Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
1.
Oxid Med Cell Longev ; 2024: 5594090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156220

RESUMO

Background: Type II diabetes mellitus (DM) is an increasing health problem that has negative impacts on patients and healthcare systems, worldwide. The development of new therapies with better efficacy, fewer side effects, and lower prices are urgently needed to treat this disease. Aim: To evaluate and compare the therapeutic effects of Nigella sativa (N. sativa) seed and oil on the biochemical parameters and regeneration of pancreatic islets (or islets of Langerhans) of streptozotocin (STZ)-induced diabetic rats. Materials and Methods: The diabetic rat model was prepared by administering a single dose of STZ (35 mg/kg body weight). The whole seed or the oil of N. sativa was administered to the diabetic and control groups for a period of 28 days, but not to the negative and STZ controls. Serum blood glucose, liver enzymes, lipid profile, and renal function tests (uric acid, albumin, total protein, urea, and creatinine) were measured in all groups. After the rats were euthanized, their pancreases were extracted, and then sectioned and fixed on slides in preparation before staining with H&E stain and immunohistochemical study. Results: Treatment of STZ-diabetic rats with N. sativa seeds or oil significantly improved their serum glucose levels, lipid profiles, and liver and renal functions as well as preserved the integrity of pancreatic ß cells. Conclusion: N. sativa seeds and oil demonstrate significant therapeutic improvement effects on DM and its related complications including effective protection of islets of Langerhans. The therapeutic benefits of N. sativa seeds and oil on DM and its related complications are comparable.


Assuntos
Diabetes Mellitus Experimental , Nigella sativa , Óleos de Plantas , Sementes , Estreptozocina , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Sementes/química , Ratos , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Nigella sativa/química , Masculino , Ratos Wistar , Imuno-Histoquímica , Glicemia/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Carum
2.
Molecules ; 29(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124928

RESUMO

Turmeric rhizomes (Curcuma longa) and black cumin seeds (Nigella sativa) are polyherbal ingredients used for the management of cancer and other chronic inflammatory diseases in Nigerian ethnomedicine. Previous studies have shown the antioxidant, anti-inflammatory, and anticancer activities of the individual plant extracts. However, the two spices have not been biologically potentiated in their combined form. Therefore, this study obtained essential oils (EOs) from the combined spices and evaluated their inhibitory effects on free radicals, protein denaturation, and cancer proliferation. The EOs were extracted by hydro-distillation (HD) and characterized by gas chromatography-mass spectrometry (GC-MS). In vitro antioxidant assessment was conducted based on DPPH, hydrogen peroxide (H2O2), nitric oxide (NO), and ferric ion (Fe3+) radical scavenging assays. The cytotoxicity of the oil against non-tumorigenic (HEK293) and cancerous (HepG2 and HeLa) cell lines was determined following the MTT cell viability assay. An in silico molecular docking analysis of the oil constituents was also performed. Six batches of EOs I-VI were afforded, comprising twenty-two major constituents, with aromatic Ar-turmerone being the most prominent compound. There was a marked improvement in the bioactivity of the oils upon repeated HD and as a combination. The batch VI oil exhibited the best activity, with a cytotoxicity (CC50) of 10.16 ± 1.69 µg/100 µL against the HepG2 cell line, which was comparable to 5-fluorouracil (standard, CC50 = 8.59 ± 1.33 µg/100 µL). In silico molecular docking suggested δ-curcumene, Ar-curcumene, Ar-turmerol, and Ar-turmerone among the promising compounds based on their high binding energy scores with NOX2, NF-κB, and mdm2 proteins. In conclusion, the oils from the turmeric-black cumin combined possess a considerable inhibition ability against free radicals, protein denaturation, and cancer proliferation. This study's findings further underscore the effectiveness of turmeric-black cumin as a polyherbal medicinal ingredient.


Assuntos
Antioxidantes , Proliferação de Células , Curcuma , Simulação de Acoplamento Molecular , Nigella sativa , Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Curcuma/química , Proliferação de Células/efeitos dos fármacos , Nigella sativa/química , Antioxidantes/farmacologia , Antioxidantes/química , Desnaturação Proteica , Células HeLa , Radicais Livres/química , Células Hep G2 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células HEK293 , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química
3.
Sci Rep ; 14(1): 17573, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080438

RESUMO

The oil obtained from black cumin (Nigella sativa) seeds has many health-effective properties, which is used in food applications and in traditional medicine. One practical method to extract its oil is mixing with other seeds such as sunflower (Helianthus anuus) seeds before oil extraction by press. The effectiveness of the cold-press oil obtained from the mixture of black cumin seeds (BS) and sunflower seeds (SF) in different proportions 100:0, 95:5, 90:10, 85:15 and 0:100 (w/w) was studied to evaluate their qualitative properties including peroxide value (PV), acid value, p-anisidine value (AnV), pigments (carotenoid and chlorophyll) content, polyphenols, and profile of fatty acids during heating process (30-150 min at 180 °C). The results revealed that the acid and p-anisidine value of the all samples enhanced with the extension of the heating time, and the peroxide value increased at the beginning of the heating and then decreased with the prolongation of the heating time (p < .05). With the increase of temperature and heating time, the peroxide of sunflower oil increased with a higher slope and speed than that of black seed and blends oil. Changes in the PV and AnV were the fastest in sunflower oil. Blending and heating caused considerable changes in the fatty acid composition of oils, especially myristic, palmitic, and stearic acids. Moreover, the levels of certain unsaturated fatty acids, namely linoleic, oleic, and linolenic acids declined after heating. The carotenoids, chlorophyll and total phenol content decreased gradually during heating treatments. Among extracted oils, SF:BS (15%) had the good potential for stability, with total phenol content of 95.92 (Caffeic acid equivalents/100 g), PV of 2.16 (meq O2/kg), AV of 2.59 (mg KOH/g oil), and AnV of 8.08 after the heating. In conclusion, oil extracted from the mixture of SF and BS can be used as salad and cooking oils with a high content of bioactive components and positive nutritional properties.


Assuntos
Helianthus , Temperatura Alta , Nigella sativa , Óleos de Plantas , Sementes , Nigella sativa/química , Helianthus/química , Sementes/química , Óleos de Plantas/química , Óleos de Plantas/análise , Ácidos Graxos/análise , Clorofila/análise , Peróxidos/análise , Polifenóis/análise , Polifenóis/química , Óleo de Girassol/química , Carotenoides/análise , Carotenoides/química
4.
Toxicon ; 247: 107854, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38977085

RESUMO

The consumption of mushrooms containing α-Amanitin (α-A) can lead to severe liver damage. In this study, toxicological experiments were conducted to confirm the protective effects of pomegranate seed oil (PSO) and black cumin oil (BCO) against α-A-induced hepatotoxicity. Rats exposed once to α-A (3 mg/kg bw, i.p.) or saline alone (0.1 ml, i.p.) were either left untreated or treated with PSO or BCO at a dose of 2 ml/kg bw/day by oral gavage on the same day, and the treatment was continued for 7 days. Serum aminotransferases (ALT and AST), alkaline phosphatase (ALP) and total protein levels were measured and the active caspase 3 (cl-caspase 3) was evaluated by western blotting in the liver. Serum ALT, AST and ALP levels tended to decrease in the α-A exposed group, but no statistically significant difference was found compared to the saline group (p > 0.05). PSO and BCO did not affect serum liver function tests in rats exposed to saline or α-A. α-A toxicity was demonstrated by a significant decrease in serum total protein level (p < 0.05), a significant increase in liver cl-caspase 3 expression (p < 0.05), and structural liver damage mainly characterized by mononuclear inflammation and steatosis. When α-A exposed rats were treated with BCO, the increase in cl-caspase 3 was not inhibited, on the contrary BCO increased cl-caspase 3 in healthy rats (p < 0.05). PSO significantly ameliorated α-A-induced cl-caspase 3 increase and inflammatory histopathology in the liver. Both PSO and BCO completely prevented α-A-induced protein degradation. The findings indicate that PSO and BCO may protect liver functions against α-A-induced hepatotoxicity, encouraging future comprehensive studies to test them at different doses and frequency.


Assuntos
Alfa-Amanitina , Doença Hepática Induzida por Substâncias e Drogas , Fígado , Óleos de Plantas , Punica granatum , Sementes , Animais , Óleos de Plantas/farmacologia , Ratos , Punica granatum/química , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Alfa-Amanitina/toxicidade , Sementes/química , Caspase 3/metabolismo , Nigella sativa/química , Fosfatase Alcalina/sangue , Alanina Transaminase/sangue , Ratos Sprague-Dawley , Carum
5.
BMC Complement Med Ther ; 24(1): 241, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902620

RESUMO

Iron nanoparticles comprise a significant class of inorganic nanoparticles, which discover applications in various zones by prudence of their few exciting properties. This study achieved the green synthesis of iron oxide nanoparticles (IONPs) by black cumin seed (Nigella sativa) extract, which acts as a reducing and capping agent. The iron nanoparticles and black cumin extract were synthesized in three different concentrations: (01:01, 02:04,01:04). UV-visible spectroscopy, XRD, FTIR, and AFM characterized the synthesized iron oxide nanoparticles. UV-visible spectra show the maximum absorbance peak of 01:01 concentration at 380 nm. The other concentrations, such as 02:04, peaked at 400 nm and 01:04 at 680 nm, confirming the formation of iron oxide nanoparticles. AFM analysis reveals the spherical shape of iron oxide nanoparticles. The XRD spectra reveal the (fcc) cubic crystal structure of the iron oxide nanoparticles. The FTIR analysis's peaks at 457.13, 455.20, and 457.13 cm-1 depict the characteristic iron nanoparticle synthesis. The black cumin extract-mediated iron oxide nanoparticles show substantial antibacterial, antifungal, antioxidant and anti-inflammatory activity in a dose-dependent manner.


Assuntos
Anti-Infecciosos , Anti-Inflamatórios , Nigella sativa , Extratos Vegetais , Sementes , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Sementes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nigella sativa/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Compostos Férricos/química , Química Verde
6.
Neurosci Lett ; 834: 137844, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38821203

RESUMO

Depression is a prevalent global health concern necessitating alternative approaches to conventional antidepressant medications due to its associated adverse effects. Nigella sativa (NS) is recognized for its potential as an antidepressant, offering a promising solution with fewer side effects. This study investigated the antidepressant efficacy of cyclodextrin-complexed lyophilized nanosuspension of NS oleoresin (NSOR) in a murine model of chronic unpredictable mild stress (CUMS)-induced depression. This study sought to evaluate and contrast the antidepressant potential of the nano-NSOR with that of the NS ethanolic extract (NSEE). The prepared nano-NSOR was characterized physicochemically and evaluated for in vitro drug release and in vivo antidepressant activity. The particle size of nano-NSOR was determined to be 164.6 nm. In vitro drug release studies suggested the higher drug release from nano-NSOR (90.15 % after 72 h) compared to the native NSOR (59.55 % after 72 h). Furthermore, nano-NSOR exhibited a more pronounced antidepressant effect than NSEE in the context of CUMS-induced depression. This study highlights a potential alternative for managing depression, addressing the need for improved antidepressant treatments with reduced side effects. These results suggest that nano-NSOR ameliorates CUMS-induced depression by modulating neurotransmitter levels, reducing inflammation, and enhancing neuroprotection.


Assuntos
Antidepressivos , Ciclodextrinas , Depressão , Nigella sativa , Extratos Vegetais , Sementes , Estresse Psicológico , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Sementes/química , Nigella sativa/química , Estresse Psicológico/tratamento farmacológico , Masculino , Ciclodextrinas/química , Nanopartículas/química , Liofilização , Modelos Animais de Doenças , Suspensões
7.
Trop Anim Health Prod ; 56(4): 156, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727858

RESUMO

The current study aimed to determine the polyphenol compounds in Nigella sativa (NS) and Eruca sativa (ES) seeds, and evaluate the impact of their addition either as a sole additive or in combination on the growth performance, digestibility, some rumen and blood parameters and antioxidative status of Barki lambs. Forty-eight male lambs (27.18 ± 0.22 kg, 5-6 months), were divided into 4 balanced groups. The experimental diets were randomly distributed to the control group (CON); fed alfalfa hay plus concentrate feed mixture at a ratio of 30:70% without additives, while, NSD, ESD, and NESD groups: fed CON diet plus 2% NS, 2% ES or 1% NS + 1% ES, respectively as a ratio from total mixed ration (TMR). Results indicated that rutin and catechin were the most phenolic compounds observed either in NS or ES seeds. The NS and ES-supplemented groups recorded the highest (P < 0.05) values for dry matter digestibility, nutritive values, average daily gain, and the best feed conversion ratio. However, growth performance, nutritive value, and all nutrient digestibility except for dry matter were not significantly altered with the NESD group. Concentrations of ruminal NH3-N and TVFA were significantly (P < 0.05) reduced with the NESD group, with no significant differences in pH values among different groups. Values of blood parameters showed significant increases in WBCs, PCV, and T-AOC, and decreases in cholesterol, triglycerides, and MDA with the addition of NS and ES seeds or both. Therefore, the addition of NS and ES seeds is recommended to improve lambs' health and antioxidant status.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Antioxidantes , Dieta , Suplementos Nutricionais , Digestão , Nigella sativa , Sementes , Carneiro Doméstico , Animais , Nigella sativa/química , Ração Animal/análise , Masculino , Sementes/química , Antioxidantes/metabolismo , Antioxidantes/análise , Suplementos Nutricionais/análise , Dieta/veterinária , Digestão/efeitos dos fármacos , Carneiro Doméstico/crescimento & desenvolvimento , Carneiro Doméstico/fisiologia , Rúmen/metabolismo , Brassicaceae/química , Distribuição Aleatória , Nutrientes/análise , Nutrientes/metabolismo
8.
Am J Chin Med ; 52(3): 775-797, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715182

RESUMO

Kidney disease is a common health problem worldwide. Acute or chronic injuries may interfere with kidney functions, eventually resulting in irreversible kidney damage. A number of recent studies have shown that the plant-derived natural products have an extensive potential for renal protection. Thymoquinone (TQ) is an essential compound derived from Nigella Sativa (NS), which is widely applied in the Middle East as a folk medicine. Previous experiments have demonstrated that TQ has a variety of potential pharmacological effects, including anti-oxidant, antibacterial, antitumor, immunomodulatory, and neuroprotective activities. In particular, the prominent renal protective efficacy of TQ has been demonstrated in both in vivo and in vitro experiments. TQ can prevent acute kidney injuries from various xenobiotics through anti-oxidation, anti-inflammatory, and anti-apoptosis effects. In addition, TQ exhibited significant pharmacological effects on renal cell carcinoma, renal fibrosis, and urinary calculi. The essential mechanisms involve scavenging ROS and increasing anti-oxidant activity, decreasing inflammatory mediators, inducing apoptosis, and inhibiting migration and invasion. The purpose of this review is to conclude the pharmacological effects and the potential mechanisms of TQ in renal protection, shedding new light on the exploration of medicinal phyto-protective agents targeting kidneys.


Assuntos
Antioxidantes , Apoptose , Benzoquinonas , Nigella sativa , Fitoterapia , Benzoquinonas/farmacologia , Humanos , Nigella sativa/química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Animais , Nefropatias/prevenção & controle , Nefropatias/tratamento farmacológico , Rim/efeitos dos fármacos , Anti-Inflamatórios , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/tratamento farmacológico , Carcinoma de Células Renais/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Substâncias Protetoras/farmacologia
9.
Toxicon ; 244: 107754, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761922

RESUMO

Thymoquinone (TQ) is one of the main phytochemical bioactive ingredients in Nigella sativa, with reported immunity-boosting properties. The current study evaluated the anti-inflammatory effect of TQ against inflammation brought on by free fatty acid Palmitate (PA) using macrophages raw 264.7 cell line. Data revealed that TQ significantly improved the viability of basal and PA stimulated Macrophages at concentrations of 50 and 100 µg/mL. Also, TQ significantly reduced nitric oxide and triglyceride levels in PA-stimulated macrophages at concentrations of 50 and 100 µg/mL. The pro-inflammatory cytokines studies revealed that PA significantly increased the release of the cytokines TNF-α, MHGB-1, IL-1ß, and IL-6. TQ at concentrations 25, 50, and 100 µg/ml significantly decreases the release of the studied cytokines in PA-stimulated macrophages to variable extents with parallel inhibition to their corresponding gene expression. Bioenergetic assays showed that PA significantly decreased cellular ATP, mitochondrial complexes I and III activities and mitochondrial membrane potential with a subsequent significant increase in lactate production. At the same time, TQ can alleviate the effect of PA on macrophages' bioenergetics parameters to variable extent based on TQ concentration. To conclude, TQ could mitigate palmitate-induced inflammation and cytotoxicity in macrophages by improving macrophage viability and controlling cytokine release with improved PA-induced bioenergetics disruption.


Assuntos
Benzoquinonas , Inflamação , Macrófagos , Nigella sativa , Palmitatos , Benzoquinonas/farmacologia , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Nigella sativa/química , Células RAW 264.7 , Palmitatos/toxicidade , Palmitatos/farmacologia , Inflamação/tratamento farmacológico , Citocinas/metabolismo , Metabolismo Energético/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Óxido Nítrico/metabolismo
10.
Sci Rep ; 14(1): 11878, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789533

RESUMO

Oral disorders can exert systemic ramifications beyond their localized effects on dental tissues, implicating a wide array of physiological conditions. The utilization of essential oils (EOs) for protection of oral health represents a longstanding practice. Consequently, in this investigation, essential oil derived from Nigella sativa seeds (NSEO) underwent isolation via the hydro-distillation process, followed by a comprehensive evaluation of its antioxidant, anti-inflammatory, anti-fungal, antibacterial activities, and cytocompatibility. The isolated NSEO manifested as a pale-yellow substance and was found to harbor a diverse spectrum of bioactive constituents, including steroids, triterpenoids, flavonoids, phenols, proteins, alkaloids, tannin, sesquiterpenoid hydrocarbons, monoterpenoid alcohol, and monoterpenoid ketone (thymoquinone). Notably, the total phenolic content (TPC) and total flavonoid content (TFC) of NSEO were quantified at 641.23 µg GAE/gm and 442.25 µg QE/g, respectively. Furthermore, NSEO exhibited concentration-dependent inhibition of protein denaturation, HRBC membrane stabilization, and hemolysis inhibition. Comparative analysis revealed that NSEO and chlorhexidine (CHX) 0.2% displayed substantial inhibition of hemolysis compared to aspirin. While NSEO and CHX 0.2% demonstrated analogous antibacterial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, NSEO showcased heightened efficacy against Lactobacillus acidophilus and Candida albicans. Additionally, NSEO exhibited pronounced effects against periodontal pathogens such as Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia. Importantly, no cytotoxicity was observed on human gingival fibroblast cell lines. These findings underscore the potential of NSEO as a potent antibacterial and antifungal agent in the management of oral microbial pathogens, thereby offering avenues for the development of innovative therapies targeting diverse oral inflammatory conditions. Nevertheless, further investigations are imperative to unlock its full therapeutic repertoire.


Assuntos
Anti-Inflamatórios , Antioxidantes , Nigella sativa , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antioxidantes/farmacologia , Antioxidantes/química , Nigella sativa/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Humanos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Sementes/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
11.
Eur J Pharm Biopharm ; 199: 114275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582178

RESUMO

Liposomes is a non-viral vector drug delivery system. Nevertheless, the existing commercial liposomes are quite expensive and not always affordable, particularly in developing countries. To address this challenge, plant-derived nanoparticles offer a cost-effective alternative while maintaining similar drug delivery capabilities. Hence, this study aimed to explore the potential of nanovesicles derived from black cumin (Nigella sativa) as a miRNA delivery system. Gradient sucrose-centrifugation was utilized to separate the nanovesicles derived from black cumin. Subsequently, these isolated nanovesicles, originating from black cumin, underwent centrifugation at a speed of 11,000 rpm. The miRNAs were encapsulated within these nanovesicles through the ethanol injection method. Morphological examinations of the nanovesicles derived from black cumin and DOTAP, as the positive control, were conducted using TEM and SEM. Furthermore, the cytotoxicity of the nanovesicles derived from black cumin was evaluated through the MTT assay on the MCF-7 cell line. Lastly, the process of internalization for both the black cumin-derived nanovesicles and DOTAP was visualized using a confocal microscope. Results demonstrated the successful isolation of nanovesicles from black cumin using the sucrose gradient method. These particles exhibited a spherical shape with diameters ranging from 100 nm to 200 nm, featuring a negative surface charge. When MCF-7 cells were exposed to black cumin-derived nanovesicles at a concentration of 12 mg/mL, cell viability reached 89.8 %, showing no significant difference compared to the positive control (p > 0.05). Furthermore, the MCF-7 cell line effectively internalized the black cumin-derived nanovesicles after a 45-minute incubation period. Notably, the encapsulation of miRNA within these nanovesicles demonstrated an impressive entrapment efficiency of 76.4 %. Subsequent transfection of miRNA-loaded black cumin-derived nanovesicles resulted in a substantial inhibition of MCF-7 cell viability, reducing it to 67 % after 48 h of treatment. These findings underscore the potential of black cumin-derived nanovesicles as potential nanovectors for the encapsulation and delivery of miRNA within drug delivery systems, offering a cost-effective and accessible solution for advanced drug delivery technologies, particularly in developing country.


Assuntos
Sistemas de Liberação de Medicamentos , MicroRNAs , Nanopartículas , Nigella sativa , Humanos , Células MCF-7 , Sistemas de Liberação de Medicamentos/métodos , Nigella sativa/química , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Lipossomos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química
12.
PeerJ ; 12: e17177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563005

RESUMO

Background: Plants have been pivotal in traditional and modern medicine globally, with historical evidence supporting their therapeutic applications. Nigella (Nigella sativa L.) is an annual herbaceous plant of the Ranunculaceae family and is cultivated in the Middle East, Eastern Europe, and Western and Central Asia. The medicinal use of plants dates back thousands of years, documented in ancient writings from various civilizations. Alkaloids, phenolics, saponins, flavonoids, terpenoids, anthraquinones, and tannins found in plants exhibit antioxidant, immunomodulatory, anti-inflammatory, anticancer, antibacterial, and antidiabetic activities. Methodology: This study specifically examines the pharmacological potential of Nigella sativa L., emphasizing thymoquinone-a compound with diverse nutraceutical benefits. The extraction, characterization, and quantification of thymoquinone, alongside other physicochemical parameters, were carried out using ethanol through Soxhlet extraction procedures on five nigella varieties. HPLC analysis was performed to determine the maximum accumulation of thymoquinone in the released variety of the plant and the chemical composition of the seed oil isolated from Nigella sativa L., varieties utilized in the study was determined through GC-MS analysis. Results: The research revealed that the Ajmer nigella-20 variety stands out, exhibiting elevated levels of thymoquinone (0.20 ± 0.07%), antioxidants (76.18 ± 1.78%), and substantial quantities of total phenols (31.85 ± 0.97 mg GAEg-1 seed) and flavonoids (8.150 ± 0.360 mg QE 100 g-1 seed) compared to other varieties. The GC-MS profiling showed the presence of 11 major compounds in the studied varieties, with p-cymene, longifolene, and myristic acid identified as the major chemical compounds present in the oil. Conclusion: The observed variations among Nigella varieties indicate the Ajmer nigella-20 variety as particularly promising for thymoquinone and bioactive compound extraction. This study underscores Nigella's potential as a source of pharmacologically active compounds, highlighting the need for further exploration in therapeutic applications.


Assuntos
Benzoquinonas , Nigella sativa , Nigella , Nigella sativa/química , Extratos Vegetais/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Flavonoides
13.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338478

RESUMO

The characteristic chemical composition of Nigella seeds is directly linked to their beneficial properties. This study aimed to investigate the phytochemical composition of Nigella sativa seeds using a 100% ethanolic extract using HPLC-ESI-MS/MS. Additionally, it explored the potential biological effects of the extract on female rat reproduction. Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH), Estrogen (E2), and Progesterone (P4) hormone levels were also assessed, along with the morphological and histological effects of the extract on ovarian, oviductal, and uterine tissues. Molecular docking was performed to understand the extract's activity and its role in regulating female reproduction by assessing its binding affinity to hormonal receptors. Twenty metabolites, including alkaloids, saponins, terpenes, flavonoids, phenolic acids, and fatty acids, were found in the ethanolic extract of N. sativa seeds through the HPLC-ESI-MS/MS study. The N. sativa seed extract exhibited strong estrogenic and LH-like activities (p < 0.05) with weak FSH-like activity. Furthermore, it increased the serum levels of LH (p < 0.05), P4 hormones (p < 0.001), and E2 (p < 0.0001). Molecular docking results displayed a strong interaction with Erß, LH, GnRH, and P4 receptors, respectively. Based on these findings, N. sativa seeds demonstrated hormone-like activities, suggesting their potential as a treatment for improving female fertility.


Assuntos
Nigella sativa , Ratos , Feminino , Animais , Nigella sativa/química , Espectrometria de Massas em Tandem , Simulação de Acoplamento Molecular , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Hormônio Luteinizante , Hormônio Foliculoestimulante , Sementes/química , Fertilidade
14.
J Food Sci ; 89(4): 1865-1893, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407314

RESUMO

Nigella sativa is one of the nutraceuticals that has gained popularity and studied extensively in recent decades as it is considered a safe medicinal plant for use as a dietary supplement. N. sativa contains a wide variety of bioactive substances, which include polyphenols, volatile oils (thymoquinone and p-cymene), proteins, and peptides. The biological attributes of N. sativa include antioxidant, antimicrobial, antifungal, anti-inflammatory, anticancer, antidiabetic, antihypertensive, hypolipidemic, and antioxidant activities, which have potential applications for the prevention of a variety of chronic diseases. In the food industry, N. sativa improves the sensory qualities, shelf life, strength, and freshness of foods, such as bread, pizza, biscuits, cookies, and cakes. This review discusses the industrial use of N. sativa, which includes processing technologies to enhance its health-promoting properties as well as the isolation of nutraceutical components.


Assuntos
Nigella sativa , Plantas Medicinais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nigella sativa/química , Alimento Funcional , Antioxidantes
15.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003621

RESUMO

Thymoquinone (TQ) is the primary component of Nigella sativa L. (NS) oil, which is renowned for its potent hepatoprotective effects attributed to its antioxidant, anti-fibrotic, anti-inflammatory, anti-carcinogenic, and both anti- and pro-apoptotic properties. The aim of this work was to establish a method of measuring TQ in serum in order to investigate the pharmacokinetics of TQ prior to a targeted therapeutic application. In the first step, a gas chromatography-mass spectrometry method for the detection and quantification of TQ in an oily matrix was established and validated according to European Medicines Agency (EMA) criteria. For the assessment of the clinical application, TQ concentrations in 19 oil preparations were determined. Second, two serum samples were spiked with TQ to determine the TQ concentration after deproteinization using toluene. Third, one healthy volunteer ingested 1 g and another one 3 g of a highly concentrated NS oil 30 and 60 min prior to blood sampling for the determination of serum TQ level. After the successful establishment and validation of the measurement method, the highest concentration of TQ (36.56 g/L) was found for a bottled NS oil product (No. 1). Since a capsule is more suitable for oral administration, the product with the third highest TQ concentration (No. 3: 24.39 g/L) was used for all further tests. In the serum samples spiked with TQ, the TQ concentration was reliably detectable in a range between 5 and 10 µg/mL. After oral intake of NS oil (No. 3), however, TQ and/or its derivatives were not detectable in human serum. This discrepancy in detecting TQ after spiking serum or following oral ingestion may be attributed to the instability of TQ in biomatrices as well as its strong protein binding properties. A pharmacokinetics study was therefore not viable. Studies on isotopically labeled TQ in an animal model are necessary to study the pharmacokinetics of TQ using alternative modalities.


Assuntos
Nigella sativa , Animais , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Nigella sativa/química , Óleos de Plantas , Benzoquinonas
16.
Biomed Pharmacother ; 165: 114972, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37481931

RESUMO

The rising incidence of breast cancer has been a significant source of concern in the medical community. Regarding the adverse effects and consequences of current treatments, cancers' health, and socio-economical aspects have become more complicated, leaving research aimed at improved or new treatments on top priority. Medicinal herbs contain multitarget compounds that can control cancer development and advancement. Owing to Nigella Sativa's elements, it can treat many disorders. Thymoquinone (TQ) is a natural chemical derived from the black seeds of Nigella sativa Linn proved to have anti-cancer and anti-inflammatory properties. TQ interferes in a broad spectrum of tumorigenic procedures and inhibits carcinogenesis, malignant development, invasion, migration, and angiogenesis owing to its multitargeting ability. It effectively facilitates miR-34a up-regulation, regulates the p53-dependent pathway, and suppresses Rac1 expression. TQ promotes apoptosis and controls the expression of pro- and anti-apoptotic genes. It has also been shown to diminish the phosphorylation of NF-B and IKK and decrease the metastasis and ERK1/2 and PI3K activity. We discuss TQ's cytotoxic effects for breast cancer treatment with a deep look at the relevant stimulatory or inhibitory signaling pathways. This review discusses the various forms of polymeric and non-polymeric nanocarriers (NC) and the encapsulation of TQ for increasing oral bioavailability and enhanced in vitro and in vivo efficacy of TQ-combined treatment with different chemotherapeutic agents against various breast cancer cell lines. This study can be useful to a broad scientific community, comprising pharmaceutical and biological scientists, as well as clinical investigators.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nigella sativa , Humanos , Feminino , Neoplasias da Mama/patologia , Apoptose , Antineoplásicos/farmacologia , Benzoquinonas/uso terapêutico , Nigella sativa/química
17.
Fitoterapia ; 169: 105601, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37406886

RESUMO

Cancer continues to threat mortal alongside scientific community with burgeoning grasp. Most efforts directed to tame Cancer such as radiotherapy or chemotherapy, all came at a cost of severe side effects. The plant derived bioactive compounds on the other hand carries an inevitable advantage of being safer, bioavailable & less toxic compared to contemporary chemotherapeutics. Our strategic approach employed solvent extraction of Black Seed Oil (BSO) to highlight the orchestrated use of its oil soluble phytochemicals - Thymoquinone, Carvacrol & Trans-Anethole when used in cohort. These anti-cancer agents in unbelievably modest amounts present in BSO shows better potential to delineate migratory properties in breast cancer cells as compared to when treated individually. BSO was also observed to have apoptotic calibre when investigated in MDA-MB-231 and MCF-7 cell lines. We performed chemical characterization of the individual phytochemical as well as the oil in-whole to demonstrate the bioactive oil-soluble entities present in whole extract. BSO was observed to have significant anti-cancerous properties in cumulative proportion that is reportedly higher than the individual three components. Besides, this study also reports micro-RNA regulation on BSO administration, thereby playing a pivotal role in breast cancer alleviation. Thus, synergistic action of the integrants serves better combat force against breast cancer in the form of whole extract, hence aiming at a more lucrative paradigm while significantly regulating microRNAs associated with breast cancer migration and apoptosis.


Assuntos
Neoplasias da Mama , MicroRNAs , Nigella sativa , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Nigella sativa/química , Estrutura Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
18.
F1000Res ; 12: 436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265686

RESUMO

Background: A significant area of clinical research is the development of natural wound healing products and the management of chronic wounds. Healing wounds with medicinal plants has been a practice of ancient civilizations for centuries. Nigella sativa L ( N. sativa) is a medicinal plant that has several pharmacological properties. Methods: The present study evaluated the wound healing properties of Nigella sativa L. ( N. sativa) seed extracts using normal cell lines such as normal human dermal fibroblasts (NHDFs) and human umbilical vein endothelial cells (HUVECs). The expression levels of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) were analyzed through western blot analysis. Furthermore, computational analyses were carried out to screen the potential bioactive compounds for wound healing applications. Results: The results of the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay revealed that, all the tested solvent extracts of N. sativa seeds (including ethanol, ethyl acetate, chloroform, and petroleum ether) did not exert any cytotoxic effects at the tested concentrations. Furthermore, the western blot analysis showed elevated levels of VEGF and PDGF upon treatment with N. sativa seed extracts. Gas chromatography-mass spectrometry (GC-MS) analysis of N. sativa extracts identified 268 phytocompounds. Molecular docking studies revealed that three phytocompounds of N. sativa extracts, including tricyclo[20.8.0.0(7,16)]triacontane, 1(22),7(16)-diepoxy-, adaphostin and obeticholic acid had strong binding affinity with wound healing-related target proteins, showing docking scores ranging from -5.5 to -10.9 Kcal/mol. These compounds had acceptable Absorption, Distribution, Metabolism, and Excretion (ADME) properties. Conclusions: Based on these results, N. sativa seed extracts might possess potential wound healing properties owing to the presence of a wide range of bioactive components.


Assuntos
Nigella sativa , Humanos , Nigella sativa/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Fator de Crescimento Derivado de Plaquetas , Células Endoteliais , Simulação de Acoplamento Molecular , Cicatrização , Transdução de Sinais
19.
Eur Rev Med Pharmacol Sci ; 27(9): 4202-4210, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37203846

RESUMO

OBJECTIVE: Natural wound dressings composed of gelatin (GEL) and chitosan (CH) impregnated with bioactive compounds (Nigella sativa oil) were prepared and characterized to evaluate their potential application. MATERIALS AND METHODS: The formulated composite was subjected to γ-irradiation. In vitro, the ferric-reducing antioxidant power (FRAP) assay and antibiofilm activities were evaluated. In vivo, the tissue wound-healing process was studied by applying GEL-CH-Nigella in dorsal skin rabbit tissue. On days 7 and 14, the biochemical biomarker and histological analysis were determined. RESULTS: At 10 kGy, FRAP assays exhibited the highest antioxidant activity (380 mmol/kg). A significant inhibition of anti-biofilm activity was observed against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) (p<0.01). Fourteen days post-surgery, a significant reduction in thiobarbituric acid-reactive compounds (TBARs) was observed compared to the GEL-CH group. Concerning oxidative stress status, GEL-CH-Nigella significantly improved superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities. A histological analysis revealed that GEL-CH-Nigella accelerated wound closure and improved collagenisation and enhanced epidermal tissue thickness. CONCLUSIONS: These results indicate that GEL-CH-Nigella wound dressing is a promising biomaterial for engineered tissue.


Assuntos
Antioxidantes , Nigella sativa , Óleos de Plantas , Animais , Coelhos , Antioxidantes/farmacologia , Escherichia coli , Nigella sativa/química , Staphylococcus aureus , Modelos Animais , Pele , Óleos de Plantas/farmacologia
20.
J Sci Food Agric ; 103(13): 6208-6218, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37148152

RESUMO

BACKGROUND: Black cumin seeds (black seed; BS) contain various bioactive compounds, such as thymoquinone (TQ). Roasting and ultrasound-assisted enzymatic treatment (UAET) as pre-treatments can increase the phytochemical content in the BS oil. This study aimed to investigate the effects of pre-treatments on the TQ content and the yield of the BS oil and to profile the composition of defatted BS meal (DBSM), followed by evaluating antioxidant properties of the DBSM. RESULTS: The extraction yield of crude oil from BS was not affected by the roasting time. The highest extraction yield (47.8 ± 0.4%) was obtained with UAET cellulase-pH 5 (enzyme concentration of 100%). Roasting decreased the TQ content of the oil, while the UAET cellulase-pH 5 treatment with an enzyme concentration of 100% yielded the highest TQ (125.1 ± 2.7 µg mL-1 ). Additionally, the UAET cellulase-pH 5 treatment increased total phenolics and flavonoids of DBSM by approximately two-fold, compared to roasting or ultrasound treatment (UT) alone. Principal component analysis revealed that the UAET method might be more suitable for extracting BS oil with higher TQ content than roasting and UT. CONCLUSION: Compared to roasting or UT, using ultrasound along with cellulase could improve the oil yield and TQ in the oil from BS and obtain the DBSM with higher phenolics, flavonoids, and antioxidant activity. © 2023 Society of Chemical Industry.


Assuntos
Celulases , Nigella sativa , Antioxidantes/análise , Nigella sativa/química , Benzoquinonas/química , Sementes/química , Flavonoides/análise , Celulases/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA