Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 29-39, 2024 Jan 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38615163

RESUMO

OBJECTIVES: Trigeminal neuralgia (TN) is a common neuropathic pain. Voltage-gated potassium channel (Kv) has been confirmed to be involved in the occurrence and development of TN, but the specific mechanism is still unclear. MicroRNA may be involved in neuropathic pain by regulating the expression of Kv channels and neuronal excitability in trigeminal ganglion (TG). This study aims to explore the relationship between Kv1.1 and miR-21-5p in TG with a TN model, evaluate whether miR-21-5p has a regulatory effect on Kv1.1, and to provide a new target and experimental basis for the treatment of TN. METHODS: A total of 48 SD rats were randomly divided into 6 groups: 1) a sham group (n=12), the rats were only sutured at the surgical incision without nerve ligation; 2) a sham+agomir NC group (n=6), the sham rats were microinjected with agomir NC through stereotactic brain injection in the surgical side of TG; 3) a sham+miR-21-5p agomir group (n=6), the sham rats were microinjected with miR-21-5p agomir via stereotactic brain injection in the surgical side of TG; 4) a TN group (n=12), a TN rat model was constructed using the chronic constriction injury of the distal infraorbital nerve (dIoN-CCI) method with chromium intestinal thread; 5) a TN+antagonist NC group (n=6), TN rats were microinjected with antagonist NC through stereotactic brain injection method in the surgical side of TG; 6) a TN+miR-21-5p antagonist group (n=6), TN rats were microinjected with miR-21-5p antagonist through stereotactic brain injection in the surgical side of TG. The change of mechanical pain threshold in rats of each group after surgery was detected. The expressions of Kv1.1 and miR-21-5p in the operative TG of rats were detected by Western blotting and real-time reverse transcription polymerase chain reaction. Dual luciferase reporter genes were used to determine whether there was a target relationship between Kv1.1 and miR-21-5p and whether miR-21-5p directly affected the 3'-UTR terminal of KCNA1. The effect of brain stereotaxic injection was evaluated by immunofluorescence assay, and then the analogue of miR-21-5p (agomir) and agomir NC were injected into the TG of rats in the sham group by brain stereotaxic apparatus to overexpress miR-21-5p. The miR-21-5p inhibitor (antagomir) and antagomir NC were injected into TG of rats in the TN group to inhibit the expression of miR-21-5p. The behavioral changes of rats before and after administration were observed, and the expression changes of miR-21-5p and Kv1.1 in TG of rats after intervention were detected. RESULTS: Compared with the baseline pain threshold, the facial mechanical pain threshold of rats in the TN group was significantly decreased from the 5th to 15th day after the surgery (P<0.05), and the facial mechanical pain threshold of rats in the sham group was stable at the normal level, which proved that the dIoN-CCI model was successfully constructed. Compared with the sham group, the expression of Kv1.1 mRNA and protein in TG of the TN group was down-regulated (both P<0.05), and the expression of miR-21-5p was up-regulated (P<0.05). The results of dual luciferase report showed that the luciferase activity of rno-miR-21-5p mimics and KCNA1 WT transfected with 6 nmol/L or 20 nmol/L were significantly decreased compared with those transfected with mimic NC and wild-type KCNA1 WT, respectively (P<0.001). Compared with low dose rno-miR-21-5p mimics (6 nmol/L) co-transfection group, the relative activity of luciferase in the high dose rno-miR-21-5p mimics (20 nmol/L) cotransfection group was significantly decreased (P<0.001). The results of immunofluorescence showed that drugs were accurately injected into TG through stereotaxic brain. After the expression of miR-21-5p in the TN group, the mechanical pain threshold and the expression of Kv1.1 mRNA and protein in TG were increased. After overexpression of miR-21-5p in the sham group, the mechanical pain threshold and the expression of Kv1.1 mRNA and protein in TG were decreased. CONCLUSIONS: Both Kv1.1 and miR-21-5p are involved in TN and miR-21-5p can regulate Kv1.1 expression by binding to the 3'-UTR of KCNA1.


Assuntos
Canal de Potássio Kv1.1 , MicroRNAs , Neuralgia , Neuralgia do Trigêmeo , Animais , Ratos , Antagomirs , Regulação para Baixo , Luciferases , MicroRNAs/genética , Neuralgia/genética , Ratos Sprague-Dawley , RNA Mensageiro , Neuralgia do Trigêmeo/genética , Canal de Potássio Kv1.1/genética
2.
Int J Surg ; 110(3): 1463-1474, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38270619

RESUMO

BACKGROUND: Trigeminal neuralgia (TN) is the most common neuropathic disorder in the maxillofacial region. The etiology and pathogenesis of TN have not been clearly determined to date, although there are many hypotheses. OBJECTIVE: The goal of this study was to investigate the interactions between different types of cells in TN, particularly the impact and intrinsic mechanism of demyelination on the trigeminal ganglion, and to identify new important target genes and regulatory pathways in TN. METHODS: TN rat models were prepared by trigeminal root compression, and trigeminal nerve tissues were isolated for spatial transcriptome sequencing. The gene expression matrix was reduced dimensionally by PCA and presented by UMAP. Gene function annotation was analyzed by Metascape. The progression of certain clusters and the developmental pseudotime were analyzed using the Monocle package. Modules of the gene coexpression network between different groups were analyzed based on weighted gene coexpression network analysis and assigned AddModuleScore values. The intercellular communication of genes in these networks via ligand-receptor interactions was analyzed using CellPhoneDB analysis. RESULTS: The results suggested that the trigeminal ganglion could affect Schwann cell demyelination and remyelination responses through many ligand-receptor interactions, while the effect of Schwann cells on the trigeminal ganglion was much weaker. Additionally, ferroptosis may be involved in the demyelination of Schwann cells. CONCLUSIONS: This study provides spatial transcriptomics sequencing data on TN, reveals new markers, and redefines the relationship between the ganglion and myelin sheath, providing a theoretical basis and supporting data for future mechanistic research and drug development.


Assuntos
Doenças Desmielinizantes , Neuralgia do Trigêmeo , Ratos , Animais , Neuralgia do Trigêmeo/genética , Ligantes , Transcriptoma , Nervo Trigêmeo , Doenças Desmielinizantes/complicações , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia
3.
Int J Mol Sci ; 23(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35008931

RESUMO

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) participates in the regulation of cellular stress and inflammatory responses, but its function in neuropathic pain remains poorly understood. This study evaluated the role of RIPK1 in neuropathic pain following inferior alveolar nerve injury. We developed a model using malpositioned dental implants in male Sprague Dawley rats. This model resulted in significant mechanical allodynia and upregulated RIPK1 expression in the trigeminal subnucleus caudalis (TSC). The intracisternal administration of Necrosatin-1 (Nec-1), an RIPK1 inhibitor, blocked the mechanical allodynia produced by inferior alveolar nerve injury The intracisternal administration of recombinant rat tumor necrosis factor-α (rrTNF-α) protein in naive rats produced mechanical allodynia and upregulated RIPK1 expression in the TSC. Moreover, an intracisternal pretreatment with Nec-1 inhibited the mechanical allodynia produced by rrTNF-α protein. Nerve injury caused elevated TNF-α concentration in the TSC and a TNF-α block had anti-allodynic effects, thereby attenuating RIPK1 expression in the TSC. Finally, double immunofluorescence analyses revealed the colocalization of TNF receptor and RIPK1 with astrocytes. Hence, we have identified that astroglial RIPK1, activated by the TNF-α pathway, is a central driver of neuropathic pain and that the TNF-α-mediated RIPK1 pathway is a potential therapeutic target for reducing neuropathic pain following nerve injury.


Assuntos
Hiperalgesia/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Neuralgia do Trigêmeo/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hiperalgesia/genética , Masculino , Neuralgia , Ratos , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Neuralgia do Trigêmeo/genética
4.
Aging (Albany NY) ; 13(10): 13615-13625, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893246

RESUMO

The nature of trigeminal neuropathic pain (TN) attacks is regarded as the ignition of ectopic action potentials from the trigeminal root following vascular compression, which seemed to be related to transmembrane proteins and inflammation factors. This study focused on the mechanosensitive channel Piezo2 and cytokine IL-6. The chronic constriction injury of infraorbital nerve in SD rats was used to establish the TN model. The trigeminal ganglion was then achieved to perform immunocytochemistry studies. A significant upregulation of Piezo2 and IL-6 was showed in the TN model rats. The Piezo2 positive accounted for 72.3±9.5% in those IL-6 positive neurons. The Piezo2 co-localized with CGRP, IB4 and NF-200 but not with GFAP, which implied that it was expressed in both the C-type and the A-type neurons. After administration of GsMTx4 or anti-rat IL-6 antibody in the TN model, the dynamic allodynia and pinprick hyperalgesia scores as well as the mechanical threshold changed significantly. In the sham-operation rates, with local administration of IL-6, an upregulation of Piezo2 was also exhibited. Our study demonstrated that the up-regulation of Piezo2 in the pain afferent neurons following trigeminal nerve injury may play a role in the development of the neuralgia. Meanwhile, the expression of Piezo2 may be modulated by inflammatory cytokines, such as IL-6.


Assuntos
Interleucina-6/metabolismo , Canais Iônicos/metabolismo , Neuralgia do Trigêmeo/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Interleucina-6/administração & dosagem , Canais Iônicos/genética , Masculino , Ratos Sprague-Dawley , Tato , Neuralgia do Trigêmeo/genética , Neuralgia do Trigêmeo/fisiopatologia
5.
Acta Neuropathol Commun ; 8(1): 44, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264959

RESUMO

Trigeminal neuralgia (TN) is debilitating and is usually accompanied by mood disorders. The lateral habenula (LHb) is considered to be involved in the modulation of pain and mood disorders, and the present study aimed to determine if and how the LHb participates in the development of pain and anxiety in TN. To address this issue, a mouse model of partial transection of the infraorbital nerve (pT-ION) was established. pT-ION induced stable and long-lasting primary and secondary orofacial allodynia and anxiety-like behaviors that correlated with the increased excitability of LHb neurons. Adeno-associated virus (AAV)-mediated expression of hM4D(Gi) in glutamatergic neurons of the unilateral LHb followed by clozapine-N-oxide application relieved pT-ION-induced anxiety-like behaviors but not allodynia. Immunofluorescence validated the successful infection of AAV in the LHb, and microarray analysis showed changes in gene expression in the LHb of mice showing allodynia and anxiety-like behaviors after pT-ION. Among these differentially expressed genes was Tacr3, the downregulation of which was validated by RT-qPCR. Rescuing the downregulation of Tacr3 by AAV-mediated Tacr3 overexpression in the unilateral LHb significantly reversed pT-ION-induced anxiety-like behaviors but not allodynia. Whole-cell patch clamp recording showed that Tacr3 overexpression suppressed nerve injury-induced hyperexcitation of LHb neurons, and western blotting showed that the pT-ION-induced upregulation of p-CaMKII was reversed by AAV-mediated Tacr3 overexpression or chemicogenetic inhibition of glutamatergic neurons in the LHb. Moreover, not only anxiety-like behaviors, but also allodynia after pT-ION were significantly alleviated by chemicogenetic inhibition of bilateral LHb neurons or by bilateral Tacr3 overexpression in the LHb. In conclusion, Tacr3 in the LHb plays a protective role in treating trigeminal nerve injury-induced allodynia and anxiety-like behaviors by suppressing the hyperexcitability of LHb neurons. These findings provide a rationale for suppressing unilateral or bilateral LHb activity by targeting Tacr3 in treating the anxiety and pain associated with TN.


Assuntos
Ansiedade/genética , Comportamento Animal/fisiologia , Habenula/metabolismo , Hiperalgesia/genética , Neurônios/metabolismo , Receptores da Neurocinina-3/genética , Neuralgia do Trigêmeo/genética , Animais , Antipsicóticos/farmacologia , Ansiedade/fisiopatologia , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Clozapina/análogos & derivados , Clozapina/farmacologia , Modelos Animais de Doenças , Teste de Labirinto em Cruz Elevado , Ácido Glutâmico/metabolismo , Habenula/citologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Hiperalgesia/psicologia , Nervo Maxilar/cirurgia , Camundongos , Inibição Neural , Teste de Campo Aberto , Transcriptoma , Neuralgia do Trigêmeo/metabolismo , Neuralgia do Trigêmeo/fisiopatologia , Neuralgia do Trigêmeo/psicologia
6.
Sci Rep ; 10(1): 4998, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193501

RESUMO

Trigeminal neuralgia (TN), a sudden, needle-like pain in the distribution area of the trigeminal nerve, can seriously affect the physical and mental health of patients. In chronic pain conditions including TN, increased levels of brain-derived neurotrophic factor (BDNF) may enhance pain transmission. This study compares the effect of palmatine administration on the expression of BDNF and its receptor TrkB (tropomyosin receptor kinase B) in trigeminal ganglion cells of Sprague-Dawley rats in a sham versus TN model group. Within 14 days of surgery, the mechanical allodynia threshold of the TN group was significantly lower than that of the sham group, while the TN + palmatine group had a higher mechanical pain sensitivity threshold than the TN group (p < 0.05). Real-time quantitative PCR, immunohistochemistry, and immunofluorescence showed that BDNF and TrkB expression in the TN group was higher than that in the sham group, while palmatine treatment could reverse these changes. Western blotting showed that palmatine treatment could reduce the elevated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) in TN rats. Thus, the BDNF/TrkB pathway may be involved in the pain transmission process of TN, and palmatine treatment may reduce pain transmission by inhibiting the BDNF/TrkB pathway and suppressing ERK1/2 phosphorylation.


Assuntos
Alcaloides de Berberina/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Expressão Gênica , Limiar da Dor/efeitos dos fármacos , Fitoterapia , Receptor trkB/genética , Receptor trkB/metabolismo , Neuralgia do Trigêmeo/tratamento farmacológico , Neuralgia do Trigêmeo/genética , Neuralgia do Trigêmeo/fisiopatologia , Animais , Alcaloides de Berberina/uso terapêutico , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Gânglio Trigeminal/metabolismo
7.
Gene ; 719: 144080, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31454541

RESUMO

Trigeminal neuropathic pain is seen as a huge clinical challenge. Although numerous drugs have been developed to treat the condition, some patients have shown intolerance to the drugs and thus continue to suffer. In the present study, a rat model of trigeminal neuropathic pain was established using incorrectly positioned dental implants, which had various manifestations that were similar to human trigeminal neuropathic pain. Using this model, we investigated the differential regulation of JAK2 and PTEN. Firstly, we examined the expression of JAK2 and PTEN in the medullary dorsal horn. After inhibiting JAK2/PTEN, we evaluated nociception-related behavioral alterations. The rat models were established by replacing the left lower second molar with a mini dental implant. Immunoblot assay and immunofluorescence experiments indicated high expression of JAK2 and PTEN in medullary dorsal horn after the nerve injury, which attained plateau levels on post-operative day (POD) 5-10 and 10-20. Administration of adenovirus-shRNA-JAK2 on POD 1 reduced mechanical allodynia and downstream STAT activation. Meanwhile, the administration of adenovirus-shRNA-PTEN on POD 1 attenuated mechanical allodynia while upregulating AKT. In addition to postoperative JAK2 and PTEN activation, dexmedetomidine treatment (10 mg/kg) also modulated the downstream sensors of these signaling molecules. These data suggest that JAK2 and PTEN are pivotal to the development of trigeminal neuropathic pain, and that JAK2 and PTEN suppression alleviates the neuropathic pain.


Assuntos
Técnicas de Silenciamento de Genes , Janus Quinase 2/genética , Neuralgia/diagnóstico , PTEN Fosfo-Hidrolase/genética , Neuralgia do Trigêmeo/genética , Animais , Implantes Dentários/efeitos adversos , Dexametasona/administração & dosagem , Dexametasona/uso terapêutico , Dexmedetomidina/administração & dosagem , Dexmedetomidina/uso terapêutico , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Janus Quinase 2/antagonistas & inibidores , Masculino , Neuralgia/genética , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Medição da Dor , Ratos , Ratos Sprague-Dawley
8.
Acupunct Med ; 37(3): 192-198, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30977667

RESUMO

INTRODUCTION: The aim of this study was to examine the effect of electroacupuncture (EA) on trigeminal neuropathic pain in rats and explore the potential mechanism underlying the putative therapeutic effect of EA. METHODS: Trigeminal neuropathic pain behavior was induced in rats by unilateral chronic constriction injury of the distal infraorbital nerve (dIoN-CCI). EA was administered at ST2 (Sibai) and Jiachengjiang. A total of 60 Sprague Dawley rats were divided into the following four groups (n = 15 per group) to examine the behavioral outcomes after surgery and/or EA treatment: sham (no ligation); dIoN-CCI (received isoflurane only, without EA treatment); dIoN-CCI+EA-7d (received EA treatment for 7 days); and dIoN-CCI+EA-14d (received EA treatment for 14 days). Both evoked and spontaneous nociceptive behaviors were measured. Of these, 12 rats (n = 4 from sham, dIoN-CCI, and dIoN-CCI+EA-14d groups, respectively) were used to analyze protein expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel in the Gasserian ganglion (GG) by immunohistochemistry. RESULTS: dIoN-CCI rats exhibited mechanical allodynia and increased face-grooming activity that lasted at least 35 days. EA treatment reduced mechanical allodynia and face-grooming in dIoN-CCI rats. Overall, 14 days of EA treatment produced a prolonged anti-nociceptive effect as compared to 7-day EA treatment. The counts of HCN1 and HCN2 immunopositive puncta were increased in the ipsilateral GG in dIoN-CCI rats and were reduced by 14 days of EA treatment. DISCUSSION: EA treatment relieved trigeminal neuropathic pain in dIoN-CCI rats, and this effect was dependent on the duration of EA treatment. The downregulation of HCN expression may contribute to the anti-nociceptive effect of EA in this rat model of trigeminal neuropathic pain.


Assuntos
Eletroacupuntura , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Gânglio Trigeminal/metabolismo , Neuralgia do Trigêmeo/terapia , Animais , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Masculino , Ratos , Ratos Sprague-Dawley , Neuralgia do Trigêmeo/genética , Neuralgia do Trigêmeo/metabolismo
9.
Pain Med ; 20(7): 1362-1369, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307573

RESUMO

OBJECTIVE: Trigeminal neuralgia is defined as a sudden severe shock-like pain within the distribution of the trigeminal nerve. Pain is a subjective experience that is influenced by gender, culture, environment, psychological traits, and genes. Sodium channels and nerve growth factor play important roles in the transmission of nociceptive signals and pain. The aim of this study was to investigate the occurrence of Nav1.7 sodium channel and nerve growth factor receptor TrkA gene polymorphisms (SCN9A/rs6746030 and NTRK1/rs633, respectively) in trigeminal neuralgia patients. METHODS: Ninety-six subjects from pain specialty centers in the southeastern region of Brazil were divided into 2 groups: 48 with classical trigeminal neuralgia diagnosis and 48 controls. Pain was evaluated using the visual analog scale and multidimensional McGill Pain Questionnaire. Genomic DNA was obtained from oral swabs in all individuals and was analyzed by real-time polymerase chain reaction. RESULTS: No association was observed between evaluated polymorphisms and trigeminal neuralgia. For allele analyses, patients and controls had similar frequencies for both genes. Genotype distribution or allele frequencies of polymorphisms analyzed here did not correlate to pain scores. CONCLUSIONS: Although no association of evaluated polymorphisms and trigeminal neuralgia diagnosis or pain severity was observed, our data do not exclude the possibility that other genotypes affecting the expression of Nav1.7 or TrkA are associated with the disease. Further studies should investigate distinct genetic polymorphisms and epigenetic factors that may be important in expression of these molecules.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/genética , Receptor trkA/genética , Neuralgia do Trigêmeo/genética , Adulto , Idoso , Brasil , Feminino , Predisposição Genética para Doença/genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético/genética
10.
Brain Res Mol Brain Res ; 104(2): 137-42, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12225867

RESUMO

PACAP and VIP are members of the VIP/secretin/glucagon family of peptides with neurotransmitter, neuroprotective, and neurotrophic functions. PACAP and VIP are known to be upregulated in primary sensory neurons following nerve injury, implying that these neuropeptides could be mediators of sensory transmission in neuropathic pain states. Nerve injury at the level of the trigeminal root is thought to be the prime cause of trigeminal neuralgia. Since cross-excitation (a chemically-mediated form of nonsynaptic transmission) within the TG is postulated to play a central role in trigeminal neuralgia, we studied the expression of PACAP and VIP receptors in the TG by RT PCR and immunocytochemistry. Of the three known receptors (PAC1, VPAC1 and VPAC2), RT PCR revealed the presence of mRNA for VPAC2 and several splice variants of the PAC1 receptor. Immunocytochemistry showed PAC1 and VPAC2 to be present in small-diameter TG neurons. Thus, PACAP and VIP are potential mediators of cross-excitation in the TG.


Assuntos
Neurônios Aferentes/metabolismo , Neuropeptídeos/metabolismo , Receptores do Hormônio Hipofisário/genética , Receptores de Peptídeo Intestinal Vasoativo/genética , Gânglio Trigeminal/metabolismo , Neuralgia do Trigêmeo/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Vias Aferentes/metabolismo , Vias Aferentes/fisiopatologia , Processamento Alternativo/genética , Animais , Comunicação Celular/genética , Células Cultivadas , Imuno-Histoquímica , Masculino , Nociceptores/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Isoformas de Proteínas/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores do Hormônio Hipofisário/metabolismo , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Transdução de Sinais/genética , Gânglio Trigeminal/fisiopatologia , Neuralgia do Trigêmeo/genética , Neuralgia do Trigêmeo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA