária , Ratos , Animais , Dependovirus/genética , Neurônios , Axônios , Medula Espinal/fisiologia , Gânglios Espinais , Neurônios Aferentes
8.
Exp Physiol ; 109(1): 100-111, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103003

RESUMO

The goals of this review are to improve understanding of the aetiology of chronic muscle pain and identify new targets for treatments. Muscle pain is usually associated with trigger points in syndromes such as fibromyalgia and myofascial syndrome, and with small spots associated with spontaneous electrical activity that seems to emanate from fibers inside muscle spindles in EMG studies. These observations, added to the reports that large-diameter primary afferents, such as those innervating muscle spindles, become hyperexcitable and develop spontaneous ectopic firing in conditions leading to neuropathic pain, suggest that changes in excitability of these afferents might make an important contribution to the development of pathological pain. Here, we review evidence that the muscle spindle afferents (MSAs) of the jaw-closing muscles become hyperexcitable in a model of chronic orofacial myalgia. In these afferents, as in other large-diameter primary afferents in dorsal root ganglia, firing emerges from fast membrane potential oscillations that are supported by a persistent sodium current (INaP ) mediated by Na+ channels containing the α-subunit NaV 1.6. The current flowing through NaV 1.6 channels increases when the extracellular Ca2+ concentration decreases, and studies have shown that INaP -driven firing is increased by S100ß, an astrocytic protein that chelates Ca2+ when released in the extracellular space. We review evidence of how astrocytes, which are known to be activated in pain conditions, might, through their regulation of extracellular Ca2+ , contribute to the generation of ectopic firing in MSAs. To explain how ectopic firing in MSAs might cause pain, we review evidence supporting the hypothesis that cross-talk between proprioceptive and nociceptive pathways might occur in the periphery, within the spindle capsule.


Assuntos
Dor Crônica , Neuralgia , Humanos , Fusos Musculares/fisiologia , Mialgia , Potenciais da Membrana , Neurônios Aferentes/fisiologia
9.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068975

RESUMO

Phoenixin-14 (PNX), initially discovered in the rat hypothalamus, was also detected in dorsal root ganglion (DRG) cells, where its involvement in the regulation of pain and/or itch sensation was suggested. However, there is a lack of data not only on its distribution in DRGs along individual segments of the spinal cord, but also on the pattern(s) of its co-occurrence with other sensory neurotransmitters. To fill the above-mentioned gap and expand our knowledge about the occurrence of PNX in mammalian species other than rodents, this study examined (i) the pattern(s) of PNX occurrence in DRG neurons of subsequent neuromeres along the porcine spinal cord, (ii) their intraganglionic distribution and (iii) the pattern(s) of PNX co-occurrence with other biologically active agents. PNX was found in approximately 20% of all nerve cells of each DRG examined; the largest subpopulation of PNX-positive (PNX+) cells were small-diameter neurons, accounting for 74% of all PNX-positive neurons found. PNX+ neurons also co-contained calcitonin gene-related peptide (CGRP; 96.1%), substance P (SP; 88.5%), nitric oxide synthase (nNOS; 52.1%), galanin (GAL; 20.7%), calretinin (CRT; 10%), pituitary adenylate cyclase-activating polypeptide (PACAP; 7.4%), cocaine and amphetamine related transcript (CART; 5.1%) or somatostatin (SOM; 4.7%). Although the exact function of PNX in DRGs is not yet known, the high degree of co-localization of this peptide with the main nociceptive transmitters SP and CGRP may suggests its function in modulation of pain transmission.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Hormônios Peptídicos , Suínos , Animais , Ratos , Neurônios Aferentes , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Neurônios , Substância P , Gânglios Espinais , Dor , Mamíferos
10.
PLoS One ; 18(11): e0293372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37934736

RESUMO

Poking palpebral conjunctiva evoked upper-eyelid retraction during ophthalmic surgery. Iatrogenic eyelid ptosis occurred if eyelid branch of lachrymal nerve was sectioned. Mesencephalic trigeminal nucleus (Vme) neurons were labeled when tracer injected into lachrymal nerve innervating eyelid Mueller's muscle. Masseter afferent Vme neurons projecting to oculomotor nucleus (III) was observed in toad and rat, which helps amphibians to stare prey when they open mouth widely to prey. We hypothesized single Vme neurons may have peripheral collaterals to both eyelid and masseter muscles. WGA-594 was injected into upper eyelid, and WGA-488 was simultaneously delivered into ipsilateral masseter muscle in the same rat. Then, double labeled Vme neurons were found under both conventional and confocal microscope. Meanwhile, contact of WGA-594 positive eyelid afferent Vme neurons with WGA-488 labeled masseter afferent ones were observed sometimes. Combined with our previous observation of oculomotor projection Vme neurons, we thought WGA-594/488 double labeled Vme cells, at least some of them, are oculomotor projecting ones. Contact between eyelid and masseter afferent Vme neurons are supposed to be electrotonically coupled, based on a line of previous studies. If exogenous or genetic factors make these Vme neurons misinterpret masseter input as eyelid afferent signals, these Vme neurons might feedforward massages to eyelid retractor motoneurons in the III. Besides, oculomotor projecting Vme neurons might be co-fired by adjacent masseter afferent Vme neurons through electrotonic coupling once the masseter muscle is activated. In these cases, Marcus Gunn Syndrome might occur. This finding leads to a new hypothesis for the Syndrome.


Assuntos
Blefaroptose , Músculo Masseter , Ratos , Animais , Ratos Gunn , Neurônios Aferentes , Neurônios Motores , Pálpebras , Tegmento Mesencefálico , Núcleos do Trigêmeo , Nervo Trigêmeo/fisiologia
11.
Int. j. morphol ; 41(4): 996-1002, ago. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1514365

RESUMO

SUMMARY: Many students regard neuroanatomy as a terrifying subject due to the complicated neuronal connections. Purpose of this research was to promote the easy and logical learning of neuroanatomy by systematizing a rule "three neurons of afferent nerves." The rule, in which the second neuron decussates and reaches the thalamus, was applied to as many structures as possible. The three neurons are drawn in a constant pattern to intuitively demonstrate the rule. The rule could be applied not only to the spinothalamic tract, medial lemniscus pathway, sensory cranial nerves (visual pathway, trigeminothalamic tract, taste pathway, and auditory pathway) and ascending reticular activating system, but also to the pontocerebellum (afferent to cerebrum), basal nuclei (direct pathway), and limbic system (medial limbic circuit). Exceptionally, some afferent nerves do not exactly follow the suggested rule. This simple rule, which corresponds to many pathways of the neuroanatomy, is expected to make the learning by novice students easier.


Muchos estudiantes consideran la neuroanatomía como un tema aterrador debido a las complicadas conexiones neuronales. El propósito de esta investigación fue promover el aprendizaje fácil y lógico de la neuroanatomía mediante la sistematización de una regla "tres neuronas de los nervios aferentes". La regla, en la que la segunda neurona se decusa y llega al tálamo, se aplicó a todas las estructuras cuando esto fue posible. Las tres neuronas se dibujan en un patrón constante para demostrar la regla intuitivamente. La regla podría aplicarse no solo al tracto espinotalámico, la vía del lemnisco medial, los nervios craneales sensoriales (vía visual, tracto trigeminotalámico, vía gustativa y vía auditiva) y el sistema de activación reticular ascendente, sino también al pontocerebelo (aferente al cerebro), núcleos basales (vía directa) y sistema límbico (circuito límbico medial). Excepcionalmente, algunos nervios aferentes no siguen exactamente la regla sugerida. Se espera que esta simple regla, que corresponde a muchas vías de la neuroanatomía, facilite el aprendizaje de los estudiantes principiantes.


Assuntos
Humanos , Neuroanatomia/educação , Neurônios Aferentes , Educação de Graduação em Medicina , Aprendizagem
12.
Am J Physiol Renal Physiol ; 325(2): F150-F163, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318991

RESUMO

Urothelial cells, which play an essential role in barrier function, are also thought to play a sensory role in bladder physiology by releasing signaling molecules in response to sensory stimuli that act upon adjacent sensory neurons. However, it is challenging to study this communication due to the overlap in receptor expression and proximity of urothelial cells to sensory neurons. To overcome this challenge, we developed a mouse model where we can directly stimulate urothelial cells using optogenetics. We crossed a uroplakin II (UPK2) cre mouse with a mouse that expresses the light-activated cation channel channelrhodopsin-2 (ChR2) in the presence of cre expression. Optogenetic stimulation of urothelial cells cultured from UPK2-ChR2 mice initiates cellular depolarization and release of ATP. Cystometry recordings demonstrated that optical stimulation of urothelial cells increases bladder pressure and pelvic nerve activity. Increases in bladder pressure persisted, albeit to a lesser extent, when the bladder was excised in an in vitro preparation. The P2X receptor antagonist PPADS significantly reduced optically evoked bladder contractions in vivo and ex vivo. Furthermore, corresponding nerve activity was also inhibited with PPADS. Our data suggest that urothelial cells can initiate robust bladder contractions via sensory nerve signaling or contractions through local signaling mechanisms. These data support a foundation of literature demonstrating communication between sensory neurons and urothelial cells. Importantly, with further use of these optogenetic tools, we hope to scrutinize this signaling mechanism, its importance for normal micturition and nociception, and how it may be altered in pathophysiological conditions.NEW & NOTEWORTHY Urothelial cells play a sensory role in bladder function. However, it has been particularly challenging to study this communication as both sensory neurons and urothelial cells express similar sensory receptors. Here we demonstrate using an optogenetic technique, that specific urothelial stimulation alone resulted in bladder contractions. This approach will have a long-lasting impact on how we study urothelial-to-sensory neuron communication and the changes that occur under disease conditions.


Assuntos
Optogenética , Bexiga Urinária , Camundongos , Animais , Bexiga Urinária/metabolismo , Pelve , Células Receptoras Sensoriais/metabolismo , Neurônios Aferentes/metabolismo , Células Epiteliais/metabolismo , Trifosfato de Adenosina/metabolismo , Urotélio/metabolismo
13.
Neuron ; 111(14): 2184-2200.e7, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37192624

RESUMO

Vagal sensory neurons monitor mechanical and chemical stimuli in the gastrointestinal tract. Major efforts are underway to assign physiological functions to the many distinct subtypes of vagal sensory neurons. Here, we use genetically guided anatomical tracing, optogenetics, and electrophysiology to identify and characterize vagal sensory neuron subtypes expressing Prox2 and Runx3 in mice. We show that three of these neuronal subtypes innervate the esophagus and stomach in regionalized patterns, where they form intraganglionic laminar endings. Electrophysiological analysis revealed that they are low-threshold mechanoreceptors but possess different adaptation properties. Lastly, genetic ablation of Prox2 and Runx3 neurons demonstrated their essential roles for esophageal peristalsis in freely behaving mice. Our work defines the identity and function of the vagal neurons that provide mechanosensory feedback from the esophagus to the brain and could lead to better understanding and treatment of esophageal motility disorders.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core , Esôfago , Motilidade Gastrointestinal , Proteínas de Homeodomínio , Células Receptoras Sensoriais , Nervo Vago , Animais , Camundongos , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Esôfago/inervação , Esôfago/metabolismo , Esôfago/fisiologia , Motilidade Gastrointestinal/genética , Motilidade Gastrointestinal/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mecanorreceptores/fisiologia , Neurônios Aferentes/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Estômago/inervação , Estômago/metabolismo , Estômago/fisiologia , Nervo Vago/fisiologia
14.
Mol Pain ; 19: 17448069231152125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36604795

RESUMO

Nerve injury can induce aberrant changes in ion channels, enzymes, and cytokines/chemokines in the dorsal root ganglia (DRGs); these changes are due to or at least partly governed by transcription factors that contribute to the genesis of neuropathic pain. However, the involvement of transcription factors in neuropathic pain is poorly understood. In this study, we report that transcription factor (TF) ETS proto-oncogene 1 (ETS1) is required for the initiation and development of neuropathic pain. Sciatic nerve chronic constrictive injury (CCI, a clinical neuropathic pain model) increases ETS1 expression in the injured male mouse DRG. Blocking this upregulation alleviated CCI-induced mechanical allodynia and thermal hyperalgesia, with no apparent effect on locomotor function. Mimicking this upregulation results in the genesis of nociception hypersensitivity; mechanistically, nerve injury-induced ETS1 upregulation promotes the expression of histone deacetylase 1 (HDAC1, a key initiator of pain) via enhancing its binding activity to the HDAC1 promotor, leading to the elevation of spinal central sensitization, as evidenced by increased expression of p-ERK1/2 and GFAP in the dorsal spinal horn. It appears that the ETS1/HDAC1 axis in DRG may have a critical role in the development and maintenance of neuropathic pain, and ETS1 is a potential therapeutic target in neuropathic pain.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Animais , Masculino , Camundongos , Gânglios Espinais/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/farmacologia , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Neurônios Aferentes/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Proto-Oncogenes , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo , Ratos
15.
Mol Pain ; 19: 17448069221148958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36526445

RESUMO

The role of Aß-afferents in somatosensory function is often oversimplified as low threshold mechanoreceptors (LTMRs) with large omission of Aß-afferent involvement in nociception. Recently, we have characterized Aß-afferent neurons which have large diameter somas in the trigeminal ganglion (TG) and classified them into non-nociceptive and nociceptive-like TG afferent neurons based on their electrophysiological properties. Here, we extend our previous observations to further characterize electrophysiological properties of trigeminal Aß-afferent neurons and investigate their mechanical and chemical sensitivity by patch-clamp recordings from large-diameter TG neurons in ex vivo TG preparations of adult male and female rats. Based on cluster analysis of electrophysiological properties, trigeminal Aß-afferent neurons can be classified into five discrete types (type I, IIa, IIb, IIIa, and IIIb), which responded differentially to mechanical stimulation and sensory mediators including serotonin (5-HT), acetylcholine (ACh) and adenosine triphosphate (ATP). Notably, type I neuron action potential (AP) was small in amplitude, width was narrow in duration, and peak dV/dt repolarization was great with no deflection observed, whereas discretely graded differences were observed for type IIa, IIb, IIIa, and IIIb, as AP increased in amplitude, width broadened in duration, and peak dV/dt repolarization reduced with the emergence of increasing deflection. Type I, IIa, and IIb neurons were mostly mechanically sensitive, displaying robust and rapidly adapting mechanically activated current (IMA) in response to membrane displacement, while IIIa and IIIb, conversely, were almost all mechanically insensitive. Interestingly, mechanical insensitivity coincided with increased sensitivity to 5-HT and ACh. Together, type I, IIa and IIb display features of LTMR Aß-afferent neurons while type IIIa and type IIIb show properties of nociceptive Aß-afferent neurons.


Assuntos
Neurônios Aferentes , Serotonina , Ratos , Masculino , Feminino , Animais , Neurônios Aferentes/fisiologia , Nociceptores/fisiologia , Mecanorreceptores , Neurônios , Potenciais de Ação/fisiologia , Gânglio Trigeminal
16.
Pain ; 164(5): 1012-1026, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279179

RESUMO

ABSTRACT: The bladder wall is innervated by a complex network of afferent nerves that detect bladder stretch during filling. Sensory signals, generated in response to distension, are relayed to the spinal cord and brain to evoke physiological and painful sensations and regulate urine storage and voiding. Hyperexcitability of these sensory pathways is a key component in the development of chronic bladder hypersensitivity disorders including interstitial cystitis/bladder pain syndrome and overactive bladder syndrome. Despite this, the full array of ion channels that regulate bladder afferent responses to mechanical stimuli have yet to be determined. Here, we investigated the role of low-voltage-activated T-type calcium (Ca V 3) channels in regulating bladder afferent responses to distension. Using single-cell reverse-transcription polymerase chain reaction and immunofluorescence, we revealed ubiquitous expression of Ca V 3.2, but not Ca V 3.1 or Ca V 3.3, in individual bladder-innervating dorsal root ganglia neurons. Pharmacological inhibition of Ca V 3.2 with TTA-A2 and ABT-639, selective blockers of T-type calcium channels, dose-dependently attenuated ex-vivo bladder afferent responses to distension in the absence of changes to muscle compliance. Further evaluation revealed that Ca V 3.2 blockers significantly inhibited both low- and high-threshold afferents, decreasing peak responses to distension, and delayed activation thresholds, thereby attenuating bladder afferent responses to both physiological and noxious distension. Nocifensive visceromotor responses to noxious bladder distension in vivo were also significantly reduced by inhibition of Ca V 3 with TTA-A2. Together, these data provide evidence of a major role for Ca V 3.2 in regulating bladder afferent responses to bladder distension and nociceptive signalling to the spinal cord.


Assuntos
Canais de Cálcio Tipo T , Cistite Intersticial , Humanos , Bexiga Urinária/inervação , Neurônios Aferentes/fisiologia , Canais de Cálcio Tipo T/metabolismo , Vias Aferentes/fisiologia , Cistite Intersticial/metabolismo , Gânglios Espinais/metabolismo
17.
Eur J Pharmacol ; 933: 175272, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36108733

RESUMO

To determine the role of ß3-adrenoceptor agonists on bladder sensory facilitation related to bladder myogenic contractile activities in bladder hyperactivity, we investigated the effects of vibegron, a ß3-adrenoceptor agonist, on the bladder and sensory function by evaluating cystometry and mechanosensitive single-unit afferent activities (SAAs), respectively, in a male rat model of bladder outlet obstruction (BOO). BOO was created by partial ligation of the urethra. Ten days after the surgical procedure, cystometric and SAA measurements were taken under two distinct conditions: a conscious-restrained condition, in which the bladder was constantly filled with saline, and a urethane-anesthetized condition involving an isovolumetric process with saline. For each measurement, vibegron (3 mg/kg) or its vehicle was administered intravenously after the data were reproducibly stable. In addition, the expression of ß3-adrenoceptor and substance P (SP), a sensory neuropeptide, in the bladder was further evaluated following immunohistochemical procedures. Number of non-voiding contractions (NVCs) in cystometry was decreased after vibegron-administration, which was a significant change from vehicle group. Number of microcontractions and SAAs of Aδ- and C-fibers were significantly decreased by vibegron-administration. Furthermore, ß3-adrenocepor and SP were co-expressed in the suburothelium layer of the bladder. These findings indicated that vibegron showed inhibitory effects on NVCs and microcontractions of the bladder, and SAAs of the Aδ- and C-fibers in BOO rats. The study suggested that vibegron can partly inhibit the mechanosensitive afferent transduction via Aδ- and C-fibers by suppressing bladder myogenic contractile activities in the rat bladder hyperactivity associated with BOO.


Assuntos
Obstrução do Colo da Bexiga Urinária , Bexiga Urinária , Animais , Masculino , Neurônios Aferentes , Pirimidinonas , Pirrolidinas , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos/metabolismo , Substância P/metabolismo , Substância P/farmacologia , Uretana/metabolismo , Uretana/farmacologia , Obstrução do Colo da Bexiga Urinária/tratamento farmacológico
18.
J Comp Neurol ; 530(17): 3072-3103, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35988033

RESUMO

Anatomical tracing studies examining the vagal system can conflate details of sensory afferent and motor efferent neurons. Here, we used a serotype of adeno-associated virus that transports retrogradely and exhibits selective tropism for vagal afferents, to map their soma location and central termination sites within the nucleus of the solitary tract (NTS). We examined the vagal sensory afferents innervating the trachea, duodenum, stomach, or heart, and in some animals, from two organs concurrently. We observed no obvious somatotopy in the somata distribution within the nodose ganglion. The central termination patterns of afferents from different organs within the NTS overlap substantially. Convergence of vagal afferent inputs from different organs onto single NTS neurons is observed. Abdominal and thoracic afferents terminate throughout the NTS, including in the rostral NTS, where the 7th cranial nerve inputs are known to synapse. To address whether the axonal labeling produced by viral transduction is so widespread because it fills axons traveling to their targets, and not just terminal fields, we labeled pre and postsynaptic elements of vagal afferents in the NTS . Vagal afferents form multiple putative synapses as they course through the NTS, with each vagal afferent neuron distributing sensory signals to multiple second-order NTS neurons. We observe little selectivity between vagal afferents from different visceral targets and NTS neurons with common neurochemical phenotypes, with afferents from different organs making close appositions with the same NTS neuron. We conclude that specific viscerosensory information is distributed widely within the NTS and that the coding of this input is probably determined by the intrinsic properties and projections of the second-order neuron.


Assuntos
Núcleo Solitário , Nervo Vago , Animais , Neurônios Motores , Neurônios Aferentes/fisiologia , Gânglio Nodoso , Ratos , Núcleo Solitário/fisiologia , Nervo Vago/fisiologia
19.
J Neurophysiol ; 128(4): 739-750, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36043704

RESUMO

Skeletal muscle contraction triggers the exercise pressor reflex (EPR) to regulate the cardiovascular system response to exercise. During muscle contraction, substances are released that generate action potential activity in group III and IV afferents that mediate the EPR. Some of these substances increase afferent activity via G-protein-coupled receptor (GPCR) activation, but the mechanisms are incompletely understood. We were interested in determining if tetrodotoxin-resistant (TTX-R) voltage-dependent sodium channels (NaV) were involved and investigated the effect of a mixture of such compounds (bradykinin, prostaglandin, norepinephrine, and ATP, called muscle metabolites). Using whole cell patch-clamp electrophysiology, we show that the muscle metabolites significantly increased TTX-R NaV currents. The rise time of this enhancement averaged ∼2 min, which suggests the involvement of a diffusible second messenger pathway. The effect of muscle metabolites on the current-voltage relationship, channel activation and inactivation kinetics support NaV1.9 channels as the target for this enhancement. When applied individually at the concentration used in the mixture, only prostaglandin and bradykinin significantly enhanced NaV current, but the sum of these enhancements was <1/3 that observed when the muscle metabolites were applied together. This suggests synergism between the activated GPCRs to enhance NaV1.9 current. When applied at a higher concentration, all four substances could enhance the current, which demonstrates that the GPCRs activated by each metabolite can enhance channel activity. The enhancement of NaV1.9 channel activity is a likely mechanism by which GPCR activation increases action potential activity in afferents generating the EPR.NEW & NOTEWORTHY G-protein-coupled receptor (GPCR) activation increases action potential activity in muscle afferents to produce the exercise pressor reflex (EPR), but the mechanisms are incompletely understood. We provide evidence that NaV1.9 current is synergistically enhanced by application of a mixture of metabolites potentially released during muscle contraction. The enhancement of NaV1.9 current is likely one mechanism by which GPCR activation generates the EPR and the inappropriate activation of the EPR in patients with cardiovascular disease.


Assuntos
Bradicinina , Gânglios Espinais , Canal de Sódio Disparado por Voltagem NAV1.9/metabolismo , Trifosfato de Adenosina/metabolismo , Bradicinina/farmacologia , Gânglios Espinais/fisiologia , Humanos , Músculos , Neurônios Aferentes/fisiologia , Norepinefrina/farmacologia , Prostaglandinas/metabolismo , Prostaglandinas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia
20.
Muscle Nerve ; 66(4): 384-396, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35779064

RESUMO

Sensory afferent fibers are an important component of motor nerves and compose the majority of axons in many nerves traditionally thought of as "pure" motor nerves. These sensory afferent fibers innervate special sensory end organs in muscle, including muscle spindles that respond to changes in muscle length and Golgi tendons that detect muscle tension. Both play a major role in proprioception, sensorimotor extremity control feedback, and force regulation. After peripheral nerve injury, there is histological and electrophysiological evidence that sensory afferents can reinnervate muscle, including muscle that was not the nerve's original target. Reinnervation can occur after different nerve injury and muscle models, including muscle graft, crush, and transection injuries, and occurs in a nonspecific manner, allowing for cross-innervation to occur. Evidence of cross-innervation includes the following: muscle spindle and Golgi tendon afferent-receptor mismatch, vagal sensory fiber reinnervation of muscle, and cutaneous afferent reinnervation of muscle spindle or Golgi tendons. There are several notable clinical applications of sensory reinnervation and cross-reinnervation of muscle, including restoration of optimal motor control after peripheral nerve repair, flap sensation, sensory protection of denervated muscle, neuroma treatment and prevention, and facilitation of prosthetic sensorimotor control. This review focuses on sensory nerve regeneration and reinnervation in muscle, and the clinical applications of this phenomena. Understanding the physiology and limitations of sensory nerve regeneration and reinnervation in muscle may ultimately facilitate improvement of its clinical applications.


Assuntos
Traumatismos dos Nervos Periféricos , Vias Aferentes , Humanos , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Regeneração Nervosa/fisiologia , Neurônios Aferentes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA