Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Cells ; 10(7)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203264

RESUMO

Brachial plexus root avulsions cause debilitating upper limb paralysis. Short-term neuroprotective treatments have reported preservation of motor neurons and function in model animals while reports of long-term benefits of such treatments are scarce, especially the morphological sequelae. This morphological study investigated the long-term suppression of c-Jun- and neuronal nitric oxide synthase (nNOS) (neuroprotective treatments for one month) on the motor neuron survival, ultrastructural features of lower motor neurons, and forelimb function at six months after brachial plexus roots avulsion. Neuroprotective treatments reduced oxidative stress and preserved ventral horn motor neurons at the end of the 28-day treatment period relative to vehicle treated ones. Motor neuron sparing was associated with suppression of c-Jun, nNOS, and pro-apoptotic proteins Bim and caspases at this time point. Following 6 months of survival, neutral red staining revealed a significant loss of most of the motor neurons and ventral horn atrophy in the avulsed C6, 7, and 8 cervical segments among the vehicle-treated rats (n = 4). However, rats that received neuroprotective treatments c-Jun JNK inhibitor, SP600125 (n = 4) and a selective inhibitor of nNOS, 7-nitroindazole (n = 4), retained over half of their motor neurons in the ipsilateral avulsed side compared. Myelinated axons in the avulsed ventral horns of vehicle-treated rats were smaller but numerous compared to the intact contralateral ventral horns or neuroprotective-treated groups. In the neuroprotective treatment groups, there was the preservation of myelin thickness around large-caliber axons. Ultrastructural evaluation also confirmed the preservation of organelles including mitochondria and synapses in the two groups that received neuroprotective treatments compared with vehicle controls. Also, forelimb functional evaluation demonstrated that neuroprotective treatments improved functional abilities in the rats. In conclusion, neuroprotective treatments aimed at suppressing degenerative c-Jun and nNOS attenuated apoptosis, provided long-term preservation of motor neurons, their organelles, ventral horn size, and forelimb function.


Assuntos
Plexo Braquial/fisiopatologia , Membro Anterior/fisiopatologia , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Óxido Nítrico Sintase Tipo I/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Radiculopatia/fisiopatologia , Raízes Nervosas Espinhais/fisiopatologia , Animais , Células do Corno Anterior/efeitos dos fármacos , Células do Corno Anterior/patologia , Neurônios Motores/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Radiculopatia/tratamento farmacológico , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Raízes Nervosas Espinhais/efeitos dos fármacos
2.
Cell Rep ; 34(12): 108889, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33761348

RESUMO

Spinal cord injury (SCI) often results in spasticity. There is currently no effective therapy for spasticity. Here, we describe a method to efficiently differentiate human pluripotent stem cells from spinal GABA neurons. After transplantation into the injured rat spinal cord, the DREADD (designer receptors exclusively activated by designer drug)-expressing spinal progenitors differentiate into GABA neurons, mitigating spasticity-like response of the rat hindlimbs and locomotion deficits in 3 months. Administering clozapine-N-oxide, which activates the grafted GABA neurons, further alleviates spasticity-like response, suggesting an integration of grafted GABA neurons into the local neural circuit. These results highlight the therapeutic potential of the spinal GABA neurons for SCI.


Assuntos
Neurônios GABAérgicos/patologia , Espasticidade Muscular/patologia , Espasticidade Muscular/fisiopatologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/patologia , Potenciais de Ação/fisiologia , Animais , Diferenciação Celular , Sobrevivência Celular , Humanos , Locomoção , Vértebras Lombares/patologia , Vértebras Lombares/fisiopatologia , Masculino , Neurônios Motores/patologia , Neurônios Motores/ultraestrutura , Espasticidade Muscular/complicações , Inibição Neural , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , Ratos Sprague-Dawley , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Sinapses/metabolismo , Sinapses/ultraestrutura
3.
Biol Open ; 9(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33148607

RESUMO

The amyotrophic lateral sclerosis (ALS) neurodegenerative disorder has been associated with multiple genetic lesions, including mutations in the gene for fused in sarcoma (FUS), a nuclear-localized RNA/DNA-binding protein. Neuronal expression of the pathological form of FUS proteins in Caenorhabditis elegans results in mislocalization and aggregation of FUS in the cytoplasm, and leads to impairment of motility. However, the mechanisms by which the mutant FUS disrupts neuronal health and function remain unclear. Here we investigated the impact of ALS-associated FUS on motor neuron health using correlative light and electron microscopy, electron tomography, and electrophysiology. We show that ectopic expression of wild-type or ALS-associated human FUS impairs synaptic vesicle docking at neuromuscular junctions. ALS-associated FUS led to the emergence of a population of large, electron-dense, and filament-filled endosomes. Electrophysiological recording revealed reduced transmission from motor neurons to muscles. Together, these results suggest a pathological effect of ALS-causing FUS at synaptic structure and function organization.This article has an associated First Person interview with the first author of the paper.


Assuntos
Esclerose Lateral Amiotrófica/etiologia , Expressão Gênica , Mutação , Junção Neuromuscular/genética , Junção Neuromuscular/fisiopatologia , Proteína FUS de Ligação a RNA/genética , Transmissão Sináptica/genética , Animais , Caenorhabditis elegans , Modelos Animais de Doenças , Suscetibilidade a Doenças , Endossomos/metabolismo , Endossomos/ultraestrutura , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Junção Neuromuscular/patologia , Junção Neuromuscular/ultraestrutura , Potenciais Sinápticos
4.
J Neurogenet ; 34(3-4): 307-322, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32808848

RESUMO

Sydney Brenner's choice of Caenorhabditis elegans as a model organism for understanding the nervous system has accelerated discoveries of gene function in neural circuit development and behavior. In this review, we discuss a striking example of synaptic remodeling in the C. elegans motor circuit in which DD class motor neurons effectively reverse polarity as presynaptic and postsynaptic domains at opposite ends of the DD neurite switch locations. Originally revealed by EM reconstruction conducted over 40 years ago, DD remodeling has since been investigated by live cell imaging methods that exploit the power of C. elegans genetics to reveal key effectors of synaptic plasticity. Although synapses are also extensively rewired in developing mammalian circuits, the underlying remodeling mechanisms are largely unknown. Here, we highlight the possibility that studies in C. elegans can reveal pathways that orchestrate synaptic remodeling in more complex organisms. Specifically, we describe (1) transcription factors that regulate DD remodeling, (2) the cellular and molecular cascades that drive synaptic remodeling and (3) examples of circuit modifications in vertebrate neurons that share some similarities with synaptic remodeling in C. elegans DD neurons.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , AMP Cíclico/fisiologia , Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Regulação da Expressão Gênica , Genes Reporter , Microscopia Intravital , Canais Iônicos/genética , Canais Iônicos/fisiologia , Larva , Mamíferos/fisiologia , Microscopia Eletrônica , Microtúbulos/ultraestrutura , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Proteínas do Tecido Nervoso/fisiologia , Neurônios/ultraestrutura , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/fisiologia , Proteínas Recombinantes/metabolismo , Estrigiformes/fisiologia , Fatores de Transcrição/fisiologia , Ácido gama-Aminobutírico/fisiologia
5.
Brain Res ; 1741: 146875, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32389588

RESUMO

Diazoxide (DZX), an anti-hypertonic and anti-hypoglycemic drug, was shown to have anti-inflammatory effects in several injured cell types outside the central nervous system. In the brain, the neuroprotective potential of DZX is well described, however, its anticipated anti-inflammatory effect after acute injury has not been systematically analyzed. To disclose the anti-inflammatory effect of DZX in the central nervous system, an injury was induced in the hypoglossal and facial nuclei and in the oculomotor nucleus by unilateral axonal transection and unilateral target deprivation (enucleation), respectively. On the fourth day after surgery, microglial analysis was performed on tissue in which microglia were DAB-labeled and motoneurons were labeled with immunofluorescence. DZX treatment was given either prophylactically, starting 7 days prior to the injury and continuing until the animals were sacrificed, or postoperatively only, with daily intraperitoneal injections (1.25 mg/kg; in 10 mg/ml dimethyl sulfoxide in distilled water). Prophylactically + postoperatively applied DZX completely eliminated the microglial reaction in each motor nuclei. If DZX was applied only postoperatively, some microglial activation could be detected, but its magnitude was still significantly smaller than the non-DZX-treated controls. The effect of DZX could also be demonstrated through an extended period, as tested in the hypoglossal nucleus on day 7 after the operation. Neuronal counts, determined at day 4 after the operation in the hypoglossal nucleus, demonstrated no loss of motor neurons, however, an increased Feret's diameter of mitochondria could be measured, suggesting increased oxidative stress in the injured cells. The increase of mitochondrial Feret's diameter could also be prevented with DZX treatment.


Assuntos
Tronco Encefálico/efeitos dos fármacos , Diazóxido/administração & dosagem , Gliose/tratamento farmacológico , Microglia/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Animais , Tronco Encefálico/metabolismo , Tronco Encefálico/ultraestrutura , Esquema de Medicação , Núcleo do Nervo Facial/efeitos dos fármacos , Núcleo do Nervo Facial/metabolismo , Núcleo do Nervo Facial/ultraestrutura , Gliose/metabolismo , Gliose/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microglia/metabolismo , Microglia/ultraestrutura , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Complexo Nuclear Oculomotor/efeitos dos fármacos , Complexo Nuclear Oculomotor/metabolismo , Complexo Nuclear Oculomotor/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
6.
Nat Commun ; 10(1): 4147, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515480

RESUMO

Energy metabolism has been repeatedly linked to amyotrophic lateral sclerosis (ALS). Yet, motor neuron (MN) metabolism remains poorly studied and it is unknown if ALS MNs differ metabolically from healthy MNs. To address this question, we first performed a metabolic characterization of induced pluripotent stem cells (iPSCs) versus iPSC-derived MNs and subsequently compared MNs from ALS patients carrying FUS mutations to their CRISPR/Cas9-corrected counterparts. We discovered that human iPSCs undergo a lactate oxidation-fuelled prooxidative metabolic switch when they differentiate into functional MNs. Simultaneously, they rewire metabolic routes to import pyruvate into the TCA cycle in an energy substrate specific way. By comparing patient-derived MNs and their isogenic controls, we show that ALS-causing mutations in FUS did not affect glycolytic or mitochondrial energy metabolism of human MNs in vitro. These data show that metabolic dysfunction is not the underlying cause of the ALS-related phenotypes previously observed in these MNs.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Diferenciação Celular , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação/genética , Proteína FUS de Ligação a RNA/genética , Estudos de Casos e Controles , Respiração Celular , Glucose/metabolismo , Glicólise , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ácido Láctico/metabolismo , Análise do Fluxo Metabólico , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neurônios Motores/ultraestrutura , Proteína FUS de Ligação a RNA/metabolismo
7.
Autophagy ; 15(4): 631-651, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30335591

RESUMO

Macroautophagy/autophagy, a defense mechanism against aberrant stresses, in neurons counteracts aggregate-prone misfolded protein toxicity. Autophagy induction might be beneficial in neurodegenerative diseases (NDs). The natural compound trehalose promotes autophagy via TFEB (transcription factor EB), ameliorating disease phenotype in multiple ND models, but its mechanism is still obscure. We demonstrated that trehalose regulates autophagy by inducing rapid and transient lysosomal enlargement and membrane permeabilization (LMP). This effect correlated with the calcium-dependent phosphatase PPP3/calcineurin activation, TFEB dephosphorylation and nuclear translocation. Trehalose upregulated genes for the TFEB target and regulator Ppargc1a, lysosomal hydrolases and membrane proteins (Ctsb, Gla, Lamp2a, Mcoln1, Tpp1) and several autophagy-related components (Becn1, Atg10, Atg12, Sqstm1/p62, Map1lc3b, Hspb8 and Bag3) mostly in a PPP3- and TFEB-dependent manner. TFEB silencing counteracted the trehalose pro-degradative activity on misfolded protein causative of motoneuron diseases. Similar effects were exerted by trehalase-resistant trehalose analogs, melibiose and lactulose. Thus, limited lysosomal damage might induce autophagy, perhaps as a compensatory mechanism, a process that is beneficial to counteract neurodegeneration. Abbreviations: ALS: amyotrophic lateral sclerosis; AR: androgen receptor; ATG: autophagy related; AV: autophagic vacuole; BAG3: BCL2-associated athanogene 3; BECN1: beclin 1, autophagy related; CASA: chaperone-assisted selective autophagy; CTSB: cathepsin b; DAPI: 4',6-diamidino-2-phenylindole; DMEM: Dulbecco's modified Eagle's medium; EGFP: enhanced green fluorescent protein; fALS, familial amyotrophic lateral sclerosis; FRA: filter retardation assay; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GLA: galactosidase, alpha; HD: Huntington disease; hIPSCs: human induced pluripotent stem cells; HSPA8: heat shock protein A8; HSPB8: heat shock protein B8; IF: immunofluorescence analysis; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LGALS3: lectin, galactose binding, soluble 3; LLOMe: L-leucyl-L-leucine methyl ester; LMP: lysosomal membrane permeabilization; Lys: lysosomes; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MCOLN1: mucolipin 1; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; NDs: neurodegenerative diseases; NSC34: neuroblastoma x spinal cord 34; PBS: phosphate-buffered saline; PD: Parkinson disease; polyQ: polyglutamine; PPARGC1A: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PPP3CB: protein phosphatase 3, catalytic subunit, beta isoform; RT-qPCR: real-time quantitative polymerase chain reaction; SBMA: spinal and bulbar muscular atrophy; SCAs: spinocerebellar ataxias; siRNA: small interfering RNA; SLC2A8: solute carrier family 2, (facilitated glucose transporter), member 8; smNPCs: small molecules neural progenitors cells; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STED: stimulated emission depletion; STUB1: STIP1 homology and U-box containing protein 1; TARDBP/TDP-43: TAR DNA binding protein; TFEB: transcription factor EB; TPP1: tripeptidyl peptidase I; TREH: trehalase (brush-border membrane glycoprotein); WB: western blotting; ZKSCAN3: zinc finger with KRAB and SCAN domains 3.


Assuntos
Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Calcineurina/metabolismo , Lisossomos/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Trealose/farmacologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/enzimologia , Autofagossomos/metabolismo , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Atrofia Bulboespinal Ligada ao X/tratamento farmacológico , Atrofia Bulboespinal Ligada ao X/metabolismo , Calcineurina/genética , Cálcio/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Regulação para Baixo/genética , Humanos , Células-Tronco Pluripotentes Induzidas/enzimologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Lisossomos/ultraestrutura , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios Motores/enzimologia , Neurônios Motores/ultraestrutura , Neuroproteção/efeitos dos fármacos , Neuroproteção/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Trealose/análogos & derivados , Tripeptidil-Peptidase 1 , Resposta a Proteínas não Dobradas/genética
8.
Acta Neuropathol Commun ; 6(1): 84, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157956

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating and fatal motor neuron disease. Diagnosis typically occurs in the fifth decade of life and the disease progresses rapidly leading to death within ~ 2-5 years of symptomatic onset. There is no cure, and the few available treatments offer only a modest extension in patient survival. A protein central to ALS is the nuclear RNA/DNA-binding protein, TDP-43. In > 95% of ALS patients, TDP-43 is cleared from the nucleus and forms phosphorylated protein aggregates in the cytoplasm of affected neurons and glia. We recently defined that poly(ADP-ribose) (PAR) activity regulates TDP-43-associated toxicity. PAR is a posttranslational modification that is attached to target proteins by PAR polymerases (PARPs). PARP-1 and PARP-2 are the major enzymes that are active in the nucleus. Here, we uncovered that the motor neurons of the ALS spinal cord were associated with elevated nuclear PAR, suggesting elevated PARP activity. Veliparib, a small-molecule inhibitor of nuclear PARP-1/2, mitigated the formation of cytoplasmic TDP-43 aggregates in mammalian cells. In primary spinal-cord cultures from rat, Veliparib also inhibited TDP-43-associated neuronal death. These studies uncover that PAR activity is misregulated in the ALS spinal cord, and a small-molecular inhibitor of PARP-1/2 activity may have therapeutic potential in the treatment of ALS and related disorders associated with abnormal TDP-43 homeostasis.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Núcleo Celular/metabolismo , Neurônios Motores/ultraestrutura , Poli Adenosina Difosfato Ribose/metabolismo , Adulto , Idoso , Esclerose Lateral Amiotrófica/genética , Animais , Ataxina-2/genética , Ataxina-2/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzimidazóis/farmacologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Estudos de Coortes , Proteínas de Ligação a DNA , Relação Dose-Resposta a Droga , Feminino , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Mutação/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ratos , Saponinas/farmacologia , Medula Espinal/patologia , Transfecção , Triterpenos/farmacologia
9.
J Tissue Eng Regen Med ; 12(6): 1389-1401, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29701919

RESUMO

Facial nerve injury can cause severe long-term physical and psychological morbidity. There are limited repair options for an acutely transected facial nerve not amenable to primary neurorrhaphy. We hypothesize that a peptide amphiphile nanofiber neurograft may provide the nanostructure necessary to guide organized neural regeneration. Five experimental groups were compared, animals with (1) an intact nerve, (2) following resection of a nerve segment, and following resection and immediate repair with either a (3) autograft (using the resected nerve segment), (4) neurograft, or (5) empty conduit. The buccal branch of the rat facial nerve was directly stimulated with charge balanced biphasic electrical current pulses at different current amplitudes whereas nerve compound action potentials (nCAPs) and electromygraphic responses were recorded. After 8 weeks, the proximal buccal branch was surgically reexposed and electrically evoked nCAPs were recorded for groups 1-5. As expected, the intact nerves required significantly lower current amplitudes to evoke an nCAP than those repaired with the neurograft and autograft nerves. For other electrophysiologic parameters such as latency and maximum nCAP, there was no significant difference between the intact, autograft, and neurograft groups. The resected group had variable responses to electrical stimulation, and the empty tube group was electrically silent. Immunohistochemical analysis and transmission electron microscopy confirmed myelinated neural regeneration. This study demonstrates that the neuroregenerative capability of peptide amphiphile nanofiber neurografts is similar to the current clinical gold standard method of repair and holds potential as an off-the-shelf solution for facial reanimation and potentially peripheral nerve repair.


Assuntos
Fenômenos Eletrofisiológicos , Nervo Facial/fisiopatologia , Nanofibras/química , Regeneração Nervosa/efeitos dos fármacos , Peptídeos/farmacologia , Tensoativos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Estimulação Elétrica , Eletromiografia , Nervo Facial/efeitos dos fármacos , Nervo Facial/cirurgia , Nervo Facial/ultraestrutura , Feminino , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/ultraestrutura , Nanofibras/ultraestrutura , Ratos Sprague-Dawley
10.
Hum Mol Genet ; 27(8): 1434-1446, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462312

RESUMO

Congenital myasthenic syndromes (CMS) are a group of rare, inherited disorders characterized by compromised function of the neuromuscular junction, manifesting with fatigable muscle weakness. Mutations in MYO9A were previously identified as causative for CMS but the precise pathomechanism remained to be characterized. On the basis of the role of MYO9A as an actin-based molecular motor and as a negative regulator of RhoA, we hypothesized that loss of MYO9A may affect the neuronal cytoskeleton, leading to impaired intracellular transport. To investigate this, we used MYO9A-depleted NSC-34 cells (mouse motor neuron-derived cells), revealing altered expression of a number of cytoskeletal proteins important for neuron structure and intracellular transport. On the basis of these findings, the effect on protein transport was determined using a vesicular recycling assay which revealed impaired recycling of a neuronal growth factor receptor. In addition, an unbiased approach utilizing proteomic profiling of the secretome revealed a key role for defective intracellular transport affecting proper protein secretion in the pathophysiology of MYO9A-related CMS. This also led to the identification of agrin as being affected by the defective transport. Zebrafish with reduced MYO9A orthologue expression were treated with an artificial agrin compound, ameliorating defects in neurite extension and improving motility. In summary, loss of MYO9A affects the neuronal cytoskeleton and leads to impaired transport of proteins, including agrin, which may provide a new and unexpected treatment option.


Assuntos
Agrina/metabolismo , Neurônios Motores/metabolismo , Debilidade Muscular/genética , Síndromes Miastênicas Congênitas/genética , Miosinas/genética , Fator de Crescimento Neural/genética , Junção Neuromuscular/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/genética , Actinas/metabolismo , Agrina/genética , Amidas , Animais , Movimento Celular , Modelos Animais de Doenças , Embrião não Mamífero , Inibidores Enzimáticos , Regulação da Expressão Gênica , Humanos , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Neurônios Motores/ultraestrutura , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Síndromes Miastênicas Congênitas/metabolismo , Síndromes Miastênicas Congênitas/patologia , Miosinas/deficiência , Fator de Crescimento Neural/metabolismo , Junção Neuromuscular/ultraestrutura , Transporte Proteico , Piridinas , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Peixe-Zebra , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
11.
Acta Neuropathol Commun ; 5(1): 81, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115989

RESUMO

It is now widely accepted in the field that the normally secreted chaperone clusterin is redirected to the cytosol during endoplasmic reticulum (ER) stress, although the physiological function(s) of this physical relocation remain unknown. We have examined in this study whether or not increased expression of clusterin is able to protect neuronal cells against intracellular protein aggregation and cytotoxicity, characteristics that are strongly implicated in a range of neurodegenerative diseases. We used the amyotrophic lateral sclerosis-associated protein TDP-43 as a primary model to investigate the effects of clusterin on protein aggregation and neurotoxicity in complementary in vitro, neuronal cell and Drosophila systems. We have shown that clusterin directly interacts with TDP-43 in vitro and potently inhibits its aggregation, and observed that in ER stressed neuronal cells, clusterin co-localized with TDP-43 and specifically reduced the numbers of cytoplasmic inclusions. We further showed that the expression of TDP-43 in transgenic Drosophila neurons induced ER stress and that co-expression of clusterin resulted in a dramatic clearance of mislocalized TDP-43 from motor neuron axons, partially rescued locomotor activity and significantly extended lifespan. We also showed that in Drosophila photoreceptor cells, clusterin co-expression gave ER stress-dependent protection against proteotoxicity arising from both Huntingtin-Q128 and mutant (R406W) human tau. We therefore conclude that increased expression of clusterin can provide an important defense against intracellular proteotoxicity under conditions that mimic specific features of neurodegenerative disease.


Assuntos
Clusterina/metabolismo , Clusterina/farmacologia , Proteínas de Ligação a DNA/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Síndromes Neurotóxicas/tratamento farmacológico , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Clusterina/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Estresse do Retículo Endoplasmático/genética , Olho/metabolismo , Olho/ultraestrutura , Hemolinfa/citologia , Humanos , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/metabolismo , Larva , Atividade Motora/genética , Atividade Motora/fisiologia , Neurônios Motores/ultraestrutura , Neuroblastoma/patologia , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/patologia , Agregados Proteicos/efeitos dos fármacos , Agregados Proteicos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
12.
Nat Commun ; 8: 13660, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045048

RESUMO

Syntaxin1A is organized in nanoclusters that are critical for the docking and priming of secretory vesicles from neurosecretory cells. Whether and how these nanoclusters are affected by neurotransmitter release in nerve terminals from a living organism is unknown. Here we imaged photoconvertible syntaxin1A-mEos2 in the motor nerve terminal of Drosophila larvae by single-particle tracking photoactivation localization microscopy. Opto- and thermo-genetic neuronal stimulation increased syntaxin1A-mEos2 mobility, and reduced the size and molecular density of nanoclusters, suggesting an activity-dependent release of syntaxin1A from the confinement of nanoclusters. Syntaxin1A mobility was increased by mutating its polyphosphoinositide-binding site or preventing SNARE complex assembly via co-expression of tetanus toxin light chain. In contrast, syntaxin1A mobility was reduced by preventing SNARE complex disassembly. Our data demonstrate that polyphosphoinositide favours syntaxin1A trapping, and show that SNARE complex disassembly leads to syntaxin1A dissociation from nanoclusters. Lateral diffusion and trapping of syntaxin1A in nanoclusters therefore dynamically regulate neurotransmitter release.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Transmissão Sináptica , Sintaxina 1/genética , Animais , Sítios de Ligação , Difusão , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Regulação da Expressão Gênica , Larva/citologia , Larva/fisiologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Imagem Molecular/métodos , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Optogenética , Ligação Proteica , Transporte Proteico , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Sintaxina 1/metabolismo , Toxina Tetânica/genética , Toxina Tetânica/metabolismo
13.
Sci Rep ; 7: 40155, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28065942

RESUMO

The electric activity of lower motor neurons (MNs) appears to play a role in determining cell-vulnerability in MN diseases. MN excitability is modulated by cholinergic inputs through C-type synaptic boutons, which display an endoplasmic reticulum-related subsurface cistern (SSC) adjacent to the postsynaptic membrane. Besides cholinergic molecules, a constellation of proteins involved in different signal-transduction pathways are clustered at C-type synaptic sites (M2 muscarinic receptors, Kv2.1 potassium channels, Ca2+ activated K+ [SK] channels, and sigma-1 receptors [S1R]), but their collective functional significance so far remains unknown. We have previously suggested that neuregulin-1 (NRG1)/ErbBs-based retrograde signalling occurs at this synapse. To better understand signalling through C-boutons, we performed an analysis of the distribution of C-bouton-associated signalling proteins. We show that within SSC, S1R, Kv2.1 and NRG1 are clustered in highly specific, non-overlapping, microdomains, whereas ErbB2 and ErbB4 are present in the adjacent presynaptic compartment. This organization may define highly ordered and spatially restricted sites for different signal-transduction pathways. SSC associated proteins are disrupted in axotomised MNs together with the activation of microglia, which display a positive chemotactism to C-bouton sites. This indicates that C-bouton associated molecules are also involved in neuroinflammatory signalling in diseased MNs, emerging as new potential therapeutic targets.


Assuntos
Neurônios Motores/metabolismo , Neuregulina-1/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-4/metabolismo , Animais , Células Cultivadas , Retículo Endoplasmático/metabolismo , Camundongos , Neurônios Motores/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Receptores sigma/metabolismo , Canais de Potássio Shab/metabolismo , Transdução de Sinais , Receptor Sigma-1
14.
Neuron ; 92(2): 449-460, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27764672

RESUMO

Axonal microtubule (MT) arrays are the major cytoskeleton substrate for cargo transport. How MT organization, i.e., polymer length, number, and minus-end spacing, is regulated and how it impinges on axonal transport are unclear. We describe a method for analyzing neuronal MT organization using light microscopy. This method circumvents the need for electron microscopy reconstructions and is compatible with live imaging of cargo transport and MT dynamics. Examination of a C. elegans motor neuron revealed how age, MT-associated proteins, and signaling pathways control MT length, minus-end spacing, and coverage. In turn, MT organization determines axonal transport progression: cargoes pause at polymer termini, suggesting that switching MT tracks is rate limiting for efficient transport. Cargo run length is set by MT length, and higher MT coverage correlates with shorter pauses. These results uncover the principles and mechanisms of neuronal MT organization and its regulation of axonal cargo transport.


Assuntos
Transporte Axonal , Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neurônios Motores/metabolismo , Polímeros/metabolismo , Animais , Caenorhabditis elegans , Dineínas/metabolismo , Cinesinas/metabolismo , Microscopia , Microtúbulos/ultraestrutura , Neurônios Motores/ultraestrutura , Transdução de Sinais , Imagem com Lapso de Tempo
15.
Exp Neurol ; 286: 40-49, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27567740

RESUMO

The human small heat shock proteins (HSPBs) form a family of molecular chaperones comprising ten members (HSPB1-HSPB10), whose functions span from protein quality control to cytoskeletal dynamics and cell death control. Mutations in HSPBs can lead to human disease and particularly point mutations in HSPB1 and HSPB8 are known to lead to peripheral neuropathies. Recently, a missense mutation (R7S) in yet another member of this family, HSPB3, was found to cause an axonal motor neuropathy (distal hereditary motor neuropathy type 2C, dHMN2C). Until now, HSPB3 protein localization and function in motoneurons (MNs) have not yet been characterized. Therefore, we studied the endogenous HSPB3 protein distribution in the spinal cords of chicken and mouse embryos and in the postnatal nervous system (central and peripheral) of chicken, mouse and human. We further investigated the impact of wild-type and mutated HSPB3 on MN cell death via overexpressing these genes in ovo in an avian model of MN degeneration, the limb-bud removal. Altogether, our findings represent a first step for a better understanding of the cellular and molecular mechanisms leading to dHMN2C.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Choque Térmico/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/patologia , Degeneração Neural/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Sobrevivência Celular/genética , Embrião de Galinha , Modelos Animais de Doenças , Embrião de Mamíferos , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Camundongos , Pessoa de Meia-Idade , Neurônios Motores/ultraestrutura , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatologia , Mutação/genética , Degeneração Neural/etiologia , Neuroblastoma/patologia , Medula Espinal/patologia , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura
16.
Protein Cell ; 7(11): 804-819, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27225265

RESUMO

Axonal transport of mitochondria is critical for neuronal survival and function. Automatically quantifying and analyzing mitochondrial movement in a large quantity remain challenging. Here, we report an efficient method for imaging and quantifying axonal mitochondrial transport using microfluidic-chamber-cultured neurons together with a newly developed analysis package named "MitoQuant". This tool-kit consists of an automated program for tracking mitochondrial movement inside live neuronal axons and a transient-velocity analysis program for analyzing dynamic movement patterns of mitochondria. Using this method, we examined axonal mitochondrial movement both in cultured mammalian neurons and in motor neuron axons of Drosophila in vivo. In 3 different paradigms (temperature changes, drug treatment and genetic manipulation) that affect mitochondria, we have shown that this new method is highly efficient and sensitive for detecting changes in mitochondrial movement. The method significantly enhanced our ability to quantitatively analyze axonal mitochondrial movement and allowed us to detect dynamic changes in axonal mitochondrial transport that were not detected by traditional kymographic analyses.


Assuntos
Transporte Axonal/fisiologia , Córtex Cerebral/metabolismo , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Animais , Córtex Cerebral/citologia , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Embrião de Mamíferos , Expressão Gênica , Dispositivos Lab-On-A-Chip , Microscopia Confocal , Mitocôndrias/ultraestrutura , Neurônios Motores/ultraestrutura , Movimento , Mutação , Cultura Primária de Células , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Software
17.
J Neuroinflammation ; 13(1): 121, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27220674

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that involves the selective loss of the upper and lower motor neurons (MNs). Neuroinflammation has been implicated in the pathogenesis of the sporadic form of the disease. We earlier developed immune-mediated animal models of ALS and demonstrated humoral and cellular immune reactions in the nervous system and in the sera of patients and animals. The accumulation of immunoglobulin G (IgG), an elevated intracellular level of calcium, ultrastructural alterations in the MNs, and activation of the microglia were noted in the spinal cord of ALS patients. Similar alterations developed in mice inoculated intraperitoneally with IgG from ALS patients or from an immune-mediated goat model. METHODS: We have now examined whether the intraperitoneal injection of mice with IgG from sporadic ALS patients or from immunized goats with the homogenate of the anterior horn of the bovine spinal cord is associated with changes in the pro-inflammatory (TNF-α and IL-6) and anti-inflammatory (IL-10) cytokines in the spinal cord and serum of the mice. The levels of cytokines were measured by ELISA. RESULTS: Intraperitoneally administered IgG from the ALS patients induced subclinical signs of MN disease, while the injection of IgG from immunized goats resulted in a severe respiratory dysfunction and limb paralysis 24 h after the injections. Significantly increased levels of TNF-α and IL-10 were detected in the spinal cord of the mice injected with the human ALS IgG. The level of IL-6 increased primarily in the serum. The IgG from the immunized goats induced highly significant increases in the levels of all three cytokines in the serum and the spinal cord of mice. CONCLUSIONS: Our earlier experiments had proved that when ALS IgG or IgG from immune-mediated animal models was inoculated into mice, it was taken up in the MNs and had the ability to initiate damage in them. The pathological process was paralleled by microglia recruitment and activation in the spinal cord. The present experiment revealed that these forms of IgG cause significant increases in certain cytokine levels locally in the spinal cord and in the serum of the inoculated mice. These results suggest that IgG directed to the MNs may be an initial element in the damage to the MNs both in human ALS and in its immune-mediated animal models.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Citocinas/metabolismo , Imunoglobulina G/administração & dosagem , Medula Espinal/metabolismo , Esclerose Lateral Amiotrófica/imunologia , Análise de Variância , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Cabras , Humanos , Injeções Intraperitoneais , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Atividade Motora/efeitos dos fármacos , Neurônios Motores/patologia , Neurônios Motores/ultraestrutura , Miastenia Gravis Autoimune Experimental/sangue , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/patologia , Fator de Necrose Tumoral alfa/metabolismo
18.
Exp Neurol ; 279: 27-39, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26896833

RESUMO

Targeted deletion of the phosphatase and tensin homolog on chromosome ten (PTEN) gene in the sensorimotor cortex of neonatal mice enables robust regeneration of corticospinal tract (CST) axons following spinal cord injury as adults. Here, we assess the consequences of long-term conditional genetic PTEN deletion on cortical structure and neuronal morphology and screen for neuropathology. Mice with a LoxP-flanked exon 5 of the PTEN gene (PTENf/f mice) received AAV-Cre injections into the sensorimotor cortex at postnatal day 1 (P1) and were allowed to survive for up to 18months. As adults, mice were assessed for exploratory activity (open field), and motor coordination using the Rotarod®. Some mice received injections of Fluorogold into the spinal cord to retrogradely label the cells of origin of the CST. Brains were prepared for neurohistology and immunostained for PTEN and phospho-S6, which is a downstream marker of mammalian target of rapamycin (mTOR) activation. Immunostaining revealed a focal area of PTEN deletion affecting neurons in all cortical layers, although in some cases PTEN expression was maintained in many small-medium sized neurons in layers III-IV. Neurons lacking PTEN were robustly stained for pS6. Cortical thickness was significantly increased and cortical lamination was disrupted in the area of PTEN deletion. PTEN-negative layer V neurons that give rise to the CST, identified by retrograde labeling, were larger than neurons with maintained PTEN expression, and the relative area occupied by neuropil vs. cell bodies was increased. There was no evidence of tumor formation or other neuropathology. Mice with PTEN deletion exhibited open field activity comparable to controls and there was a trend for impaired Rotarod performance (not statistically significant). Our findings indicate that early postnatal genetic deletion of PTEN that is sufficient to enable axon regeneration by adult neurons causes neuronal hypertrophy but no other detectable neuropathology.


Assuntos
PTEN Fosfo-Hidrolase/genética , Córtex Sensório-Motor/anatomia & histologia , Animais , Animais Recém-Nascidos , Éxons/genética , Comportamento Exploratório , Camundongos , Camundongos Knockout , Atividade Motora , Córtex Motor/patologia , Neurônios Motores/ultraestrutura , Neurônios/ultraestrutura , Neurópilo/ultraestrutura , Células Piramidais/ultraestrutura , Medula Espinal/anatomia & histologia
19.
Acta Neuropathol Commun ; 4: 3, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26757991

RESUMO

INTRODUCTION: Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with a gender bias towards major prevalence in male individuals. Several data suggest the involvement of oxidative stress and mitochondrial dysfunction in its pathogenesis, though differences between genders have not been evaluated. For this reason, we analysed features of mitochondrial oxidative metabolism, as well as mitochondrial chain complex enzyme activities and protein expression, lipid profile, and protein oxidative stress markers, in the Cu,Zn superoxide dismutase with the G93A mutation (hSOD1-G93A)- transgenic mice and Neuro2A(N2A) cells overexpressing hSOD1-G93A. RESULTS AND CONCLUSIONS: Our results show that overexpression of hSOD1-G93A in transgenic mice decreased efficiency of mitochondrial oxidative phosphorylation, located at complex I, revealing a temporal delay in females with respect to males associated with a parallel increase in selected markers of protein oxidative damage. Further, females exhibit a fatty acid profile with higher levels of docosahexaenoic acid at 30 days. Mechanistic studies showed that hSOD1-G93A overexpression in N2A cells reduced complex I function, a defect prevented by 17ß-estradiol pretreatment. In conclusion, ALS-associated SOD1 mutation leads to delayed mitochondrial dysfunction in female mice in comparison with males, in part attributable to the higher oestrogen levels of the former. This study is important in the effort to further understanding of whether different degrees of spinal cord mitochondrial dysfunction could be disease modifiers in ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Mitocôndrias/metabolismo , Neurônios Motores/ultraestrutura , Estresse Oxidativo/fisiologia , Medula Espinal/patologia , Fatores Etários , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia , Neuroblastoma/patologia , Consumo de Oxigênio/genética , Fatores Sexuais , Medula Espinal/ultraestrutura , Superóxido Dismutase
20.
Neurochem Res ; 41(5): 965-84, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26646005

RESUMO

In our laboratory, we have developed (1) an in vitro model of sporadic Amyotrophic Lateral Sclerosis (sALS) involving exposure of motor neurons to cerebrospinal fluid (CSF) from sALS patients and (2) an in vivo model involving intrathecal injection of sALS-CSF into rat pups. In the current study, we observed that spinal cord extract from the in vivo sALS model displayed elevated reactive oxygen species (ROS) and mitochondrial dysfunction. Quantitative proteomic analysis of sub-cellular fractions from spinal cord of the in vivo sALS model revealed down-regulation of 35 mitochondrial proteins and 4 lysosomal proteins. Many of the down-regulated mitochondrial proteins contribute to alterations in respiratory chain complexes and organellar morphology. Down-regulated lysosomal proteins Hexosaminidase, Sialidase and Aryl sulfatase also displayed lowered enzyme activity, thus validating the mass spectrometry data. Proteomic analysis and validation by western blot indicated that sALS-CSF induced the over-expression of the pro-apoptotic mitochondrial protein BNIP3L. In the in vitro model, sALS-CSF induced neurotoxicity and elevated ROS, while it lowered the mitochondrial membrane potential in rat spinal cord mitochondria in the in vivo model. Ultra structural alterations were evident in mitochondria of cultured motor neurons exposed to ALS-CSF. These observations indicate the first line evidence that sALS-CSF mediated mitochondrial and lysosomal defects collectively contribute to the pathogenesis underlying sALS.


Assuntos
Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Lisossomos/metabolismo , Mitocôndrias/fisiologia , Extratos de Tecidos/farmacologia , Adulto , Esclerose Lateral Amiotrófica/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Injeções Espinhais , Masculino , Potencial da Membrana Mitocondrial , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas Mitocondriais/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Estresse Oxidativo , Proteoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA