Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Alzheimers Dis ; 99(2): 639-656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728184

RESUMO

Background: Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN 1 E280A) is characterized by functional impairment and the death of cholinergic neurons as a consequence of amyloid-ß (Aß) accumulation and abnormal phosphorylation of the tau protein. Currently, there are no available therapies that can cure FAD. Therefore, new therapies are urgently needed for treating this disease. Objective: To assess the effect of sildenafil (SIL) on cholinergic-like neurons (ChLNs) harboring the PSEN 1 E280A mutation. Methods: Wild-type (WT) and PSEN 1 E280A ChLNs were cultured in the presence of SIL (25µM) for 24 h. Afterward, proteinopathy, cell signaling, and apoptosis markers were evaluated via flow cytometry and fluorescence microscopy. Results: We found that SIL was innocuous toward WT PSEN 1 ChLNs but reduced the accumulation of intracellular Aß fragments by 87%, decreased the non-physiological phosphorylation of the protein tau at residue Ser202/Thr205 by 35%, reduced the phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by 63%, decreased oxidized DJ-1 at Cys106-SO3 by 32%, and downregulated transcription factor TP53 (tumor protein p53), BH-3-only protein PUMA (p53 upregulated modulator of apoptosis), and cleaved caspase 3 (CC3) expression by 20%, 32%, and 22%, respectively, compared with untreated mutant ChLNs. Interestingly, SIL also ameliorated the dysregulation of acetylcholine-induced calcium ion (Ca2+) influx in PSEN 1 E280A ChLNs. Conclusions: Although SIL showed no antioxidant capacity in the oxygen radical absorbance capacity and ferric ion reducing antioxidant power assays, it might function as an anti-amyloid and antiapoptotic agent and functional neuronal enhancer in PSEN 1 E280A ChLNs. Therefore, the SIL has therapeutic potential for treating FAD.


Assuntos
Doença de Alzheimer , Neurônios Colinérgicos , Mutação , Presenilina-1 , Citrato de Sildenafila , Presenilina-1/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Mutação/genética , Animais , Citrato de Sildenafila/farmacologia , Peptídeos beta-Amiloides/metabolismo , Humanos , Células Cultivadas , Camundongos , Proteínas tau/metabolismo , Proteínas tau/genética , Fosforilação/efeitos dos fármacos , Fenótipo
2.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732223

RESUMO

Alzheimer's disease (AD) is characterized by a loss of neurons in the cortex and subcortical regions. Previously, we showed that the progressive degeneration of subcortical monoaminergic (MAergic) neurons seen in human AD is recapitulated in the APPswe/PS1ΔE9 (APP/PS) transgenic mouse model. Because degeneration of cholinergic (Ach) neurons is also a prominent feature of AD, we examined the integrity of the Ach system in the APP/PS model. The overall density of Ach fibers is reduced in APP/PS1 mice at 12 and 18 months of age but not at 4 months of age. Analysis of basal forebrain Ach neurons shows no loss of Ach neurons in the APP/PS model. Thus, since MAergic systems show overt cell loss at 18 months of age, the Ach system is less vulnerable to neurodegeneration in the APP/PS1 model. We also examined whether the proximity to Aß deposition affected the degeneration of Ach and 5-HT afferents. We found that the areas closer to the edges of compact Aß deposits exhibit a more severe loss of afferents than the areas that are more distal to Aß deposits. Collectively, the results indicate that the APP/PS model recapitulates the degeneration of multiple subcortical neurotransmitter systems, including the Ach system. In addition, the results indicate that Aß deposits cause global as well as local toxicity to subcortical afferents.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Neurônios Colinérgicos , Modelos Animais de Doenças , Placa Amiloide , Presenilina-1 , Animais , Humanos , Camundongos , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Camundongos Transgênicos , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
3.
Cell Rep ; 43(4): 113999, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38554281

RESUMO

Motor neuron (MN) demise is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Post-transcriptional gene regulation can control RNA's fate, and defects in RNA processing are critical determinants of MN degeneration. N6-methyladenosine (m6A) is a post-transcriptional RNA modification that controls diverse aspects of RNA metabolism. To assess the m6A requirement in MNs, we depleted the m6A methyltransferase-like 3 (METTL3) in cells and mice. METTL3 depletion in embryonic stem cell-derived MNs has profound and selective effects on survival and neurite outgrowth. Mice with cholinergic neuron-specific METTL3 depletion display a progressive decline in motor behavior, accompanied by MN loss and muscle denervation, culminating in paralysis and death. Reader proteins convey m6A effects, and their silencing phenocopies METTL3 depletion. Among the m6A targets, we identified transactive response DNA-binding protein 43 (TDP-43) and discovered that its expression is under epitranscriptomic control. Thus, impaired m6A signaling disrupts MN homeostasis and triggers neurodegeneration conceivably through TDP-43 deregulation.


Assuntos
Neurônios Colinérgicos , Metiltransferases , Doenças Neuromusculares , Animais , Humanos , Camundongos , Adenosina/metabolismo , Adenosina/análogos & derivados , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Doenças Neuromusculares/metabolismo , Doenças Neuromusculares/patologia
4.
Cell Mol Gastroenterol Hepatol ; 17(6): 907-921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38272444

RESUMO

BACKGROUND & AIMS: Intestinal inflammation is associated with loss of enteric cholinergic neurons. Given the systemic anti-inflammatory role of cholinergic innervation, we hypothesized that enteric cholinergic neurons similarly possess anti-inflammatory properties and may represent a novel target to treat inflammatory bowel disease. METHODS: Mice were fed 2.5% dextran sodium sulfate (DSS) for 7 days to induce colitis. Cholinergic enteric neurons, which express choline acetyltransferase (ChAT), were focally ablated in the midcolon of ChAT::Cre;R26-iDTR mice by local injection of diphtheria toxin before colitis induction. Activation of enteric cholinergic neurons was achieved using ChAT::Cre;R26-ChR2 mice, in which ChAT+ neurons express channelrhodopsin-2, with daily blue light stimulation delivered via an intracolonic probe during the 7 days of DSS treatment. Colitis severity, ENS structure, and smooth muscle contractility were assessed by histology, immunohistochemistry, quantitative polymerase chain reaction, organ bath, and electromyography. In vitro studies assessed the anti-inflammatory role of enteric cholinergic neurons on cultured muscularis macrophages. RESULTS: Ablation of ChAT+ neurons in DSS-treated mice exacerbated colitis, as measured by weight loss, colon shortening, histologic inflammation, and CD45+ cell infiltration, and led to colonic dysmotility. Conversely, optogenetic activation of enteric cholinergic neurons improved colitis, preserved smooth muscle contractility, protected against loss of cholinergic neurons, and reduced proinflammatory cytokine production. Both acetylcholine and optogenetic cholinergic neuron activation in vitro reduced proinflammatory cytokine expression in lipopolysaccharide-stimulated muscularis macrophages. CONCLUSIONS: These findings show that enteric cholinergic neurons have an anti-inflammatory role in the colon and should be explored as a potential inflammatory bowel disease treatment.


Assuntos
Colina O-Acetiltransferase , Neurônios Colinérgicos , Colite , Sulfato de Dextrana , Modelos Animais de Doenças , Optogenética , Animais , Colite/patologia , Colite/induzido quimicamente , Neurônios Colinérgicos/patologia , Neurônios Colinérgicos/metabolismo , Optogenética/métodos , Camundongos , Colina O-Acetiltransferase/metabolismo , Colina O-Acetiltransferase/genética , Sulfato de Dextrana/toxicidade , Sistema Nervoso Entérico/patologia , Inflamação/patologia , Colo/patologia , Colo/inervação , Macrófagos/metabolismo , Macrófagos/imunologia , Músculo Liso/patologia , Músculo Liso/metabolismo , Masculino
5.
Cell Mol Gastroenterol Hepatol ; 12(2): 507-545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33741501

RESUMO

BACKGROUND & AIMS: Hirschsprung's disease (HSCR) is a congenital intestinal motility disorder defined by the absence of enteric neuronal cells (ganglia) in the distal gut. The development of HSCR-associated enterocolitis remains a life-threatening complication. Absence of enteric ganglia implicates innervation of acetylcholine-secreting (cholinergic) nerve fibers. Cholinergic signals have been reported to control excessive inflammation, but the impact on HSCR-associated enterocolitis is unknown. METHODS: We enrolled 44 HSCR patients in a prospective multicenter study and grouped them according to their degree of colonic mucosal acetylcholinesterase-positive innervation into low-fiber and high-fiber patient groups. The fiber phenotype was correlated with the tissue cytokine profile as well as immune cell frequencies using Luminex analysis and fluorescence-activated cell sorting analysis of colonic tissue and immune cells. Using confocal immunofluorescence microscopy, macrophages were identified in close proximity to nerve fibers and characterized by RNA-seq analysis. Microbial dysbiosis was analyzed in colonic tissue using 16S-rDNA gene sequencing. Finally, the fiber phenotype was correlated with postoperative enterocolitis manifestation. RESULTS: The presence of mucosal nerve fiber innervation correlated with reduced T-helper 17 cytokines and cell frequencies. In high-fiber tissue, macrophages co-localized with nerve fibers and expressed significantly less interleukin 23 than macrophages from low-fiber tissue. HSCR patients lacking mucosal nerve fibers showed microbial dysbiosis and had a higher incidence of postoperative enterocolitis. CONCLUSIONS: The mucosal fiber phenotype might serve as a prognostic marker for enterocolitis development in HSCR patients and may offer an approach to personalized patient care and new therapeutic options.


Assuntos
Neurônios Colinérgicos/patologia , Enterocolite/etiologia , Doença de Hirschsprung/complicações , Mucosa Intestinal/inervação , Mucosa Intestinal/patologia , Acetilcolinesterase/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Citocinas/metabolismo , Disbiose/imunologia , Disbiose/microbiologia , Disbiose/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Doença de Hirschsprung/patologia , Doença de Hirschsprung/cirurgia , Humanos , Lactente , Recém-Nascido , Inflamação/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Masculino , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco
6.
J Gerontol A Biol Sci Med Sci ; 76(6): 1029-1036, 2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32710543

RESUMO

BACKGROUND: A pre-existing neurocognitive disorder (NCD) is a relevant factor for the outcome of surgical patients. To improve understanding of these conditions, we investigated the association between parameters of the cholinergic system and NCD. METHOD: This investigation is part of the BioCog project (www.biocog.eu), which is a prospective multicenter observational study including patients aged 65 years and older scheduled for elective surgery. Patients with a Mini-Mental State Examination (MMSE) score ≤23 points were excluded. Neurocognitive disorder was assessed according to the fifth Diagnostic and Statistical Manual of Mental Disorders criteria. The basal forebrain cholinergic system volume (BFCSV) was assessed with magnetic resonance imaging, the peripheral cholinesterase (ChE) activities with point-of-care measurements, and anticholinergic load by analyzing the long-term medication with anticholinergic scales (Anticholinergic Drug Scale [ADS], Anticholinergic Risk Scale [ARS], Anticholinergic Cognitive Burden Scale [ACBS]). The associations of BFCSV, ChE activities, and anticholinergic scales with NCD were studied with logistic regression analysis, adjusting for confounding factors. RESULTS: A total of 797 participants (mean age 72 years, 42% females) were included. One hundred and eleven patients (13.9%) fulfilled criteria for mild NCD and 82 patients (10.3%) for major NCD criteria. We found that AcetylChE activity was associated with major NCD (odds ratio [95% confidence interval]: [U/gHB] 1.061 [1.010, 1.115]), as well as ADS score ([points] 1.353 [1.063, 1.723]) or ARS score, respectively ([points] 1.623 [1.100, 2.397]) with major NCD. However, we found no association between BFCSV or ButyrylChE activity with mild or major NCD. CONCLUSIONS: AcetylChE activity and anticholinergic load were associated with major NCD. Future research should focus on the association of the cholinergic system and the development of postoperative delirium and postoperative NCD.


Assuntos
Antagonistas Colinérgicos/uso terapêutico , Neurônios Colinérgicos/fisiologia , Transtornos Neurocognitivos/fisiopatologia , Período Pré-Operatório , Acetilcolinesterase/metabolismo , Idoso , Prosencéfalo Basal/diagnóstico por imagem , Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/metabolismo , Antagonistas Colinérgicos/efeitos adversos , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos Neurocognitivos/induzido quimicamente , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/patologia , Neuroimagem , Estudos Prospectivos
7.
Life Sci ; 264: 118688, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130074

RESUMO

AIMS: Many gastrointestinal (GI) disorders are developmental in origin and are caused by abnormal enteric nervous system (ENS) formation. Maternal vitamin A deficiency (VAD) during pregnancy affects multiple central nervous system developmental processes during embryogenesis and fetal life. Here, we evaluated whether maternal diet-induced VAD during pregnancy alone can cause changes in the ENS that lead to GI dysfunction in rat offspring. MAIN METHODS: Rats were selected to construct animal models of normal VA, VA deficiency and VA supplementation. The fecal water content, total gastrointestinal transmission time and colonic motility were measured to evaluate gastrointestinal function of eight-week-old offspring rats. The expression levels of RARß, SOX10, cholinergic (ChAT) and nitrergic (nNOS) enteric neurons in colon tissues were detected through western blot and immunofluorescence. Primary enteric neurospheres were treated with retinoic acid (RA), infection with Ad-RARß and siRARß adenovirus, respectively. KEY FINDINGS: Our data revealed marked reductions in the mean densities of cholinergic and nitrergic enteric neurons in the colon and GI dysfunction evidenced by mild intestinal flatulence, increased fecal water content, prolonged total GI transit time and reduced colon motility in adult offspring of the VAD group. Interestingly, maternal VA supplementation (VAS) during pregnancy rescued these changes. In addition, in vitro experiments demonstrated that exposure to appropriate doses of RA promoted enteric neurosphere differentiation into cholinergic and nitrergic neurons, possibly by upregulating RARß expression, leading to enhanced SOX10 expression. SIGNIFICANCE: Maternal VAD during pregnancy is an environmental risk factor for GI dysfunction in rat offspring.


Assuntos
Neurônios Colinérgicos/metabolismo , Gastroenteropatias/metabolismo , Trato Gastrointestinal/metabolismo , Neurônios Nitrérgicos/metabolismo , Receptores do Ácido Retinoico/biossíntese , Deficiência de Vitamina A/sangue , Animais , Células Cultivadas , Neurônios Colinérgicos/patologia , Feminino , Gastroenteropatias/patologia , Trato Gastrointestinal/patologia , Neurônios Nitrérgicos/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley , Receptores do Ácido Retinoico/antagonistas & inibidores , Deficiência de Vitamina A/complicações
8.
Life Sci ; 260: 118388, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890602

RESUMO

Damage to the cholinergic system in central nervous system injuries such as traumatic brain injury (TBI) and neurodegenerative diseases leads to impaired learning and cognition. Neural stem cells (NSCs) have self-renewal capacity and multi-directional differentiation potential and considered the best source of cells for cell replacement therapy. However, how to promote the differentiation of NSCs into neurons is a major challenge in current research. Lhx8 has a specific effect on the development of the cholinergic nervous system, but its exact function is unclear. In this study, we found that Lhx8 could regulate the expression of Growth arrest-specific (GAS)5 which has been implicated in cancer but was less studied in the nervous system. Additionally, results from PCR, fluorescence in situ hybridization, and immunocytochemical analyses showed that GAS5 is mainly expressed in the cytoplasm of hippocampal neural stems cells and promotes their differentiation into neurons; the Morris water maze test demonstrated that GAS5 overexpression restored learning and memory in rats with cholinergic injury. These findings indicate that GAS5, which is regulated by Lhx8, improve brain function following cholinergic nerve injury.


Assuntos
Lesões Encefálicas/fisiopatologia , Neurônios Colinérgicos/patologia , Proteínas com Homeodomínio LIM/metabolismo , Aprendizagem/fisiologia , Memória/fisiologia , Células-Tronco Neurais/patologia , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , Acetilcolina/metabolismo , Animais , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/metabolismo , Regulação da Expressão Gênica , Proteínas com Homeodomínio LIM/genética , Células-Tronco Neurais/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Fatores de Transcrição/genética
9.
Ecotoxicol Environ Saf ; 203: 110975, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678756

RESUMO

Manganese (Mn) produces cholinergic neuronal loss in basal forebrain (BF) region that was related to cognitive dysfunction induced after single and repeated Mn treatment. All processes that generate cholinergic neuronal loss in BF remain to be understood. Mn exposure may produce the reduction of BF cholinergic neurons by increasing amyloid beta (Aß) and phosphorylated Tau (pTau) protein levels, altering heat shock proteins' (HSPs) expression, disrupting proteasome P20S activity and generating oxidative stress. These mechanisms, described to be altered by Mn in regions different than BF, could lead to the memory and learning process alteration produced after Mn exposure. The research performed shows that single and repeated Mn treatment of SN56 cholinergic neurons from BF induces P20S inhibition, increases Aß and pTau protein levels, produces HSP90 and HSP70 proteins expression alteration, and oxidative stress generation, being the last two effects mediated by NRF2 pathway alteration. The increment of Aß and pTau protein levels was mediated by HSPs and proteasome dysfunction. All these mechanisms mediated the cell decline observed after Mn treatment. Our results are relevant because they may assist to reveal the processes leading to the neurotoxicity and cognitive alterations observed after Mn exposure.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Prosencéfalo Basal/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Manganês/toxicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas tau/metabolismo , Animais , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Relação Dose-Resposta a Droga , Poluentes Ambientais/metabolismo , Manganês/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos
11.
PLoS One ; 15(5): e0221669, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32437347

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive disturbance as a consequence of the loss of cholinergic neurons in the brain, neuritic plaques and hyperphosphorylation of TAU protein. Although the underlying mechanisms leading to these events are unclear, mutations in presenilin 1 (PSEN1), e.g., E280A (PSEN1 E280A), are causative factors for autosomal dominant early-onset familial AD (FAD). Despite advances in the understanding of the physiopathology of AD, there are no efficient therapies to date. Limitations in culturing brain-derived live neurons might explain the limited effectiveness of AD research. Here, we show that mesenchymal stromal (stem) cells (MSCs) can be used to model FAD, providing novel opportunities to study cellular mechanisms and to establish therapeutic strategies. Indeed, we cultured MSCs with the FAD mutation PSEN1 E280A and wild-type (WT) PSEN1 from umbilical cords and characterized the transdifferentiation of these cells into cholinergic-like neurons (ChLNs). PSEN1 E280A ChLNs but not WT PSEN1 ChLNs exhibited increased intracellular soluble amyloid precursor protein (sAPPf) fragments and extracellular Aß42 peptide and TAU phosphorylation (at residues Ser202/Thr205), recapitulating the molecular pathogenesis of FAD caused by mutant PSEN1. Furthermore, PSEN1 E280A ChLNs presented oxidative stress (OS) as evidenced by the oxidation of DJ-1Cys106-SH into DJ-1Cys106-SO3 and the detection of DCF-positive cells and apoptosis markers such as activated pro-apoptosis proteins p53, c-JUN, PUMA and CASPASE-3 and the concomitant loss of the mitochondrial membrane potential and DNA fragmentation. Additionally, mutant ChLNs displayed Ca2+ flux dysregulation and deficient acetylcholinesterase (AChE) activity compared to control ChLNs. Interestingly, the inhibitor JNK SP600125 almost completely blocked TAU phosphorylation. Our findings demonstrate that FAD MSC-derived cholinergic neurons with the PSEN1 E280A mutation provide important clues for the identification of targetable pathological molecules.


Assuntos
Doença de Alzheimer , Neurônios Colinérgicos , Células-Tronco Mesenquimais , Presenilina-1 , Cordão Umbilical , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Apoptose , Ácido Aspártico Endopeptidases/metabolismo , Cálcio/metabolismo , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Mutação , Estresse Oxidativo , Presenilina-1/genética , Presenilina-1/metabolismo , Cordão Umbilical/metabolismo , Cordão Umbilical/patologia , Proteínas tau/metabolismo
12.
Mol Med Rep ; 21(3): 1172-1180, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31922229

RESUMO

Alzheimer's disease (AD) is the most prevalent age­related neurodegenerative disorder. It is featured by the progressive accumulation of ß­amyloid (Aß) plaques and neurofibrillary tangles. This can eventually lead to a decrease of cholinergic neurons in the basal forebrain. Stem cell transplantation is an effective treatment for neurodegenerative diseases. Previous studies have revealed that different types of stem or progenitor cells can mitigate cognition impairment in different Alzheimer's disease mouse models. However, understanding the underlying mechanisms of neural stem cell (NSC) therapies for AD requires further investigation. In the present study, the effects and the underlying mechanisms of the treatment of AD by NSCs are reported. The latter were labelled with the enhanced green fluorescent protein (EGFP) prior to implantation into the bilateral hippocampus of an amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic (Tg) mouse model of AD. It was observed that the number of basal forebrain cholinergic neurons was restored and the expression of choline acetyltransferase (ChAT) protein was increased. Moreover, the levels of synaptophysin (SYP), postsynaptic density protein 95 (PSD­95) and microtubule­associated protein (MAP­2) were significantly increased in the hippocampus of NSC­treated AD mice. Notably, spatial learning and memory were both improved after transplantation of NSCs. In conclusion, the present study revealed that NSC transplantation improved learning and memory functions in an AD mouse model. This treatment allowed repairing of basal forebrain cholinergic neurons and increased the expression of the cognition­related proteins SYP, PSD­95 and MAP­2 in the hippocampus.


Assuntos
Doença de Alzheimer , Neurônios Colinérgicos , Aprendizagem , Memória , Células-Tronco Neurais , Presenilina-1 , Transplante de Células-Tronco , Sinapses , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Amiloide/genética , Amiloide/metabolismo , Animais , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Células-Tronco Neurais/transplante , Presenilina-1/biossíntese , Presenilina-1/genética , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia
13.
Mol Neurobiol ; 56(11): 7355-7367, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31037648

RESUMO

Cholinergic transmission is critical to high-order brain functions such as memory, learning, and attention. Alzheimer's disease (AD) is characterized by cognitive decline associated with a specific degeneration of cholinergic neurons. No effective treatment to prevent or reverse the symptoms is known. Part of this might be due to the lack of in vitro models that effectively mimic the relevant features of AD. Here, we describe the characterization of an AD in vitro model using the SH-SY5Y cell line. Exponentially growing cells were maintained in DMEM/F12 medium and differentiation was triggered by the combination of retinoic acid (RA) and BDNF. Both acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) enzymatic activities and immunocontent were determined. For mimicking tau and amyloid-ß pathology, RA + BDNF-differentiated cells were challenged with okadaic acid (OA) or soluble oligomers of amyloid-ß (AßOs) and neurotoxicity was evaluated. RA + BDNF-induced differentiation resulted in remarkable neuronal morphology alterations characterized by increased neurite density. Enhanced expression and enzymatic activities of cholinergic markers were observed compared to RA-differentiation only. Combination of sublethal doses of AßOs and OA resulted in decreased neurite densities, an in vitro marker of synaptopathy. Challenging RA + BDNF-differentiated SH-SY5Y cells with the combination of sublethal doses of OA and AßO, without causing considerable decrease of cell viability, provides an in vitro model which mimics the early-stage pathophysiology of cholinergic neurons affected by AD.


Assuntos
Doença de Alzheimer/patologia , Diferenciação Celular , Neurônios Colinérgicos/patologia , Modelos Biológicos , Neuroblastoma/patologia , Doença de Alzheimer/genética , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neuroblastoma/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Tretinoína/farmacologia
14.
J Pineal Res ; 67(2): e12584, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31050371

RESUMO

Brain insulin resistance, induced by neuroinflammation and oxidative stress, contributes to neurodegeneration, that is, processes that are associated with Aß accumulation and TAU hyperphosphorylation. Here, we tested the effect of chronic administration of melatonin (MLT) on brain insulin resistance and cognition deficits caused by a high-fat diet (HFD) in aged rats. Results showed that MLT supplementation attenuated peripheral insulin resistance and lowered hippocampal oxidative stress levels. Activated microglia and astrocytes and hippocampal levels of TNF-α in HFD-fed rats were reduced by MLT treatment. Melatonin also prevented HFD-induced increases in beta-amyloid (Aß) accumulation and TAU phosphorylation in the hippocampus. In addition, impairments of brain insulin signaling elicited by long-term HFD were restored by MLT treatment, as confirmed by ex vivo insulin stimulation. Importantly, MLT reversed HFD-induced cognitive decline as measured by a water maze test, normalized hippocampal LTP and restored CREB activity and BDNF levels as well as cholinergic neuronal activity in the hippocampus. Collectively, these findings indicate that MLT may exhibit substantial protective effects on cognition, via restoration of brain insulin signaling.


Assuntos
Envelhecimento , Disfunção Cognitiva , Gorduras na Dieta/efeitos adversos , Hipocampo , Resistência à Insulina , Melatonina/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Gorduras na Dieta/farmacologia , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Aprendizagem em Labirinto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
15.
Neurotoxicology ; 73: 175-182, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30978411

RESUMO

Olfactory impairment is an early feature of patients with Parkinson's disease (PD). Retrospective epidemiological studies reported lower scores on the University of Pennsylvania Smell Identification Test (UPSIT) in non-smokers than smokers with PD and showed an inverse correlation between susceptibility to PD and a person's history of smoking. But the mechanisms by which cigarettes affect olfaction in PD are not fully understood. So we investigated the effect of nicotine on the olfactory function in 1-methyl-4-phenyl-1, 2, 3, 6 tetrahydropyridine (MPTP)-treated mice. We observed that nicotine improved locomotor activity and protection against dopaminergic neuron loss in the midbrain in MPTP-treated mice. Compared to controls, MPTP-treated mice showed a deficit of odor discrimination and odor detection, which were alleviated by nicotine treatment. But no significant changes were found in olfactory memory in MPTP-treated mice. Moreover, we detected a marked decrease of Choline acetyltransferase (ChAT) expression in the olfactory bulb (OB) in MPTP-treated mice, which was also attenuated by nicotine administration. In addition, nicotine ameliorated the loss of cholinergic neurons and dopaminergic innervation in the horizontal limb of the diagonal band (HDB), which is the primary origin of cholinergic input to the OB. Our results suggested that nicotine could improve the olfactory impairment by protecting cholinergic systems in the OB of MPTP-treated mice. And nicotine protection of cholinergic systems in the OB is relevant to attenuating dopaminergic neuron loss in the midbrain and HDB.


Assuntos
Antiparkinsonianos/farmacologia , Comportamento Animal/efeitos dos fármacos , Intoxicação por MPTP/tratamento farmacológico , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Bulbo Olfatório/efeitos dos fármacos , Percepção Olfatória/efeitos dos fármacos , Olfato/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Locomoção/efeitos dos fármacos , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Bulbo Olfatório/fisiopatologia , Transdução de Sinais , Tirosina 3-Mono-Oxigenase/metabolismo
16.
J Alzheimers Dis ; 67(3): 893-910, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30689579

RESUMO

Alzheimer's disease (AD) occurs as either an autosomal dominant inherited disease or sporadically. While familial mutant genes can be expressed in cells or in animal models to assess dysregulated functions, sporadic AD cannot be replicated in models given our lack of understanding of causality. Furthermore, the study of sporadic forms of AD is difficult given the inaccessibility of brain tissues in living individuals and the manifestation of symptoms years after the onset of disease. Here, the objective was to assess if induced pluripotent stem cell-derived neurons from well-ascertained sporadic AD individuals could represent potential cellular models to determine the underlying molecular mechanisms of disease. We used cryopreserved peripheral blood mononuclear cells from three well-ascertained sporadic AD and three non-cognitively impaired (NCI) individuals of the CIMA-Q cohort to obtain iPSC-derived neurons. Microtubule associated protein 2 was decreased in AD neurons, whereas expression of AD-associated amyloid precursor protein, tau, and amyloid-ß peptide was similar in AD and NCI individuals. RNA sequencing identified several upregulated and downregulated mRNAs in AD relative to NCI neurons. Of these, complement Factor H (CFH), signal regulatory protein beta1 (SIRPB1), and insulin like growth factor binding protein 5 (IGFBP5) were previously associated with AD. In addition, several transcription factors not previously associated with AD, but involved in neuronal proliferation and differentiation were differentially expressed. The results identify novel avenues for the study of the underlying causes of sporadic AD and support the establishment of additional lines to identify mechanisms of disease in sporadic AD individuals.


Assuntos
Doença de Alzheimer/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Feminino , Imunofluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Neurônios/citologia , Neurônios/metabolismo , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Sequenciamento do Exoma , Proteínas tau/metabolismo
17.
Sci Rep ; 8(1): 14776, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283042

RESUMO

Stem cell transplantation offers a potentially transformative approach to treating neurodegenerative disorders. The safety of cellular therapies is established in multiple clinical trials, including our own in amyotrophic lateral sclerosis. To initiate similar trials in Alzheimer's disease, efficacious cell lines must be identified. Here, we completed a preclinical proof-of-concept study in the APP/PS1 murine model of Alzheimer's disease. Human neural stem cell transplantation targeted to the fimbria fornix significantly improved cognition in two hippocampal-dependent memory tasks at 4 and 16 weeks post-transplantation. While levels of synapse-related proteins and cholinergic neurons were unaffected, amyloid plaque load was significantly reduced in stem cell transplanted mice and associated with increased recruitment of activated microglia. In vitro, these same neural stem cells induced microglial activation and amyloid phagocytosis, suggesting an immunomodulatory capacity. Although long-term transplantation resulted in significant functional and pathological improvements in APP/PS1 mice, stem cells were not identified by immunohistochemistry or PCR at the study endpoint. These data suggest integration into native tissue or the idea that transient engraftment may be adequate for therapeutic efficacy, reducing the need for continued immunosuppression. Overall, our results support further preclinical development of human neural stem cells as a safe and effective therapy for Alzheimer's disease.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/genética , Células-Tronco Neurais/patologia , Transplante de Células-Tronco , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Terapia de Imunossupressão/métodos , Memória/fisiologia , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Fagocitose/genética , Sinapses/genética , Sinapses/metabolismo
18.
Neurobiol Dis ; 117: 125-136, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859871

RESUMO

Cholinergic basal forebrain neurons of the nucleus basalis of Meynert (nbM) regulate attentional and memory function and are exquisitely prone to tau pathology and neurofibrillary tangle (NFT) formation during the progression of Alzheimer's disease (AD). nbM neurons require the neurotrophin nerve growth factor (NGF), its cognate receptor TrkA, and the pan-neurotrophin receptor p75NTR for their maintenance and survival. Additionally, nbM neuronal activity and cholinergic tone are regulated by the expression of nicotinic (nAChR) and muscarinic (mAChR) acetylcholine receptors as well as receptors modulating glutamatergic and catecholaminergic afferent signaling. To date, the molecular and cellular relationships between the evolution of tau pathology and nbM neuronal survival remain unknown. To address this knowledge gap, we profiled cholinotrophic pathway genes within nbM neurons immunostained for pS422, a pretangle phosphorylation event preceding tau C-terminal truncation at D421, or dual-labeled for pS422 and TauC3, a later stage tau neo-epitope revealed by this same C-terminal truncation event, via single-population custom microarray analysis. nbM neurons were obtained from postmortem tissues from subjects who died with an antemortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or mild/moderate AD. Quantitative analysis revealed significant downregulation of mRNAs encoding TrkA as well as TrkB, TrkC, and the Trk-mediated downstream pro-survival kinase Akt in pS422+ compared to unlabeled, pS422-negative nbM neurons. In addition, pS422+ neurons displayed a downregulation of transcripts encoding NMDA receptor subunit 2B, metabotropic glutamate receptor 2, D2 dopamine receptor, and ß1 adrenoceptor. By contrast, transcripts encoding p75NTR were downregulated in dual-labeled pS422+/TauC3+ neurons. Appearance of the TauC3 epitope was also associated with an upregulation of the α7 nAChR subunit and differential downregulation of the ß2 nAChR subunit. Notably, we found that gene expression patterns for each cell phenotype did not differ with clinical diagnosis. However, linear regression revealed that global cognition and Braak stage were predictors of select transcript changes within both unlabeled and pS422+/TauC3- neurons. Taken together, these cell phenotype-specific gene expression profiling data suggest that dysregulation of neurotrophic and neurotransmitter signaling is an early pathogenic mechanism associated with NFT formation in vulnerable nbM neurons and cognitive decline in AD, which may be amenable to therapeutic intervention early in the disease process.


Assuntos
Doença de Alzheimer/patologia , Núcleo Basal de Meynert/patologia , Neurônios Colinérgicos/patologia , Progressão da Doença , Fatores de Crescimento Neural , Emaranhados Neurofibrilares/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Núcleo Basal de Meynert/metabolismo , Neurônios Colinérgicos/metabolismo , Feminino , Humanos , Masculino , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Receptor de Fator de Crescimento Neural/genética , Receptor de Fator de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Receptores de Neurotransmissores/genética , Receptores de Neurotransmissores/metabolismo
19.
Neurobiol Aging ; 67: 10-20, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29609077

RESUMO

The degeneration of basal forebrain cholinergic neurons (BFCNs) in Alzheimer's disease (AD) contributes to cognitive impairment. Nerve growth factor (NGF) secreted in the cerebral cortex is necessary for the phenotypic maintenance of BFCNs. AD is associated with disturbances in NGF metabolism, leading to reduced mature NGF levels and to an accumulation of its precursor, proNGF. We previously described that, in rats, this neurotrophic imbalance is sufficient to induce a loss of cortical cholinergic synapses. In the present study, we investigated whether this neurotrophic imbalance can produce an AD-like retrograde degeneration of BFCNs. Using a combination of retrograde labeling and quantitative cell imaging, we could demonstrate that inhibiting cortical proNGF maturation results in an atrophy of BFCNs, a downregulation of the NGF receptors p75 neurotrophin receptor and tropomyosin receptor kinase A, and a reduction in choline acetyltransferase protein expression. The transient increase in sortilin levels and the sustained colocalization with p75 neurotrophin receptor suggest a participation of proNGF in this degenerative process. This study demonstrates that impairments in the extracellular maturation of proNGF are sufficient to cause a somatodendritic retrograde degeneration of the BFCNs.


Assuntos
Prosencéfalo Basal/citologia , Neurônios Colinérgicos/patologia , Fatores de Crescimento Neural/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Animais , Atrofia/etiologia , Colina O-Acetiltransferase/metabolismo , Regulação para Baixo , Ratos Wistar , Receptor de Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo
20.
Hum Mol Genet ; 27(12): 2138-2153, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29659809

RESUMO

The aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans, among which the most frequent, a 24 bp duplication in the polyalanine tract 2 (c.428_451dup24), gives rise to intellectual disability, fine motor defects with or without epilepsy. To understand the functional consequences of this mutation, we generated a partially humanized mouse model carrying the c.428_451dup24 duplication (Arxdup24/0) that we characterized at the behavior, neurological and molecular level. Arxdup24/0 males presented with hyperactivity, enhanced stereotypies and altered contextual fear memory. In addition, Arxdup24/0 males had fine motor defects with alteration of reaching and grasping abilities. Transcriptome analysis of Arxdup24/0 forebrains at E15.5 showed a down-regulation of genes specific to interneurons and an up-regulation of genes normally not expressed in this cell type, suggesting abnormal interneuron development. Accordingly, interneuron migration was altered in the cortex and striatum between E15.5 and P0 with consequences in adults, illustrated by the defect in the inhibitory/excitatory balance in Arxdup24/0 basolateral amygdala. Altogether, we showed that the c.428_451dup24 mutation disrupts Arx function with a direct consequence on interneuron development, leading to hyperactivity and defects in precise motor movement control and associative memory. Interestingly, we highlighted striking similarities between the mouse phenotype and a cohort of 33 male patients with ARX c.428_451dup24, suggesting that this new mutant mouse line is a good model for understanding the pathophysiology and evaluation of treatment.


Assuntos
Epilepsia/genética , Proteínas de Homeodomínio/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Contratura , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Lactente , Deficiência Intelectual , Masculino , Camundongos , Mutação , Transtornos do Neurodesenvolvimento/fisiopatologia , Peptídeos/genética , Prosencéfalo/fisiopatologia , Paraplegia Espástica Hereditária , Transcriptoma/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA