Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.455
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612476

RESUMO

The review introduces the stages of formation and experimental confirmation of the hypothesis regarding the mutual potentiation of neuroprotective effects of hypoxia and hypercapnia during their combined influence (hypercapnic hypoxia). The main focus is on the mechanisms and signaling pathways involved in the formation of ischemic tolerance in the brain during intermittent hypercapnic hypoxia. Importantly, the combined effect of hypoxia and hypercapnia exerts a more pronounced neuroprotective effect compared to their separate application. Some signaling systems are associated with the predominance of the hypoxic stimulus (HIF-1α, A1 receptors), while others (NF-κB, antioxidant activity, inhibition of apoptosis, maintenance of selective blood-brain barrier permeability) are mainly modulated by hypercapnia. Most of the molecular and cellular mechanisms involved in the formation of brain tolerance to ischemia are due to the contribution of both excess carbon dioxide and oxygen deficiency (ATP-dependent potassium channels, chaperones, endoplasmic reticulum stress, mitochondrial metabolism reprogramming). Overall, experimental studies indicate the dominance of hypercapnia in the neuroprotective effect of its combined action with hypoxia. Recent clinical studies have demonstrated the effectiveness of hypercapnic-hypoxic training in the treatment of childhood cerebral palsy and diabetic polyneuropathy in children. Combining hypercapnic hypoxia with pharmacological modulators of neuro/cardio/cytoprotection signaling pathways is likely to be promising for translating experimental research into clinical medicine.


Assuntos
Neuroproteção , Fármacos Neuroprotetores , Criança , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Hipercapnia , Dióxido de Carbono , Hipóxia
2.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612761

RESUMO

The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson's disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology. Here, we explore the therapeutic potential of intranasal exogenous GRP78 for preventing or slowing PD-like neurodegeneration in a lactacystin-induced rat model. We show that intranasally-administered GRP78 rapidly enters the substantia nigra pars compacta (SNpc) and other afflicted brain regions. It is then internalized by neurons and microglia, preventing the development of the neurodegenerative process in the nigrostriatal system. Lactacystin-induced disturbances, such as the abnormal accumulation of phosphorylated pS129-α-synuclein and activation of the pro-apoptotic GRP78/PERK/eIF2α/CHOP/caspase-3,9 signaling pathway of the UPR, are substantially reversed upon GRP78 administration. Moreover, exogenous GRP78 inhibits both microglia activation and the production of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in model animals. The neuroprotective and anti-inflammatory potential of exogenous GRP78 may inform the development of effective therapeutic agents for PD and other synucleinopathies.


Assuntos
Acetilcisteína/análogos & derivados , Doença de Parkinson , Sinucleinopatias , Humanos , Animais , Ratos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , alfa-Sinucleína/genética , Chaperona BiP do Retículo Endoplasmático , Administração Intranasal , Neuroproteção
3.
Prog Neurobiol ; 237: 102612, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642602

RESUMO

Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer's disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.


Assuntos
Precursor de Proteína beta-Amiloide , Giro Denteado , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos , Convulsões , Animais , Giro Denteado/metabolismo , Camundongos , Convulsões/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Neuroproteção/fisiologia , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Humanos
4.
Basic Clin Pharmacol Toxicol ; 134(6): 770-777, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38566316

RESUMO

Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, are characterised by the progressive loss of specific neuronal cell populations due to multifactorial factors, including neurochemical and immunological disturbances. Consequently, patients can develop cognitive, motor and behavioural dysfunctions, which lead to impairments in their quality of life. Over the years, studies have reported on the neuroprotective properties inherent in phenolic compounds. Therefore, this review highlights the most recent scientific findings regarding phenolic compounds as promising neuroprotective molecules against neurodegenerative diseases.


Assuntos
Fármacos Neuroprotetores , Fenóis , Fármacos Neuroprotetores/farmacologia , Animais , Humanos , Fenóis/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Modelos Animais de Doenças , Doença de Parkinson/tratamento farmacológico , Neuroproteção/efeitos dos fármacos
5.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612856

RESUMO

PURPOSE: Resveratrol is a natural polyphenol which has a very low bioavailability but whose antioxidant, anti-inflammatory and anti-apoptotic properties may have therapeutic potential for the treatment of neurodegenerative diseases such as multiple sclerosis (MS). Previously, we reported the oral administration of resveratrol nanoparticles (RNs) elicited a neuroprotective effect in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS, at significantly lower doses than unconjugated resveratrol (RSV) due to enhanced bioavailability. Furthermore, we demonstrated that the intranasal administration of a cell-derived secretome-based therapy at low concentrations leads to the selective neuroprotection of the optic nerve in EAE mice. The current study sought to assess the potential selective efficacy of lower concentrations of intranasal RNs for attenuating optic nerve damage in EAE mice. METHODS: EAE mice received either a daily intranasal vehicle, RNs or unconjugated resveratrol (RSV) for a period of thirty days beginning on the day of EAE induction. Mice were assessed daily for limb paralysis and weekly for visual function using the optokinetic response (OKR) by observers masked to treatment regimes. After sacrifice at day 30, spinal cords and optic nerves were stained to assess inflammation and demyelination, and retinas were immunostained to quantify retinal ganglion cell (RGC) survival. RESULTS: Intranasal RNs significantly increased RGC survival at half the dose previously shown to be required when given orally, reducing the risk of systemic side effects associated with prolonged use. Both intranasal RSV and RN therapies enhanced RGC survival trends, however, only the effects of intranasal RNs were significant. RGC loss was prevented even in the presence of inflammatory and demyelinating changes induced by EAE in optic nerves. CONCLUSIONS: The intranasal administration of RNs is able to reduce RGC loss independent of the inflammatory and demyelinating effects on the optic nerve and the spinal cord. The concentration of RNs needed to achieve neuroprotection is lower than previously demonstrated with oral administration, suggesting intranasal drug delivery combined with nanoparticle conjugation warrants further exploration as a potential neuroprotective strategy for the treatment of optic neuritis, alone as well as in combination with glucocorticoids.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Nanopartículas , Animais , Camundongos , Resveratrol/farmacologia , Neuroproteção , Administração Intranasal , Encefalomielite Autoimune Experimental/tratamento farmacológico
6.
Biol Sex Differ ; 15(1): 30, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566248

RESUMO

BACKGROUND: Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of learning disabilities and memory deficits in children. In both human and animal studies, female neonate brains are less susceptible to HI than male brains. Phosphorylation of the nerve growth factor receptor TrkB has been shown to provide sex-specific neuroprotection following in vivo HI in female mice in an estrogen receptor alpha (ERα)-dependent manner. However, the molecular and cellular mechanisms conferring sex-specific neonatal neuroprotection remain incompletely understood. Here, we test whether female neonatal hippocampal neurons express autonomous neuroprotective properties and assess the ability of testosterone (T) to alter this phenotype. METHODS: We cultured sexed hippocampal neurons from ERα+/+ and ERα-/- mice and subjected them to 4 h oxygen glucose deprivation and 24 h reoxygenation (4-OGD/24-REOX). Sexed hippocampal neurons were treated either with vehicle control (VC) or the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) following in vitro ischemia. End points at 24 h REOX were TrkB phosphorylation (p-TrkB) and neuronal survival assessed by immunohistochemistry. In addition, in vitro ischemia-mediated ERα gene expression in hippocampal neurons were investigated following testosterone (T) pre-treatment and TrkB antagonist therapy via q-RTPCR. Multifactorial analysis of variance was conducted to test for significant differences between experimental conditions. RESULTS: Under normoxic conditions, administration of 3 µM 7,8-DHF resulted an ERα-dependent increase in p-TrkB immunoexpression that was higher in female, as compared to male neurons. Following 4-OGD/24-REOX, p-TrkB expression increased 20% in both male and female ERα+/+ neurons. However, with 3 µM 7,8-DHF treatment p-TrkB expression increased further in female neurons by 2.81 ± 0.79-fold and was ERα dependent. 4-OGD/24-REOX resulted in a 56% increase in cell death, but only female cells were rescued with 3 µM 7,8-DHF, again in an ERα dependent manner. Following 4-OGD/3-REOX, ERα mRNA increased ~ 3 fold in female neurons. This increase was blocked with either the TrkB antagonist ANA-12 or pre-treatment with T. Pre-treatment with T also blocked the 7,8-DHF- dependent sex-specific neuronal survival in female neurons following 4-OGD/24-REOX. CONCLUSIONS: OGD/REOX results in sex-dependent TrkB phosphorylation in female neurons that increases further with 7,8-DHF treatment. TrkB phosphorylation by 7,8-DHF increased ERα mRNA expression and promoted cell survival preferentially in female hippocampal neurons. The sex-dependent neuroprotective actions of 7,8-DHF were blocked by either ANA-12 or by T pre-treatment. These results are consistent with a model for a female-specific neuroprotective pathway in hippocampal neurons in response to hypoxia. The pathway is activated by 7,8-DHF, mediated by TrkB phosphorylation, dependent on ERα and blocked by pre-exposure to T.


Assuntos
Receptor alfa de Estrogênio , Fármacos Neuroprotetores , Criança , Feminino , Animais , Masculino , Camundongos , Humanos , Receptor alfa de Estrogênio/metabolismo , Neuroproteção , Caracteres Sexuais , Testosterona/farmacologia , Testosterona/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Isquemia , Hipóxia/metabolismo , RNA Mensageiro/metabolismo
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 563-570, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597448

RESUMO

OBJECTIVE: To observe neuroprotective effects of Ca2+/calmodulin-dependent kinase Ⅱ (CaMK Ⅱ)γ and CaMkII δ against acute neuronal ischemic reperfusion injury in mice and explore the underlying mechanism. METHODS: Primary cultures of brain neurons isolated from fetal mice (gestational age of 18 days) were transfected with two specific siRNAs (si-CAMK2G and si-CAMK2D) or a control sequence (si-NT). After the transfection, the cells were exposed to oxygen-glucose deprivation/reperfusion (OGD/R) conditions for 1 h followed by routine culture. The expressions of phosphatidylinositol-3-kinase/extracellular signal-regulated kinase (PI3K/Akt/Erk) signaling pathway components in the neurons were detected using immunoblotting. The expressions of the PI3K/Akt/Erk signaling pathway proteins were also detected in the brain tissues of mice receiving middle cerebral artery occlusion (MCAO) or sham operation. RESULTS: The neuronal cells transfected with siCAMK2G showed significantly lower survival rates than those with si-NT transfection at 12, 24, 48, and 72 h after OGD/R (P < 0.01), and si-CAMK2G transfection inhibited OGD/R-induced upregulation of CaMKⅡγ expression. Compared to si-NT, transfection with si-CAMK2G and si-CAMK2D both significantly inhibited the expressions of PI3K/Akt/Erk signaling pathway components (P < 0.01). In the mouse models of MCAO, the expressions of CaMKⅡδ and CaMKⅡγ were significantly increased in the brain, where activation of the PI3K/Akt/Erk signaling pathway was detected. The expression levels of CaMKⅡδ, CaMKⅡγ, Erk, phosphorylated Erk, Akt, and phosphorylated Akt were all significantly higher in MCAO mice than in the sham-operated mice at 24, 48, 72, and 96 h after reperfusion (P < 0.05). CONCLUSION: The neuroprotective effects of CaMKⅡδ and CaMKⅡγ against acute neuronal ischemic reperfusion injury are mediated probably by the PI3K/Akt/Erk pathway.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Camundongos , Ratos , Isquemia Encefálica/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Infarto da Artéria Cerebral Média , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
8.
Nutrients ; 16(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542789

RESUMO

Probiotic supplementation has been identified as a potential target to reduce inflammatory mediators associated with obesity. Therefore, this study assessed the effect of probiotic Lacticaseibacillus rhamnosus LB1.5 on anxiety-like behavior, gene expression in the prefrontal cortex, and neuroinflammation in the cerebral cortex and hippocampus of male mice fed a high-fat diet. Mice aged 21 days were divided into four groups: control (CONT), control plus probiotic (CONT + PROB), high-fat diet (HFD), and high-fat diet plus probiotic (HFD + PROB), and fed for 13 weeks. The probiotic Lact. rhamnosus 1.5 (3.1 × 108 CFU/mL, derived from raw buffalo milk) was administered by gavage three times a week. Probiotic supplementation provided an anxiolytic effect in CONT and HFD. The IL-6 showed lower levels after probiotic supplementation in the HFD. Regarding immunoreactivity for GFAP in the cerebral cortex, we demonstrated that animals HFD-fed had a reduction in cells number compared to CONT. In the hippocampus, we found an interaction between diet and supplementation, as well as an effect of probiotic supplementation. A higher number of Th positive cells was observed in the cerebral cortex in mice fed HFD. Lact. rhamnosus LB1.5 supplementation decreased serum IL-6 levels in HFD-fed mice and promoted a reduction in anxiety-like behavior.


Assuntos
Lacticaseibacillus rhamnosus , Probióticos , Camundongos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Doenças Neuroinflamatórias , Interleucina-6 , Neuroproteção , Ansiedade/prevenção & controle , Camundongos Endogâmicos C57BL
9.
Nat Neurosci ; 27(5): 901-912, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514857

RESUMO

Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination of the central nervous system (CNS). Autologous hematopoietic cell transplantation (HCT) shows promising benefits for relapsing-remitting MS in open-label clinical studies, but the cellular mechanisms underlying its therapeutic effects remain unclear. Using single-nucleus RNA sequencing, we identify a reactive myeloid cell state in chronic experimental autoimmune encephalitis (EAE) associated with neuroprotection and immune suppression. HCT in EAE mice results in an increase of the neuroprotective myeloid state, improvement of neurological deficits, reduced number of demyelinated lesions, decreased number of effector T cells and amelioration of reactive astrogliosis. Enhancing myeloid cell incorporation after a modified HCT further improved these neuroprotective effects. These data suggest that myeloid cell manipulation or replacement may be an effective therapeutic strategy for chronic inflammatory conditions of the CNS.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos Endogâmicos C57BL , Células Mieloides , Animais , Encefalomielite Autoimune Experimental/terapia , Encefalomielite Autoimune Experimental/patologia , Camundongos , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Neuroproteção/fisiologia
10.
Neuroreport ; 35(6): 352-360, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526937

RESUMO

An imbalance of immune/inflammatory reactions aggravates secondary brain injury after traumatic brain injury (TBI) and can deteriorate clinical prognosis. So far, not enough therapeutic avenues have been found to prevent such an imbalance in the clinical setting. Progesterone has been shown to regulate immune/inflammatory reactions in many diseases and conveys a potential protective role in TBI. This study was designed to investigate the neuroprotective effects of progesterone associated with immune/inflammatory modulation in experimental TBI. A TBI model in adult male C57BL/6J mice was created using a controlled contusion instrument. After injury, the mice received consecutive progesterone therapy (8 mg/kg per day, i.p.) until euthanized. Neurological deficits were assessed via Morris water maze test. Brain edema was measured via the dry-wet weight method. Immunohistochemical staining and flow cytometry were used to examine the numbers of immune/inflammatory cells, including IBA-1 + microglia, myeloperoxidase + neutrophils, and regulatory T cells (Tregs). ELISA was used to detect the concentrations of IL-1ß, TNF-α, IL-10, and TGF-ß. Our data showed that progesterone therapy significantly improved neurological deficits and brain edema in experimental TBI, remarkably increased regulatory T cell numbers in the spleen, and dramatically reduced the activation and infiltration of inflammatory cells (microglia and neutrophils) in injured brain tissue. In addition, progesterone therapy decreased the expression of the pro-inflammatory cytokines IL-1ß and TNF-α but increased the expression of the anti-inflammatory cytokine IL-10 after TBI. These findings suggest that progesterone administration could be used to regulate immune/inflammatory reactions and improve outcomes in TBI.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Camundongos , Masculino , Animais , Interleucina-10 , Progesterona/farmacologia , Neuroproteção , Fator de Necrose Tumoral alfa/metabolismo , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Edema Encefálico/prevenção & controle , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Modelos Animais de Doenças , Microglia/metabolismo
11.
Eur J Med Chem ; 269: 116266, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490063

RESUMO

In neurodegenerative diseases, using a single molecule that can exert multiple effects to modify the disease may have superior activity over the classical "one molecule-one target" approach. Herein, we describe the discovery of 6-hydroxybenzothiazol-2-carboxamides as highly potent and selective MAO-B inhibitors. Variation of the amide substituent led to several potent compounds having diverse side chains with cyclohexylamide 40 displaying the highest potency towards MAO-B (IC50 = 11 nM). To discover new compounds with extended efficacy against neurotoxic mechanisms in neurodegenerative diseases, MAO-B inhibitors were screened against PHF6, R3 tau, cellular tau and α-synuclein (α-syn) aggregation. We identified the phenethylamide 30 as a multipotent inhibitor of MAO-B (IC50 = 41 nM) and α-syn and tau aggregation. It showed no cytotoxic effects on SH-SY5Y neuroblastoma cells, while also providing neuroprotection against toxicities induced by α-syn and tau. The evaluation of key physicochemical and in vitro-ADME properties revealed a great potential as drug-like small molecules with multitarget neuroprotective activity.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Humanos , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Neuroproteção , Monoaminoxidase/metabolismo , Relação Estrutura-Atividade
12.
Front Endocrinol (Lausanne) ; 15: 1286066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469139

RESUMO

Historically, progesterone has been studied significantly within the context of reproductive biology. However, there is now an abundance of evidence for its role in regions of the central nervous system (CNS) associated with such non-reproductive functions that include cognition and affect. Here, we describe mechanisms of progesterone action that support its brain-protective effects, and focus particularly on the role of neurotrophins (such as brain-derived neurotrophic factor, BDNF), the receptors that are critical for their regulation, and the role of certain microRNA in influencing the brain-protective effects of progesterone. In addition, we describe evidence to support the particular importance of glia in mediating the neuroprotective effects of progesterone. Through this review of these mechanisms and our own prior published work, we offer insight into why the effects of a progestin on brain protection may be dependent on the type of progestin (e.g., progesterone versus the synthetic, medroxyprogesterone acetate) used, and age, and as such, we offer insight into the future clinical implication of progesterone treatment for such disorders that include Alzheimer's disease, stroke, and traumatic brain injury.


Assuntos
Progesterona , Progestinas , Progesterona/farmacologia , Progestinas/farmacologia , Neuroproteção , Receptores de Progesterona/metabolismo , Encéfalo/metabolismo
13.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473749

RESUMO

Cerium oxide nanoparticles (CeONPs) exhibiting antioxidant properties are investigated as potential tools for neurodegenerative diseases. Here, we synthesized polyacrylic acid conjugated cerium oxide (CeO) nanoparticles, and further to enhance their neuroprotective effect, Eu3+ was substituted at different concentrations (5, 10, 15 and 20 mol%) to the CeO, which can also impart fluorescence to the system. CeONPs and Eu-CeONPs in the size range of 15-30 nm were stable at room temperature. The X-ray Photoelectron Spectroscopy (XPS) analysis revealed the chemical state of Eu and Ce components, and we could conclude that all Eu3+ detected on the surface is well integrated into the cerium oxide lattice. The emission spectrum of Eu-CeO arising from the 7F0 → 5D1 MD and 7F0 → 5D2 transitions indicated the Eu3+ ion acting as a luminescence center. The fluorescence of Eu-CeONPs was visualized by depositing them at the surface of positively charged latex particles. The developed nanoparticles were safe for human neuronal-like cells. Compared with CeONPs, Eu-CeONPs at all concentrations exhibited enhanced neuroprotection against 6-OHDA, while the protection trend of Eu-CeO was similar to that of CeO against H2O2 in SH-SY5Y cells. Hence, the developed Eu-CeONPs could be further investigated as a potential theranostic probe.


Assuntos
Resinas Acrílicas , Cério , Nanopartículas , Neuroblastoma , Humanos , Neuroproteção , Peróxido de Hidrogênio , Nanopartículas/química
14.
Cell Biochem Funct ; 42(2): e3964, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439154

RESUMO

Kaempferol, a flavonoid compound found in various fruits, vegetables, and medicinal plants, has garnered increasing attention due to its potential neuroprotective effects in neurological diseases. This research examines the existing literature concerning the involvement of kaempferol in neurological diseases, including stroke, Parkinson's disease, Alzheimer's disease, neuroblastoma/glioblastoma, spinal cord injury, neuropathic pain, and epilepsy. Numerous in vitro and in vivo investigations have illustrated that kaempferol possesses antioxidant, anti-inflammatory, and antiapoptotic properties, contributing to its neuroprotective effects. Kaempferol has been shown to modulate key signaling pathways involved in neurodegeneration and neuroinflammation, such as the PI3K/Akt, MAPK/ERK, and NF-κB pathways. Moreover, kaempferol exhibits potential therapeutic benefits by enhancing neuronal survival, attenuating oxidative stress, enhancing mitochondrial calcium channel activity, reducing neuroinflammation, promoting neurogenesis, and improving cognitive function. The evidence suggests that kaempferol holds promise as a natural compound for the prevention and treatment of neurological diseases. Further research is warranted to elucidate the underlying mechanisms of action, optimize dosage regimens, and evaluate the safety and efficacy of this intervention in human clinical trials, thereby contributing to the advancement of scientific knowledge in this field.


Assuntos
Doenças do Sistema Nervoso , Fármacos Neuroprotetores , Humanos , Neuroproteção , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Fosfatidilinositol 3-Quinases , Doenças do Sistema Nervoso/tratamento farmacológico
15.
ACS Chem Neurosci ; 15(6): 1197-1205, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451201

RESUMO

Vitamin C (Vc) plays a pivotal role in a series of pathological processes, such as tumors, immune diseases, and neurological disorders. However, its therapeutic potential for tinnitus management remains unclear. In this study, we find that Vc relieves tinnitus in noise-exposed rats. In the 7-day therapy groups, spontaneous firing rate (SFR) increases from 1.17 ± 0.10 Hz to 1.77 ± 0.15 Hz after noise exposure. Vc effectively reduces the elevated SFR to 0.99 ± 0.07 and 0.55 ± 0.05 Hz at different doses. The glutamate level in auditory cortex of noise-exposed rats (3.78 ± 0.42 µM) increases relative to that in the control group (1.34 ± 0.22 µM). High doses of Vc (500 mg/kg/day) effectively reduce the elevated glutamate levels (1.49 ± 0.28 µM). Mechanistic studies show that the expression of glutamate transporter 1 (GLT-1) is impaired following noise exposure and that Vc treatment effectively restores GLT-1 expression in the auditory cortex. Meanwhile, the GLT-1 inhibitor, dl-threo-beta-benzyloxyaspartic acid (dl-TBOA), invalidates the protection role of Vc. Our finding shows that Vc substantially enhances glutamate clearance by upregulating GLT-1 and consequently alleviates noise-induced tinnitus. This study provides valuable insight into a novel biological target for the development of therapeutic interventions that may prevent the onset of tinnitus.


Assuntos
Córtex Auditivo , Zumbido , Ratos , Animais , Córtex Auditivo/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Neuroproteção , Zumbido/tratamento farmacológico , Zumbido/metabolismo , Ácido Glutâmico/metabolismo , Modelos Animais de Doenças , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo
16.
Continuum (Minneap Minn) ; 30(1): 53-72, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38330472

RESUMO

OBJECTIVE: This article provides a review of the initial clinical and radiologic evaluation and treatment of patients with traumatic spinal cord injuries. It specifically highlights essential knowledge for neurologists who encounter patients with these complex injuries. LATEST DEVELOPMENTS: There has been improvement in the care of patients with traumatic spinal cord injuries, particularly in the prehospital evaluation, approach for immediate immobilization, standardized spinal clearance, efficient triage, and transportation of appropriate patients to traumatic spinal cord injury specialized centers. Advancements in spinal instrumentation have improved the surgical management of spinal fractures and the ability to manage patients with spinal mechanical instability. The clinical evidence favors performing early surgical decompression and spine stabilization within 24 hours of traumatic spinal cord injuries, regardless of the severity or location of the injury. There is no evidence that supports the use of neuroprotective treatments to improve outcomes in patients with traumatic spinal cord injuries. The administration of high-dose methylprednisolone, which is associated with significant systemic adverse effects, is strongly discouraged. Early and delayed mortality rates continue to be high in patients with traumatic spinal cord injuries, and survivors often confront substantial long-term physical and functional impairments. Whereas the exploration of neuroregenerative approaches, such as stem cell transplantation, is underway, these methods remain largely investigational. Further research is still necessary to advance the functional recovery of patients with traumatic spinal cord injuries. ESSENTIAL POINTS: Traumatic spinal cord injury is a complex and devastating condition that leads to long-term neurologic deficits with profound physical, social, and vocational implications, resulting in a diminished quality of life, particularly for severely affected patients. The initial management of traumatic spinal cord injuries demands comprehensive interdisciplinary care to address the potentially catastrophic multisystem effects. Ongoing endeavors are focused on optimizing and customizing initial management approaches and developing effective therapies for neuroprotection and neuroregeneration to enhance long-term functional recovery.


Assuntos
Traumatismos da Medula Espinal , Humanos , Metilprednisolona/administração & dosagem , Metilprednisolona/efeitos adversos , Neuroproteção , Qualidade de Vida , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/complicações
17.
Molecules ; 29(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38338436

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder of the elderly for which there is no cure or disease-modifying therapy. Mitochondrial dysfunction and oxidative stress play a central role in dopaminergic neurodegeneration in PD. Therefore, antioxidants are considered a promising neuroprotective approach. In in vivo activity studies, 6-OHDA-induced oxidative stress in SH-SY5Y cells was established as a model of PD for cellular experiments. IIAVE (Ile-Ile-Ala-Val-Glu) was derived from Isochrysis zhanjiangensis octapeptide (IIAVEAGC), which has a small molecular weight. The structure and antioxidant activity of IIAVE were tested in a previous study and proved to have good antioxidant potential. In this study, the chemical properties of IIAVE were calculated using quantum chemical methods, including frontier molecular orbital (FMO), molecular electrostatic potential (MEP), natural population analysis (NPA), and global reactivity properties. The interaction of IIAVE with Bcl-2 and DJ-1 was investigated using the molecular docking method. The results showed that IIAVE promoted the activation of the Keap1/Nrf2 pathway and up-regulated the expression of the superoxide dismutase 1 (SOD-1) protein by inhibiting the level of reactive oxygen species (ROS) in cells. In addition, IIAVE inhibits ROS production and prevents 6-OHDA-induced oxidative damage by restoring mitochondrial membrane potential. Furthermore, IIAVE inhibited cell apoptosis by increasing the Bcl-2/Bax ratio and inhibiting the activation of Caspase-9 and Caspase-3. Thus, IIAVE may become a potential drug for the treatment and prevention of PD.


Assuntos
Haptófitas , Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Idoso , Neuroproteção , Espécies Reativas de Oxigênio/metabolismo , Oxidopamina/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Haptófitas/metabolismo , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular Tumoral , Apoptose , Antioxidantes/farmacologia , Doença de Parkinson/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
18.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338958

RESUMO

The molecular basis for circadian dependency in stroke due to subarachnoid hemorrhagic stroke (SAH) remains unclear. We reasoned that microglial erythrophagocytosis, crucial for SAH response, follows a circadian pattern involving carbon monoxide (CO) and CD36 surface expression. The microglial BV-2 cell line and primary microglia (PMG) under a clocked medium change were exposed to blood ± CO (250 ppm, 1 h) in vitro. Circadian dependency and the involvement of CD36 were analyzed in PMG isolated from control mice and CD36-/- mice and by RNA interference targeting Per-2. In vivo investigations, including phagocytosis, vasospasm, microglia activation and spatial memory, were conducted in an SAH model using control and CD36-/- mice at different zeitgeber times (ZT). In vitro, the surface expression of CD36 and its dependency on CO and phagocytosis occurred with changed circadian gene expression. CD36-/- PMG exhibited altered circadian gene expression, phagocytosis and impaired responsiveness to CO. In vivo, control mice with SAH demonstrated circadian dependency in microglia activation, erythrophagocytosis and CO-mediated protection at ZT2, in contrast to CD36-/- mice. Our study indicates that circadian rhythmicity modulates microglial activation and subsequent CD36-dependent phagocytosis. CO altered circadian-dependent neuroprotection and CD36 induction, determining the functional outcome in a hemorrhagic stroke model. This study emphasizes how circadian rhythmicity influences neuronal damage after neurovascular events.


Assuntos
Acidente Vascular Cerebral Hemorrágico , Linfo-Histiocitose Hemofagocítica , Hemorragia Subaracnóidea , Camundongos , Animais , Microglia/metabolismo , Monóxido de Carbono/metabolismo , Neuroproteção , Fagocitose/fisiologia , Hemorragia Subaracnóidea/metabolismo
19.
FEBS Lett ; 598(9): 995-1007, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413095

RESUMO

Resveratrol prevents various neurodegenerative diseases in animal models despite reaching only low nanomolar concentrations in the brain after oral administration. In this study, based on the quenching of intrinsic tryptophan fluorescence and molecular docking, we found that trans-resveratrol, its conjugates (glucuronide and sulfate), and dihydro-resveratrol (intestinal microbial metabolite) bind with high affinities (Kd, 0.2-2 nm) to the peptide G palindromic sequence (near glycosaminoglycan-binding motif) of the 67-kDa laminin receptor (67LR). Preconditioning with low concentrations (0.01-10 nm) of these polyphenols, especially resveratrol-glucuronide, protected neuronal cells from death induced by serum withdrawal via activation of cAMP-mediated signaling pathways. This protection was prevented by a 67LR-blocking antibody, suggesting a role for this cell-surface receptor in neuroprotection by resveratrol metabolites.


Assuntos
Fármacos Neuroprotetores , Receptores de Laminina , Resveratrol , Resveratrol/farmacologia , Resveratrol/metabolismo , Resveratrol/química , Receptores de Laminina/metabolismo , Receptores de Laminina/genética , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Simulação de Acoplamento Molecular , Animais , Ligação Proteica , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Estilbenos/farmacologia , Estilbenos/metabolismo , Estilbenos/química , Neuroproteção/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sítios de Ligação , Glucuronídeos/metabolismo , Glucuronídeos/química , Proteínas Ribossômicas
20.
FEBS J ; 291(9): 1944-1957, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38335056

RESUMO

The transmembrane receptor for advanced glycation end products (RAGE) is a signaling receptor for many damage- and pathogen-associated molecules. Activation of RAGE is associated with inflammation and an increase in reactive oxygen species (ROS) production. Although several sources of ROS have been previously suggested, how RAGE induces ROS production is still unclear, considering the multiple targets of pathogen-associated molecules. Here, using acute brain slices and primary co-culture of cortical neurons and astrocytes, we investigated the effects of a range of synthetic peptides corresponding to the fragments of the RAGE V-domain on redox signaling. We found that the synthetic fragment (60-76) of the RAGE V-domain induces activation of ROS production in astrocytes and neurons from the primary co-culture and acute brain slices. This effect occurred through activation of RAGE and could be blocked by a RAGE inhibitor. Activation of RAGE by the synthetic fragment stimulates ROS production in NADPH oxidase (NOX). This RAGE-induced NOX activation produced only minor decreases in glutathione levels and increased the rate of lipid peroxidation, although it also reduced basal and ß-amyloid induced cell death in neurons and astrocytes. Thus, specific activation of RAGE induces redox signaling through NOX, which can be a part of a cell protective mechanism.


Assuntos
Astrócitos , Técnicas de Cocultura , NADPH Oxidases , Neurônios , Espécies Reativas de Oxigênio , Receptor para Produtos Finais de Glicação Avançada , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Animais , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Neuroproteção , Células Cultivadas , Oxirredução , Transdução de Sinais , Camundongos , Peroxidação de Lipídeos/efeitos dos fármacos , Ratos , Ativação Enzimática/efeitos dos fármacos , Glutationa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA