Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
1.
In Vivo ; 37(2): 506-518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881075

RESUMO

BACKGROUND/AIM: The earliest cellular and molecular biologic changes in the esophagus that lead to esophageal cancer were evaluated in a mouse model. We correlated numbers of senescent cells with the levels of expression of potentially carcinogenic genes in sorted side population (SP) cells containing esophageal stem cells and non-stem cells in the non-side population cells in the 4-nitroquinolone oxide (NQO)-treated esophagus. MATERIALS AND METHODS: We compared stem cells with non-stem cells from the esophagus of mice treated with the chemical carcinogen 4-NQO (100 µg/ml) in drinking water. We also compared gene expression in human esophagus samples treated with 4-NQO (100 µg/ml media) to non-treated samples. We separated and quantitated the relative levels of expression of RNA using RNAseq analysis. We identified senescent cells by luciferase imaging of p16+/LUC mice and senescent cells in excised esophagus from tdTOMp16+ mice. RESULTS: A significant increase in the levels of RNA for oncostatin-M was found in senescent cells of the esophagus from 4-NQO-treated mice and human esophagus in vitro. CONCLUSION: Induction of OSM in chemically-induced esophageal cancer in mice correlates with the appearance of senescent cells.


Assuntos
Neoplasias Esofágicas , Nitroquinolinas , Humanos , Animais , Camundongos , Carcinógenos , Óxidos , Mutagênicos , Neoplasias Esofágicas/induzido quimicamente , Neoplasias Esofágicas/genética , RNA , Oncostatina M
2.
Medicina (Kaunas) ; 58(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36143906

RESUMO

Background and Objectives: Oral squamous cell carcinoma (OSCC) is the sixth most common malignancy in the world. Transient receptor potential vanilloid 4 (TRPV4) channel has been shown to be involved in angiogenesis in multiple types of tumors. However, not much is known about TRPV4's involvement in OSCC. Thus, in this study, we investigate the effect of administering a TRPV4 agonist on angiogenesis in OSCC. Materials and Methods: Thirty-six Sprague Dawley (SD) rats were used in this study. 4-nitroquinoline 1-oxide (4NQO) was used to induce OSCC. Cisplatin (an anticancer drug), and GSK1016790A (an agonist for TRPV4) was used in this study. Immunohistochemistry was employed to examine the TRPV4 expression. An RT2 Profiler PCR Array was performed for gene expression analysis of TRPV4, vascular growth factors that correspond directly with angiogenesis, such as angiopoietin (Ang-1 and Ang-2), and tyrosine kinase (Tie-1 and Tie-2) receptors. Tumor vessel maturity was assessed by microvessel density and microvessel-pericyte-coverage index. Results: RT2 profiler PCR array showed significant elevated levels of Ang-1 (2.1-fold change; p < 0.05) and Tie-2 (4.5-fold change; p < 0.05) in OSCC following the administration of a combination of GSK1016790A and cisplatin. Additionally, the combination treatment significantly reduced the microvessel density (p < 0.01) and significantly increased the percentage of microvessels covered with pericytes (p < 0.01) in OSCC. Furthermore, tumor size was significantly reduced (p < 0.05) in rats that received cisplatin alone. The combination treatment also greatly reduced the tumor size; however, the data were not statistically significant. Conclusions: The findings suggest that combining a TRPV4 agonist with cisplatin for treatment of OSCC promote vessels normalization via modulation of Ang-1/Tie-2 pathway.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Nitroquinolinas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Modelos Animais de Doenças , Leucina/análogos & derivados , Neoplasias Bucais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Óxidos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor TIE-2/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Sulfonamidas , Canais de Cátion TRPV
3.
Int J Biol Sci ; 18(13): 5207-5220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982887

RESUMO

Bladder cancer is one of the most common and deadly cancer worldwide. Current chemotherapy has shown limited efficacy in improving outcomes for patients. Nitroxoline, an old and widely used oral antibiotic, which was known to treat for urinary tract infection for decades. Recent studies suggested that nitroxoline suppressed the tumor progression and metastasis, especially in bladder cancer. However, the underlying mechanism for anti-tumor activity of nitroxoline remains unclear. Methods: CircRNA microarray was used to explore the nitroxoline-mediated circRNA expression profile of bladder cancer lines. Transwell and wound-healing assay were applied to evaluate the capacity of metastasis. ChIP assay was chosen to prove the binding of promotor and transcription factor. RNA-pulldown assay was performed to explore the sponge of circRNA and microRNA. Results: We first identified the circNDRG1 (has_circ_0085656) as a novel candidate circRNA. Transwell and wound-healing assay demonstrated that circNDRG1 inhibited the metastasis of bladder cancer. ChIP assay showed that circNDRG1 was regulated by the transcription factor EGR1 by binding the promotor of host gene NDRG1. RNA-pulldown assay proved that circNDRG1 sponged miR-520h leading to the overexpression of smad7, which was a negative regulatory protein of EMT. Conclusions: Our research revealed that nitroxoline may suppress metastasis in bladder cancer via EGR1/circNDRG1/miR-520h/smad7/EMT signaling pathway.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Nitroquinolinas , RNA Circular/genética , Transdução de Sinais/genética , Proteína Smad7/genética , Proteína Smad7/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
4.
ACS Infect Dis ; 8(8): 1594-1605, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35830188

RESUMO

Bacterial biofilms are surface-attached communities of slow- or non-replicating cells embedded within a protective matrix of biomolecules. Unlike free-floating planktonic bacteria, biofilms are innately tolerant to conventional antibiotics and are prevalent in recurring and chronic infections. Nitroxoline, a broad-spectrum biofilm-eradicating agent, was used to probe biofilm viability. Transcript profiling (RNA-seq) showed that 452 of 2594 genes (17.4%) in methicillin-resistant Staphylococcus aureus (MRSA) biofilms were differentially expressed after a 2 h treatment of nitroxoline. WoPPER analysis and time-course validation (RT-qPCR) revealed that gene clusters involved in iron acquisition (sbn, isd, MW2101, MW0695, fhu, and feo) were rapidly up-regulated following nitroxoline treatment, which is indicative of iron starvation in MRSA biofilms. In addition, genes related to oligopeptide transporters and riboflavin biosynthesis were found to be up-regulated, while genes related to carotenoid biosynthesis and nitrate assimilation were down-regulated. RT-qPCR experiments revealed that iron uptake transcripts were also up-regulated in established Staphylococcus epidermidis and Acinetobacter baumannii biofilms following nitroxoline treatment. Overall, we show RNA-seq to be an ideal platform to define cellular pathways critical for biofilm survival, in addition to demonstrating the need these bacterial communities have for iron.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Bactérias/genética , Biofilmes , Ferro , Staphylococcus aureus Resistente à Meticilina/genética , Família Multigênica , Nitroquinolinas , Regulação para Cima
5.
Acta Pharmacol Sin ; 43(3): 681-691, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33931764

RESUMO

The PTEN/AKT/mTOR signaling pathway is frequently dysregulated in non-small cell lung cancer (NSCLC), but the mechanisms are not well-understood. The present study found that the ubiquitin ligase TRIM25 is highly expressed in NSCLC tissues and promotes NSCLC cell survival and tumor growth. Mechanistic studies revealed that TRIM25 binds to PTEN and mediates its K63-linked ubiquitination at K266. This modification prevents the plasma membrane translocation of PTEN and reduces its phosphatase activity therefore accumulating PI(3,4,5)P3. TRIM25 thus activates the AKT/mTOR signaling. Moreover, we found that the antibacterial nitroxoline can activate PTEN by reducing its K63-linked polyubiquitination and sensitizes NSCLC to cisplatin-induced apoptosis. This study thus identified a novel modulation on the PTEN signaling pathway by TRIM25 and provides a potential target for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ligação a DNA/metabolismo , Neoplasias Pulmonares/patologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Humanos , Nitroquinolinas/farmacologia , Monoéster Fosfórico Hidrolases/fisiologia , RNA Interferente Pequeno/metabolismo , Ubiquitinação/fisiologia
6.
Int J Biol Sci ; 17(12): 3255-3267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421363

RESUMO

Repeated cycles of first-line chemotherapy drugs such as doxorubicin (DOX) and cisplatin (CIS) trigger frequent chemoresistance in recurrent urothelial bladder cancer (UBC). Nitroxoline (NTX), an antibiotic to treat urinary tract infections, has been recently repurposed for cancer treatment. Here we aimed to investigate whether NTX suppresses drug-resistant UBC and its molecular mechanism. The drug-resistant cell lines T24/DOX and T24/CIS were established by continual exposure of parental cell line T24 to DOX and CIS, respectively. T24/DOX and T24/CIS cells were resistant to DOX and CIS, respectively, but they were sensitive to NTX time- and dose-dependently. Overexpressions of STAT3 and P-glycoprotein (P-gp) were identified in T24/DOX and T24/CIS, which could be reversed by NTX. Western blot revealed that NTX downregulated p-STAT3, c-Myc, Cyclin D1, CDK4, CDK6, Bcl-xL, Mcl-1, and Survivin, which were further confirmed by Stattic, a selective STAT3 inhibitor. In vivo, NTX exhibited the significant anti-tumor effect in T24/DOX and T24/CIS tumor-bearing mice. These results suggested that NTX-induced P-gp reversal, G0/G1 arrest, and apoptosis in drug-resistant UBC were mediated by inhibition of STAT3 signaling. Our findings repurpose NTX as a novel STAT3 inhibitor to induce P-gp reversal, G0/G1 arrest, and apoptosis in drug-resistant UBC.


Assuntos
Anti-Infecciosos Urinários/uso terapêutico , Carcinoma de Células de Transição/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nitroquinolinas/uso terapêutico , Fator de Transcrição STAT3/antagonistas & inibidores , Neoplasias da Bexiga Urinária/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
7.
J Antibiot (Tokyo) ; 74(10): 763-766, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34163027

RESUMO

Repurposing of currently used drugs for new indications benefits from known experience with those agents. Rational repurposing can be achieved when newly uncovered molecular activities are leveraged against diseases that utilize those mechanisms. Nitroxoline is an antibiotic with metal-chelating activity used to treat urinary tract infections. This small molecule also inhibits the function of bromodomain and extraterminal (BET) proteins that regulate oncogene expression in cancer. Lymphoproliferation driven by the Epstein-Barr virus (EBV) depends on these same proteins. We therefore tested the efficacy of nitroxoline against cell culture and small animal models of EBV-associated lymphoproliferation. Nitroxoline indeed reduces cell and tumor growth. Nitroxoline also acts faster than the prototype BET inhibitor JQ1. We suggest that this rational repurposing may hold translational promise.


Assuntos
Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Nitroquinolinas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Reposicionamento de Medicamentos , Infecções por Vírus Epstein-Barr/prevenção & controle , Humanos , Camundongos , Nitroquinolinas/administração & dosagem , Nitroquinolinas/química , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Proc Natl Acad Sci U S A ; 117(46): 28918-28921, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33168727

RESUMO

REV1/POLζ-dependent mutagenic translesion synthesis (TLS) promotes cell survival after DNA damage but is responsible for most of the resulting mutations. A novel inhibitor of this pathway, JH-RE-06, promotes cisplatin efficacy in cancer cells and mouse xenograft models, but the mechanism underlying this combinatorial effect is not known. We report that, unexpectedly, in two different mouse xenograft models and four human and mouse cell lines we examined in vitro cisplatin/JH-RE-06 treatment does not increase apoptosis. Rather, it increases hallmarks of senescence such as senescence-associated ß-galactosidase, increased p21 expression, micronuclei formation, reduced Lamin B1, and increased expression of the immune regulators IL6 and IL8 followed by cell death. Moreover, although p-γ-H2AX foci formation was elevated and ATR expression was low in single agent cisplatin-treated cells, the opposite was true in cells treated with cisplatin/JH-RE-06. These observations suggest that targeting REV1 with JH-RE-06 profoundly affects the nature of the persistent genomic damage after cisplatin treatment and also the resulting physiological responses. These data highlight the potential of REV1/POLζ inhibitors to alter the biological response to DNA-damaging chemotherapy and enhance the efficacy of chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Nitroquinolinas/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/farmacologia , DNA/biossíntese , Dano ao DNA/fisiologia , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Inibidores Enzimáticos/administração & dosagem , Humanos , Proteínas Mad2/metabolismo , Camundongos , Mutagênese , Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
ChemMedChem ; 15(24): 2477-2490, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32744405

RESUMO

Nitroxoline, a well-known antimicrobial agent, has been identified in several independent studies, and on different molecular targets, as a promising candidate to be repurposed for cancer treatment. One specific target of interest concerns cathepsin B, a lysosomal peptidase involved in the degradation of the extracellular matrix (ECM), leading to tumor invasion, metastasis and angiogenesis. However, dedicated optimization of the nitroxoline core is needed to actually deliver a nitroxoline-based antitumor drug candidate. Within that context, 34 novel nitroxoline analogs were synthesized and evaluated for their relative cathepsin B inhibitory activity, their antiproliferative properties and their antimicrobial activity. More than twenty analogs were shown to exert a similar or even slightly higher cathepsin B inhibitory activity compared to nitroxoline. The implemented modifications of the nitroxoline scaffold and the resulting SAR information can form an eligible basis for further optimization toward more potent cathepsin B inhibitors in the quest for a clinical nitroxoline-based antitumor agent.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Catepsina B/antagonistas & inibidores , Nitroquinolinas/farmacologia , Inibidores de Proteases/farmacologia , Antibacterianos/síntese química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Nitroquinolinas/síntese química , Inibidores de Proteases/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos
10.
J Enzyme Inhib Med Chem ; 35(1): 1331-1344, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32588672

RESUMO

Pancreatic cancer (PC) is one of the deadliest carcinomas and in most cases, which are diagnosed with locally advanced or metastatic disease, current therapeutic options are highly unsatisfactory. Based on the anti-proliferative effects shown by nitroxoline, an old urinary antibacterial agent, we explored a large library of newly synthesised derivatives to unravel the importance of the OH moiety and pyridine ring of the parent compound. The new derivatives showed a valuable anti-proliferative effect and some displayed a greater effect as compared to nitroxoline against three pancreatic cancer cell lines with different genetic profiles. In particular, in silico pharmacokinetic data, clonogenicity assays and selectivity indexes of the most promising compounds showed several advantages for such derivatives, as compared to nitroxoline. Moreover, some of these novel compounds had stronger effects on cell viability and/or clonogenic capacity in PC cells as compared to erlotinib, a targeted agent approved for PC treatment.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Nitroquinolinas/síntese química , Nitroquinolinas/farmacologia , Neoplasias Pancreáticas/patologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Humanos , Nitroquinolinas/química , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade
11.
Int J Mol Sci ; 21(9)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380772

RESUMO

Various factors leads to cancer; among them oxidative damage is believed to play an important role. Moreover, it is important to identify a method to detect the oxidative damage. Recently, electrochemical sensors have been considered as the one of the most important techniques to detect DNA damage, owing to its rapid detection. However, electrode materials play an important role in the properties of electrochemical sensor. Currently, researchers have aimed to develop novel electrode materials for low-level detection of biomarkers. Herein, we report the facile hydrothermal synthesis of NiCo2O4 micro flowers (MFs) and NiCo2S4 micro spheres (Ms) and evaluate their electrochemical properties for the detection of carcinogen-causing biomarker 4-nitroquinoline n-oxide (4-NQO) in human blood serum and saliva samples. Moreover, as-prepared composites were fabricated on a glass carbon electrode (GCE), and its electrochemical activities for the determination of 4-NQO were investigated by using various electrochemical techniques. Fascinatingly, the NiCo2S4-Ms showed a very low detection limit of 2.29 nM and a wider range of 0.005 to 596.64 µM for detecting 4-NQO. Finally, the practical applicability of NiCo2S4-Ms in the 4-NQO spiked human blood serum and saliva samples were also investigated.


Assuntos
Técnicas Biossensoriais , Carcinógenos/análise , Técnicas Eletroquímicas , Nitroquinolinas/análise , Estresse Oxidativo , Técnicas de Química Sintética , Eletrodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Níquel/química , Sensibilidade e Especificidade , Análise Espectral
12.
Sci Rep ; 10(1): 2574, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054977

RESUMO

We recently identified nitroxoline as a repurposed drug candidate in pancreatic cancer (PC) showing a dose-dependent antiproliferative activity in different PC cell lines. This antibiotic is effective in several in vitro and animal cancer models. To date, the mechanisms of nitroxoline anticancer action are largely unknown. Using shotgun proteomics we identified 363 proteins affected by nitroxoline treatment in AsPC-1 pancreatic cancer cells, including 81 consistently deregulated at both 24- and 48-hour treatment. These proteins previously unknown to be affected by nitroxoline were mostly downregulated and interconnected in a single highly-enriched network of protein-protein interactions. Integrative proteomic and functional analyses revealed nitroxoline-induced downregulation of Na/K-ATPase pump and ß-catenin, which associated with drastic impairment in cell growth, migration, invasion, increased ROS production and induction of DNA damage response. Remarkably, nitroxoline induced a previously unknown deregulation of molecules with a critical role in cell bioenergetics, which resulted in mitochondrial depolarization. Our study also suggests that deregulation of cytosolic iron homeostasis and of co-translational targeting to membrane contribute to nitroxoline anticancer action. This study broadens our understanding of the mechanisms of nitroxoline action, showing that the drug modulates multiple proteins crucial in cancer biology and previously unknown to be affected by nitroxoline.


Assuntos
Proteínas de Neoplasias/genética , Nitroquinolinas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Proteômica , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia
13.
Anticancer Agents Med Chem ; 20(3): 346-358, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31566137

RESUMO

BACKGROUND: The first choice of treatment in Hepatocellular Carcinoma (HCC) is 5-fluorouracil (5-FU). Nitroxoline (NIT), a potent inhibitor of Cathepsin B, impairs tumor progression by decreased extracellular matrix degradation. The objective of the current project was designed to target nanoparticles for co-delivery of 5-FU and NIT in order to enhance the 5-FU cytotoxic effects and reduce the metastatic properties of HepG2 cells. METHODS: 5-FU and NIT were loaded in chitosan-chondroitin nanoparticles. To target the CD44 receptors of HepG2 cells, Hyaluronic Acid (HA) was conjugated to the chondroitin by adipic acid dihydrazide and the conjugation was confirmed by FTIR and 1HNMR. After physicochemical characterization and optimization of the processing variables, MTT assay was done on HepG2 and NIH3T3 cell lines to determine the cytotoxic properties of HA targeted nanoparticles. Migration of the cells was studied to compare the co-delivery of the drugs with each drug alone. RESULTS: The optimized nanoparticles showed the particle size of 244.7±16.3nm, PDI of 0.30±0.03, drug entrapment efficiency of 46.3±5.0% for 5-FU and 75.1±0.9% for NIT. The drug release efficiency up to 8 hours was about 37.6±0.9% for 5-FU and 62.9±0.7% for NIT. The co-delivery of 5-FU and NIT in targeted nanoparticles showed significantly more cytotoxicity than the mixture of the two free drugs, non-targeted nanoparticles or each drug alone and reduced the IC50 value of 5-FU from 3.31±0.65µg/ml to 0.17±0.03µg/ml and the migration of HepG2 cells was also reduced to five-fold. CONCLUSION: Co-delivery of 5-FU and NIT by HA targeted chitosan-chondroitin nanoparticles may be promising in HCC.


Assuntos
Antineoplásicos/química , Carcinoma Hepatocelular/tratamento farmacológico , Fluoruracila/química , Neoplasias Hepáticas/tratamento farmacológico , Nanocápsulas/química , Nitroquinolinas/química , Inibidores de Proteases/química , Animais , Antineoplásicos/farmacologia , Catepsina B/antagonistas & inibidores , Quitosana/química , Condroitina/química , Liberação Controlada de Fármacos , Quimioterapia Combinada , Fluoruracila/farmacologia , Células Hep G2 , Humanos , Ácido Hialurônico/metabolismo , Camundongos , Terapia de Alvo Molecular , Células NIH 3T3 , Nitroquinolinas/farmacologia , Inibidores de Proteases/farmacologia
14.
Acta Biochim Pol ; 66(4): 521-531, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31834689

RESUMO

Cancer is a disease receiving an outstanding input of funds for basic and clinical research but is, nevertheless, still the second leading cause of death in the developed world and a great burden for health systems. New drugs are therefore needed to improve therapy, prolong survival of cancer patients and improve their quality of life. The high cost of development and clinical evaluation of new drugs limits the number that actually enter clinical use. To overcome this problem, repurposing of established drugs for new indications has gained a lot of interest, especially in the field of oncology. The well-established antimicrobial agent nitroxoline has been identified as a promising candidate to be repurposed for cancer treatment in several independent studies. Here we have reviewed a wide range of molecular mechanisms and tumor models involving nitroxoline in impairment of tumor progression. Furthermore, nitroxoline was used as a lead compound for structure-based chemical synthesis of new derivatives in order to improve its potency as well as selectivity for various targets. The potent antitumor activity of nitroxoline points strongly in the direction of its repurposing for cancer treatment and to the benefits of this strategy for patients and healthcare system.


Assuntos
Carcinogênese/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Nitroquinolinas/uso terapêutico , Anti-Infecciosos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Reposicionamento de Medicamentos , Humanos
15.
Sci Rep ; 9(1): 16613, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719653

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive human tumors with poor survival rates. The current standard treatment includes chemotherapy with temozolomide (TMZ), but acquisition of resistance is a persistent clinical problem limiting the successful treatment of GBM. The purpose of our study was to investigate therapeutic effects of nitroxoline (NTX) against TMZ-resistant GBM in vitro and in vivo in TMZ-resistant GBM-bearing mouse model, which was correlated with diffusion-weighted imaging (DWI). For in vitro study, we used TMZ-resistant GBM cell lines and evaluated therapeutic effects of NTX by clonogenic and migration assays. Quantitative RT-PCR was used to investigate the expression level of TMZ-resistant genes after NTX treatment. For in vivo study, we performed 9.4 T MR imaging to obtain T2WI for tumor volume measurement and DWI for assessment of apparent diffusion coefficient (ADC) changes by NTX in TMZ-resistant GBM mice (n = 8). Moreover, we performed regression analysis for the relationship between ADC and histological findings, which reflects the changes in cellularity and apurinic/apyrimidinic endonuclease-1 (APE-1) expression. We observed the recovery of TMZ-induced morphological changes, a reduced number of colonies and a decreased rate of migration capacity in TMZ-resistant cells after NTX treatment. The expression of APE-1 was significantly decreased in TMZ-resistant cells after NTX treatment compared with those without treatment. In an in vivo study, NTX reduced tumor growth in TMZ-resistant GBM mice (P = 0.0122). Moreover, ADC was increased in the NTX-treated TMZ-resistant GBM mice compared to the control group (P = 0.0079), which was prior to a tumor volume decrease. The cellularity and APE-1 expression by histology were negatively correlated with the ADC value, which in turn resulted in longer survival in NTX group. The decreased expression of APE-1 by NTX leads to therapeutic effects and is inversely correlated with ADC in TMZ-resistant GBM. Therefore, NTX is suggested as potential therapeutic candidate against TMZ-resistant GBM.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Glioblastoma/tratamento farmacológico , Nitroquinolinas/uso terapêutico , Temozolomida/uso terapêutico , Animais , Linhagem Celular Tumoral , Imagem de Difusão por Ressonância Magnética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias
16.
Chem Res Toxicol ; 32(11): 2182-2191, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31638783

RESUMO

Oxidative stress has been documented as one of the significant causes of neurodegenerative diseases. Therefore, antioxidant therapy for the prevention of neurodegenerative diseases seems to be an interesting strategy in drug discovery. The quinoline-based compound, namely 5-nitro-8-quinolinol (NQ), has shown excellent antimicrobial, anticancer, and anti-inflammatory activities. However, its neuroprotective effects and precise molecular mechanisms in human neuronal cells have not been elucidated. In this work, the effects of NQ on cell viability and morphology were evaluated by the MTT assay and microscopic observation. Moreover, the underlying mechanisms of this compound, inducing the survival rate of neuronal cells under oxidative stress, were investigated by reactive oxygen species (ROS) assay, flow cytometry, Western blotting, and immunofluorescence techniques. In addition, the molecular interaction of sirtuin1 (SIRT1) with NQ was constructed using the AutoDock 4.2 program. Interestingly, NQ protected SH-SY5Y cells against H2O2-induced neurotoxicity through scavenging ROS, upregulating the levels of SIRT1 and FOXO3a, increasing the levels of antioxidant enzymes (catalase and superoxide dismutase), promoting antiapoptotic BCL-2 protein expression, and reducing apoptosis. Besides, molecular docking also revealed that NQ interacted satisfactorily with the active site of SIRT1 similar to the resveratrol, which is the SIRT1 activator and strong antioxidant. These findings suggest that NQ prevents oxidative-stress-induced neurodegeneration because of its antioxidant capacity as well as antiapoptotic property through SIRT1-FOXO3a signaling pathway. Thus, NQ might be a drug that could be repurposed for prevention of neurodegeneration.


Assuntos
Reposicionamento de Medicamentos , Doenças Neurodegenerativas/prevenção & controle , Neurônios/efeitos dos fármacos , Nitroquinolinas/farmacologia , Substâncias Protetoras/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Proteína Forkhead Box O3/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Simulação de Acoplamento Molecular , Neurônios/metabolismo , Neurônios/patologia , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo
17.
Inorg Chem ; 58(18): 12334-12347, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31464130

RESUMO

Lysosomal cysteine peptidase cathepsin B (catB) is an important tumor-promoting factor involved in tumor progression and metastasis representing a relevant target for the development of new antitumor agents. In the present study, we synthesized 11 ruthenium compounds bearing either the clinical agent nitroxoline that was previously identified as potent selective reversible inhibitor of catB activity or its derivatives. We demonstrated that organoruthenation is a viable strategy for obtaining highly effective and specific inhibitors of catB endo- and exopeptidase activity, as shown using enzyme kinetics and microscale thermophoresis. Furthermore, we showed that the novel metallodrugs by catB inhibition significantly impair processes of tumor progression in in vitro cell based functional assays at low noncytotoxic concentrations. Generally, by using metallodrugs we observed an improvement in catB inhibition, a reduction of extracellular matrix degradation and tumor cell invasion in comparison to free ligands, and a correlation with the reactivity of the monodentate halide leaving ligand.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Catepsina B/antagonistas & inibidores , Invasividade Neoplásica/prevenção & controle , Nitroquinolinas/farmacologia , Rutênio/farmacologia , Antineoplásicos/química , Neoplasias da Mama/patologia , Catepsina B/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Modelos Moleculares , Invasividade Neoplásica/patologia , Nitroquinolinas/química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Rutênio/química
18.
Int J Biol Sci ; 15(5): 919-928, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31182913

RESUMO

Programmed cell death protein 1 (PD-1) blockade is a promising therapeutic strategy against prostate cancer. Nitroxoline has been found to have effective anticancer properties in several cancer types. We investigated the efficacy of a combination therapy involving nitroxoline and PD-1 blockade in a prostate cancer mouse model. In our in vitro analysis, we found that nitroxoline inhibited the viability and proliferation of the mouse prostate cancer cell line RM9-Luc-PSA. Additionally, nitroxoline downregulated the expressions of phospho-PI3 kinase, phospho-Akt (Thr308), phospho-Akt (Ser473), phospho-GSK-3ß, Bcl-2, and Bcl-xL. Nitroxoline also downregulated programmed death-ligand 1 (PD-L1) expression levels in prostate cancer cell line and tumor tissue. In our murine prostate cancer orthotopic model, nitroxoline plus PD-1 blockade synergistically suppressed tumor growth when compared with nitroxoline or PD-1 blockade alone, leading to reductions in tumor weight, bioluminescence tumor signals, and serum prostate-specific antigen levels. Furthermore, fluorescence-activated cell sorting analysis showed that the combination strategy significantly enhanced antitumor immunity by increasing CD44+CD62L+CD8+ memory T cell numbers and reducing myeloid-derived suppressor cell numbers in peripheral blood. In conclusion, our findings suggest that nitroxoline plus PD-1 blockade may be a promising treatment strategy in patients with prostate cancer.


Assuntos
Nitroquinolinas/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Imunoterapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Sci Rep ; 9(1): 5585, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944404

RESUMO

Amide proton transfer (APT) imaging is a novel molecular MRI technique to detect endogenous mobile proteins and peptides through chemical exchange saturation transfer. In this preliminary study, the purpose was to evaluate the feasibility of APT imaging in monitoring the early therapeutic response to nitroxoline (NTX) in a temozolomide (TMZ)-resistant glioblastoma multiforme (GBM) mouse model, which was compared with diffusion-weighted imaging (DWI). Here, we prepared TMZ-resistant GBM mouse model (n = 12), which were treated with 100 mg/kg/day of NTX (n = 4) or TMZ (n = 4), or saline (n = 4) for 7 days for the evaluation of short-term treatment by using APT imaging and DWI sequentially. The APT signal intensities and apparent diffusion coefficient (ADC) values were calculated and compared before and after treatment. Moreover, immunohistological analysis was also employed for the correlation between APT imaging and histopathology. The association between the APT value and Ki-67 labeling index was evaluated by using simple linear regression analysis. The short-term NTX treatment resulted in significant decrease in APT value as compared to untreated and TMZ group, in which APT signals were increased. However, we did not observe significantly increased mean ADC value following short-term NTX treatment. The Ki-67 labeling index shows a correlation with APT value. APT imaging could show the earlier response to NTX treatment as compared to ADC values in a TMZ-resistant mouse model. We believe that APT imaging can be a useful imaging biomarker for the early therapeutic evaluation in GBM patients.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Glioma/tratamento farmacológico , Nitroquinolinas/farmacologia , Temozolomida/farmacologia , Algoritmos , Amidas/administração & dosagem , Animais , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Prótons
20.
Kaohsiung J Med Sci ; 35(4): 202-208, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30896891

RESUMO

The proto-oncogene MDM2 is a nuclear-localized E3 ubiquitin ligase, which promotes tumor formation by targeting tumor suppressor proteins, such as p53, for proteasomal degradation. In this study, the anti-infective drug nitroxoline (NXQ) was screened out to effectively inhibit cell survival of small-cell lung cancer (SCLC) cells, and induce SCLC cell apoptosis by suppressing antiapoptotic proteins (such as Bcl-2 and MCL1) and upregulating proapoptotic protein Bim. In the mechanistic study, NXQ was found to downregulate MDM2 expression by inducing its proteasomal degradation, and thus upregulated p53 expression, which was a substrate protein of MDM2. Moreover, overexpression of MDM2 decreased the cytotoxicity of NXQ on SCLC cells. These results demonstrated that NXQ displayed anti-SCLC activity by suppressing MDM2 expression, which suggested that anti-infective NXQ had potential for SCLC treatment by targeting the MDM2/p53 axis.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Pequenas/metabolismo , Carcinoma de Células Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nitroquinolinas/farmacologia , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Nitroquinolinas/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proto-Oncogene Mas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA