Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Epigenetics ; 15(1): 57, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005662

RESUMO

BACKGROUND: The incidence of colorectal cancer (CRC) has increased in recent years. Identification of accurate tumor markers has become the focus of CRC research. Early and frequent DNA methylation tends to occur in cancer. Thus, identifying accurate methylation biomarkers would improve the efficacy of CRC treatment. Neuroglobin (NGB) is involved in neurological and oncological diseases. However, there are currently no reports on epigenetic regulation involvement of NGB in CRC. RESULTS: NGB was downregulated or silenced in majority CRC tissues and cell lines. The hypermethylation of NGB was detected in tumor tissue, but no or a very low methylation frequency in normal tissues. Overexpression of NGB induced G2/M phase arrest and apoptosis, suppressed proliferation, migration, invasion in vitro, and inhibited CRC tumor growth and angiogenesis in vivo. Isobaric tag for relative and absolute quantitation (Itraq)-based proteomics identified approximately 40% proteins related to cell-cell adhesion, invasion, and tumor vessel formation in the tumor microenvironment, among which GPR35 was proved critical for NGB-regulated tumor angiogenesis suppression in CRC. CONCLUSIONS: NGB, an epigenetically silenced factor, inhibits metastasis through the GPR35 in CRC. It is expected to grow into a potential cancer risk assessment factor and a valuable biomarker for early diagnosis and prognosis assessment of CRC.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Humanos , Neuroglobina/genética , Neuroglobina/metabolismo , Epigênese Genética , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Biomarcadores/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Microambiente Tumoral , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
2.
Cells ; 10(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943907

RESUMO

Neuroglobin (NGB) is an O2-binding globin mainly expressed in the central and peripheral nervous systems and cerebrospinal fluid. Previously, it was demonstrated that NGB overexpression protects cells from hypoxia-induced death. To investigate processes promoted by NGB overexpression, we used a cellular model of neuroblastoma stably overexpressing an NGB-FLAG construct. We used a proteomic approach to identify the specific profile following NGB overexpression. To evaluate the role of NGB overexpression in increasing energetic metabolism, we measured oxygen consumption rate (OCR) and the extracellular acidification rate through Seahorse XF technology. The effect on autophagy induction was evaluated by analyzing SQSTM1/p62 and LC3-II expression. Proteomic analysis revealed several differentially regulated proteins, involved in oxidative phosphorylation and integral mitochondrial proteins linked to energy metabolism. The analysis of mitochondrial metabolism demonstrated that NGB overexpression increases mitochondrial ATP production. Indeed, NGB overexpression enhances bioenergetic metabolism, increasing OCR and oxygen consumption. Analysis of autophagy induction revealed an increase of LC3-II together with a significant decrease of SQSTM1/p62, and NGB-LC3-II association during autophagosome formation. These results highlight the active participation of NGB in several cellular processes that can be upregulated in response to NGB overexpression, playing a role in the adaptive response to stress in neuroblastoma cells.


Assuntos
Autofagia/genética , Proteínas Associadas aos Microtúbulos/genética , Neuroblastoma/genética , Neuroglobina/genética , Proteína Sequestossoma-1/genética , Trifosfato de Adenosina/genética , Linhagem Celular Tumoral , Metabolismo Energético/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mitocôndrias/genética , Neuroblastoma/patologia , Consumo de Oxigênio/genética , Proteoma/genética
3.
Neurobiol Dis ; 159: 105483, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34400304

RESUMO

Mitochondrial diseases are among the most prevalent groups of inherited neurological disorders, affecting up to 1 in 5000 adults. Despite the progress achieved on the identification of gene mutations causing mitochondrial pathologies, they cannot be cured so far. Harlequin mice, a relevant model of mitochondrial pathology due to apoptosis inducing factor depletion, suffer from progressive disappearance of retinal ganglion cells leading to optic neuropathy. In our previous work, we showed that administering adeno-associated virus encompassing the coding sequences for neuroglobin, (a neuroprotective molecule belonging to the globin family) or apoptosis-inducing factor, before neurodegeneration onset, prevented retinal ganglion cell loss and preserved visual function. One of the challenges to develop an effective treatment for optic neuropathies is to consider that by the time patients become aware of their handicap, a large amount of nerve fibers has already disappeared. Gene therapy was performed in Harlequin mice aged between 4 and 5 months with either a neuroglobin or an apoptosis-inducing factor vector to determine whether the increased abundance of either one of these proteins in retinas could preserve visual function at this advanced stage of the disease. We demonstrated that gene therapy, by preserving the connectivity of transduced retinal ganglion cells and optic nerve bioenergetics, results in the enhancement of visual cortex activity, ultimately rescuing visual impairment. This study demonstrates that: (a) An increased abundance of neuroglobin functionally overcomes apoptosis-inducing factor absence in Harlequin mouse retinas at a late stage of neuronal degeneration; (b) The beneficial effect for visual function could be mediated by neuroglobin localization to the mitochondria, thus contributing to the maintenance of the organelle homeostasis.


Assuntos
Fator de Indução de Apoptose/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Neuroglobina/genética , Atrofia Óptica/metabolismo , Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Acuidade Visual/genética , Córtex Visual/metabolismo , Animais , Progressão da Doença , Terapia Genética , Camundongos , Atrofia Óptica/patologia , Atrofia Óptica/fisiopatologia , Nervo Óptico/patologia , Nervo Óptico/fisiopatologia , Células Ganglionares da Retina/patologia , Córtex Visual/patologia , Vias Visuais
4.
Molecules ; 26(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924212

RESUMO

Neuroglobin (NGB) is a myoglobin-like monomeric globin that is involved in several processes, displaying a pivotal redox-dependent protective role in neuronal and extra-neuronal cells. NGB remarkably exerts its function upon upregulation by NGB inducers, such as 17ß-estradiol (E2) and H2O2. However, the molecular bases of NGB's functions remain undefined, mainly in non-neuronal cancer cells. Human MCF-7 breast cancer cells with a knocked-out (KO) NGB gene obtained using CRISPR/Cas9 technology were analyzed using shotgun label-free quantitative proteomics in comparison with control cells. The differential proteomics experiments were also performed after treatment with E2, H2O2, and E2 + H2O2. All the runs acquired using liquid chromatography-tandem mass spectrometry were elaborated within the same MaxQuant analysis, leading to the quantification of 1872 proteins in the global proteomic dataset. Then, a differentially regulated protein dataset was obtained for each specific treatment. After the proteomic study, multiple bioinformatics analyses were performed to highlight unbalanced pathways and processes. Here, we report the proteomic and bioinformatic investigations concerning the effects on cellular processes of NGB deficiency and cell treatments. Globally, the main processes that were affected were related to the response to stress, cytoskeleton dynamics, apoptosis, and mitochondria-driven pathways.


Assuntos
Neoplasias da Mama/genética , Neuroglobina/genética , Estresse Oxidativo/genética , Proteômica , Apoptose/genética , Neoplasias da Mama/patologia , Biologia Computacional , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Inativação de Genes , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética
5.
Environ Toxicol Pharmacol ; 84: 103604, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33545379

RESUMO

People who drink water contaminated with arsenic for a long time develop neuritis, cerebellar symptoms, and deficits in memory and intellectual function. Arsenic induces oxidative stress and promotes apoptosis through multiple signalling pathways in nerve cells. Neuroglobin (Ngb), as a key mediator, is considered to be protective against oxidative stress. In this study, we aimed to study the effects of Ngb knockdown in arsenite-treated rat neurons on levels of apoptosis markers and reactive oxygen species and serum Ngb levels of subjects from arsenic-endemic regions in China. We discovered that arsenic-induced apoptosis and reactive oxygen species production were enhanced in Ngb-knocked-down rat neurons. Silencing of Ngb aggravated the arsenic-induced decrease in the rate of Bcl-2/Bax and the levels of Bcl-2 protein following arsenite treatment. The results also showed that serum Ngb levels were independently negatively correlated with arsenic concentration in drinking water. Furthermore, the serum Ngb levels of four groups (245 individuals) according to different degree exposure to arsenic were 815.18 ± 89.52, 1247.97 ± 117.18, 774.79 ± 91.55, and 482.72 ± 49.30 pg/mL, respectively. Taken together, it can be deduced that Ngb has protective effects against arsenic-induced apoptosis by eliminating reactive oxygen species.


Assuntos
Arsênio/toxicidade , Neuroglobina/sangue , Neurônios/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Idoso , Animais , Apoptose/efeitos dos fármacos , Arsênio/análise , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroglobina/genética , Neurônios/metabolismo , Síndromes Neurotóxicas/sangue , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/análise
6.
Antioxid Redox Signal ; 32(4): 217-227, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686530

RESUMO

Aims: Nuclear factor (erythroid-derived 2)-like-2 factor (NRF-2) is a transcription factor well known to provide an advantage for cancer growth and survival regulating the cellular redox pathway. In breast cancer cells, we recently identified the monomeric heme-globin neuroglobin (NGB) as part of a new mechanism induced by the steroid hormone 17ß-estradiol (E2) against oxidative stress. While there is mounting evidence suggesting a critical role of NGB as a sensor of oxidative stress, scarce information is available about its involvement in NRF-2 pathway activation in breast cancer cells. Results: Although NGB is not involved in the rapid E2-induced NRF-2 stability, E2 loses the capacity to regulate the expression of NRF-2-dependent genes in NGB-depleted MCF-7 cells. These data strongly sustain a role of NGB as a compensatory protein in the E2-activated intracellular pathway devoted to the increase of cancer cells tolerance to reactive oxygen species (ROS) generation in stressing conditions acting as key regulator of NRF-2 pathway activity in a time-dependent manner. Innovation: In this study, we identified a new role of NGB in the cell response to oxidative stress. Conclusion: Altogether, reported results open new insights on the NGB effect in regulating intracellular pathways related to cell adaptive response to stress and, as consequence, to cell survival, beyond its direct effect as ROS scavenger, opening new prospective in cancer therapeutic intervention.


Assuntos
Antioxidantes/farmacologia , Neoplasias da Mama/metabolismo , Estradiol/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Neuroglobina/genética , Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Neuroglobina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
Chemphyschem ; 20(7): 931-935, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30817078

RESUMO

Light-induced pulsed EPR dipolar spectroscopic methods allow the determination of nanometer distances between paramagnetic sites. Here we employ orthogonal spin labels, a chromophore triplet state and a stable radical, to carry out distance measurements in singly nitroxide-labeled human neuroglobin. We demonstrate that Zn-substitution of neuroglobin, to populate the Zn(II) protoporphyrin IX triplet state, makes it possible to perform light-induced pulsed dipolar experiments on hemeproteins, extending the use of light-induced dipolar spectroscopy to this large class of metalloproteins. The versatility of the method is ensured by the employment of different techniques: relaxation-induced dipolar modulation enhancement (RIDME) is applied for the first time to the photoexcited triplet state. In addition, an alternative pulse scheme for laser-induced magnetic dipole (LaserIMD) spectroscopy, based on the refocused-echo detection sequence, is proposed for accurate zero-time determination and reliable distance analysis.


Assuntos
Neuroglobina/química , Óxidos N-Cíclicos/química , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Luz , Mesilatos/química , Estrutura Molecular , Mutação , Neuroglobina/genética , Protoporfirinas/química , Protoporfirinas/efeitos da radiação , Marcadores de Spin
8.
Int J Biol Macromol ; 121: 207-213, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30300695

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that leads to progressive loss of neurons which often results in deterioration of memory and cognitive function. The development of AD is highly associated with the formation of senile plaques and neurofibrillary tangles. Amyloid ß (Aß) induces neurotoxicity and contributes to the development of AD. Recent evidences also highlighted the importance of neuroglobin (Ngb) in ameliorating AD. This study assessed the ability of fucosterol, a phytosterol found in brown alga, in protecting SH-SY5Y cells against Aß-induced neurotoxicity. Its effects on the mRNA levels of APP and Ngb as well as the intracellular Aß levels were also determined in Aß-induced SH-SY5Y cells. SH-SY5Y cells were exposed to fucosterol prior to Aß treatment. The effect on apoptosis was determined using Annexin V FITC staining and mRNA expression was studied using RT-PCR. Flow cytometry confirmed the protective effects of fucosterol on SH-SY5Y cells against Aß-induced apoptosis. Pretreatment with fucosterol increased the Ngb mRNA levels but reduced the levels of APP mRNA and intracellular Aß in Aß-induced SH-SY5Y cells. These observations demonstrated the protective properties of fucosterol against Aß-induced neurotoxicity in neuronal cells.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Neuroglobina/genética , Estigmasterol/análogos & derivados , Precursor de Proteína beta-Amiloide/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estigmasterol/farmacologia
9.
J Cell Physiol ; 234(4): 3147-3157, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30421506

RESUMO

Neuroglobin (NGB), an antiapoptotic protein upregulated by 17ß-estradiol (E2), is part of E2/estrogen receptor α (ERα) pathway pointed to preserve cancer cell survival in presence of microenvironmental stressors including chemotherapeutic drugs. Here, the possibility that resveratrol (Res), an anticancer plant polyphenol, could increase the susceptibility of breast cancer cells to paclitaxel (Pacl) by affecting E2/ERα/NGB pathway has been evaluated. In MCF-7 and T47D (ERα-positive), but not in MDA-MB 231 (ERα-negative) nor in SK-N-BE (ERα and ERß positive), Res decreases NGB levels interfering with E2/ERα-induced NGB upregulation and with E2-induced ERα and protein kinase B phosphorylation. Although Res treatment does not reduce cell viability by itself, this compound potentiates Pacl proapoptotic effects. Notably, the increase of NGB levels by NGB expression vector transfection prevents Pacl or Res/Pacl effects. Taken together, these findings indicate a new Res-based mechanism that acts on tumor cells impairing the E2/ERα/NGB signaling pathways and increasing cancer cell susceptibility to chemotherapeutic agent.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Neuroglobina/metabolismo , Paclitaxel/farmacologia , Resveratrol/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sinergismo Farmacológico , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Neuroglobina/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
10.
Cell Death Dis ; 9(10): 945, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237546

RESUMO

Neuroglobin (Ngb) has been demonstrated by our lab and others to be neuroprotective against neurological disorders including stroke. However, the roles of Ngb in neurogenesis remain elusive. Neurogenesis can occur in adulthood and can be induced by pathological conditions in the brain such as stroke, and significantly contributes to functional recovery, thus enhancing endogenous neurogenesis may be a promising therapeutic strategy for neurodegenerative diseases. In this study we aimed to investigate the roles of Ngb in neurogenesis using Lentivirus overexpressing Ngb (Lv-Ngb). We show that Ngb overexpression promoted the proliferation of neural progenitor cells (NPC) marked by increased neurosphere number and size. Ngb overexpression also enhanced neuronal differentiation of cultured NPC under differentiation conditions. Moreover, subventricular injection of Lv-Ngb in mice after middle cerebral artery occlusion (MCAO) increased PSA-NCAM positive neuroblastoma cells and Tuj1 positive immature neurons, suggesting that Ngb overexpression promotes neurogenesis in mice brain after stroke. We further show that the pro-neurogenesis effect of Ngb overexpression might be mediated through Dvl1 up-regulation, and subsequent activation of Wnt signaling, indicated by increased nuclear localization of beta-catenin. These results suggest that Ngb may play an important role in promoting neurogenesis in neurodegenerative diseases such as stroke, which may eventually benefit the development of stroke therapeutics targeting neurogenesis through Ngb upregulation.


Assuntos
Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neuroglobina/metabolismo , Animais , Western Blotting , Células Cultivadas , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Ataque Isquêmico Transitório , Lentivirus/genética , Camundongos , Neurogênese/genética , Neuroglobina/genética , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia
11.
J Cell Physiol ; 233(7): 5087-5103, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29219195

RESUMO

Neuroglobin (NGB) is a relatively recent discovered monomeric heme-protein, which behave in neurons as a sensor of injuring stimuli including oxidative stress, hypoxia, and neurotoxicity. In addition, the anti-apoptotic activity of overexpressed NGB has been reported both in neurons and in cancer cell lines. We recently demonstrated that, NGB functions as a compensatory protein of the steroid hormone 17ß-estradiol (E2) protecting cancer cells against the apoptotic death induced by oxidative stress. However, the E2-induced signaling pathways at the root of NGB over-expression and mitochondrial re-localization in breast cancer cells is still elusive. By using a kinase screening library, here, we report that: i) There is a strong positive correlation between NGB and ERα expression and activity in breast cancer cells; ii) The E2-activated phosphatidyl-inositol 3 kinase (PI3K)/protein kinase B (AKT) and protein kinase C (PKC) pathways are necessary to modulate the NGB protein levels; iii) The E2-induced persistent activation of AKT drive NGB to mitochondria; iv) Reactive oxygen species (ROS)-inducing compounds activating rapidly and transiently AKT does not affect the NGB mitochondrial level; and v) High level of NGB into mitochondria are necessary for the pro-survival and anti-apoptotic effect of this globin in cancer cells. As a whole, these results underline the E2 triggered pathways in E2-responsive breast cancer cells that involve NGB as a compensatory protein devoted to cancer cell survival.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Neuroglobina/genética , Estresse Oxidativo/genética , Animais , Apoptose/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estradiol/genética , Estradiol/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neuroglobina/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteína Quinase C/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA